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Abstract. This paper reviews Pólya urn models and their connec-
tion to random trees. Basic results are presented, together with
proofs that underly the historical evolution of the accompanying
thought process. Extensions and generalizations are given accord-
ing to chronology:

• Pólya-Eggenberger’s urn

• Bernard Friedman’s urn

• Generalized Pólya urns

• Extended urn schemes

• Invertible urn schemes

Connections to random trees are surveyed. Numerous applications
to trees common in computer science are discussed, including:
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• Binary search trees

• Fringe-balanced trees

• m-ary search trees

• 2–3 trees

• Paged binary trees

• Bucket quad trees

• Bucket k–d trees

The applications also include various types of recursive trees:

• Standard recursive trees

• Pyramids

• Plane-oriented recursive trees

• Phylogenetic trees

• Bucket recursive trees

• Sprouts

Limit distributions, and phase changes therein are presented within
the unifying theme of Pólya urn models.

1 Introduction

Pólya urn models are urns of colored balls with replacement schemes.
Balls are sampled at random from the urn and, depending on the color
of the ball withdrawn, balls of various colors are replaced in the urn.

Initially, these urns were intended to model contagion (Eggen-
berger and Pólya, 1923). Epidemics and other such spreading phe-
nomena have a branching nature within a population. Thus, steadily
Pólya urn schemes acquired importance in all branching phenomena,
such as chain letters, and many phenomena with an underlying ran-
dom tree structure.

The intent of this article is to review Pólya urn schemes. We
present basic results as they came by chronologically, and we sketch
their original proof to provide hints on the broad array of methods
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employed, and the evolutionary thought process leading to the cur-
rent state of the art. Numerous applications in random trees are
discussed. Being a review article, it is our intention to provide a wide
survey of the associated literature, too.

The sections of the paper are organized as follows. In Section 2
the notation for a working language is specified. We define precisely
the class of urns the paper is dealing with in Section 3. A word on
tenability is mentioned in Section 4. In Section 5 we portray the gen-
esis and classical foundations of Pólya urn theory. In Section 6 we
sketch the more modern developments of this still-burgeoning theory.
In Section 7 we give several applications to trees arising in a variety of
computer science applications involving random trees. Other practi-
cal settings such as pyramid schemes are taken up in Section 8. Other
directions and possible extensions for future research are outlined in
Section 9.

2 Notation

The number Hn =
∑n

i=1 1/i is the nth harmonic number. The no-

tation D= is for exact equality in distribution, whereas D−→ is for con-
vergence in distribution. Likewise, P−→ and a.s.−→ are respectively for
convergence in probability and almost surely.

The following abbreviations will be used for standard random
variables:

β(a, b) Beta with parameters (a, b)
B(n, p) Binomial on n trials with rate of success p
Ber(p) Bernoulli with rate of success p
Geo(p) Geometric with rate of success p per trial
N (µ, σ2) Normal variate with mean µ and variance σ2

Nd(µ,Σ) Multivariate normal vector in d dimensions
with mean vector µ and covariance matrix Σ

Vectors and matrices are represented in boldface. For economy of
space a column vector V will be written horizontally in the transposed
form VT . The vector of k ones is written as Jk. The notation ok(n)
stands for a k-component vector all the components of which are o(n)
in the usual scalar sense. If λ1, . . . , λk are the roots of the character-
istic equation of a k × k matrix, they will be arranged according to
their decreasing real parts, that is, <λ1 ≥ <λ2 ≥ . . . ≥ <λk.
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3 Growing Pólya urns

A Pólya urn is an urn containing balls of up to k different colors. The
urn evolves in discrete time steps. At each step, a ball is sampled
uniformly at random (all balls being equally likely). The color of the
ball withdrawn is observed, and the ball is returned to the urn. If at
any step the color of the ball withdrawn is i, i = 1, . . . , k, then Aij

balls of color j are placed in the urn, j = 1, . . . , k, where Aij follows
a discrete distribution on a set of integers. Generally speaking, the
entries Aij can be deterministic or random, positive or negative.

It is customary to represent the urn scheme by a square ball ad-
dition matrix, or schema:

A = [Aij ], i, j = 1, . . . , k,

the rows of which are indexed by the color of the ball picked, and
the columns are indexed by the color of the balls added. We call the
expected value E[A] the generator . The primary interest lies in the
long-term composition of the urn and in the stochastic path leading
to it. So, the number of balls of each color and the number of splits of
a particular color (the number of times a ball of that color is drawn)
are examples of important parameters.

Remark: In the case of 2× 2 schemata, we shall always think of the
two colors as white and blue, with the top row corresponding to addi-
tions upon drawing a white ball, and the first column corresponding
to the number of white balls added. In this case, we shall use Wn to
denote the number of white balls after n draws, and Bn to denote the
number of blue balls after n draws; with W0 and B0 being the initial
conditions. The total number of balls after n draws is τn = Wn +Bn.

Toward an asymptotic theory, we need our urn to withstand the
test of time. We shall deal only with tenable schemes—urns that
remain feasible no matter which stochastic path is being followed. In
a tenable urn, it is always possible to indefinitely draw balls according
to the rules. For example, the instance(

2 1
1 2

)
,

of Bernard Friedman’s urn is tenable, whichever nonempty initial
state it starts in. (In fact an urn is tenable, if all Aij are nonnegative,



Pólya urns: Review 57

under any nonempty starting conditions.) By contrast, an urn scheme
of white and blue balls with the schema(

−1 −X
3 4

)
, (1)

with X being a Ber(4
7) random variable, may or may not be tenable,

depending on the initial conditions. This urn is not tenable if it
starts out with more white balls than blue: for instance, if the urn
starts out with three white balls and two blue balls, it is not possible
to perpetuate drawing according to the rules along some stochastic
paths; if the event that a white ball is drawn and X = 1 persists
three times, which is one possible stochastic path, on the third draw
the urn cannot progress. On the other hand, if W0 < B0 the urn is
obviously tenable. Even on the most resistant path to growth, when
X = 1 always persists whenever there is a chance to pick white balls,
the number of white balls cycles in the set {0, 1, 2, 3}, and the number
of blue balls after n draws is 1

4n+O(1), as n→∞.
Toward asymptotics, we shall also consider only growing urns,

or urns the size of which grows to infinity on all possible stochastic
paths. It does not mean that the urn grows to infinite size that the
number of balls necessarily increases after each draw. The urn size is
allowed to decrease occasionally, but to grow the scheme will reverse
a transient decreasing streak. The term “growing urn” is a measure
of size at infinite time. The schema (1), growing with W0 < B0, is
one such urn.

4 A word on tenability

Not much attention has been devoted to tenability issues. Most re-
search effort was spent on proving results for urns that are already
known to be tenable, but not much has been said about when an urn
is tenable. Balaji and Mahmoud (2003+), is a modest attempt to
characterize the tenability of 2× 2 schemes of the general determin-
istic form

A =
(
a b
c d

)
.

Generally speaking, any 2 × 2 generator with two negatives in
the same column is not tenable, because we are always depleting
the color corresponding to that column. So, a matrix with four or
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three negatives cannot be tenable, because two negatives must be in
the same column. The tenuous case is that with two negatives. If
a generator has two negatives, they cannot be in the same column.
This leaves the cases(

− −
⊕ ⊕

)
(i)

(
⊕ ⊕
− −

)
(ii)

(
− ⊕
⊕ −

)
(iii)

,

where − indicates a negative entry, and ⊕ indicates an entry that
is positive or 0. The cases (i) and (ii) are symmetric through the
renaming of the colors. The observation in Mahmoud and Balaji
(2003+), is that the urn (i) is tenable if:

• W0 and c are both multiples of |a|.

• det(A) ≤ 0.

• det
(

a b
W0 B0

)
< 0.

Case (iii) requires less stringent conditions. This is a 2×2 special
case of the k × k tenable urn scheme studied in Gouet (1997). It
suffices to have

• W0 and c are both multiples of |a|.

• B0 and b are both multiples of |d|.

• At least one of the entries b or c is positive.

The tenability case of only one negative is easy to characterize.
The characterization in all cases is argued by considering the

“most critical path” which depletes the urn whenever possible. The
core of the argument is to find conditions to return recursively to a
critical state where one color is depleted.

5 Classical development

By classical development we refer to all the relevant materiel that can
be found in textbooks. Johnson and Kotz (1977) is a classic in this
field. Kotz and Balakrishnan (1997) is a companion survey of Pólya
urn models that goes into many more offshoots and derived urns (not
discussed in the present paper), rather than getting into connections
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to random trees as in the current survey. Kotz and Balakrishnan
(1997) also has a more pronounced combinatorial flavor; the current
survey gets more into asymptotics. Athreya and Ney (1972) puts a
generalized model in the perspective of the branching process. More
recent contributions are dubbed “modern” and relegated to the next
section of this article. Pólya urns also appear in some classic books
such as Fréchet (1943) and Feller (1971).

5.1 The Pólya-Eggenberger Urn

The earliest studies of Pólyaurns focused on 2 × 2 schemata. One
of the very first studies is Eggenberger and Pólya(1923), but it is
reported that the model had been considered in Markov (1917) and
Tchuprov (1922). The model was discussed further in Pólya(1931).
Eggenberger and Pólya(1923) is concerned with the the fixed schema(

s 0
0 s

)
, (2)

where one adds to the urn s (a positive integer) balls of the same
color as the ball withdrawn. This urn is commonly known as the
Pólya-Eggenberger urn (sometimes referred to in casual writing as
Pólya’s urn). Much of the rest of the ensuing theory is generalization
in many different directions.

It was natural in the first approach to the problem to seek discrete
distributions underlying the process in exact form (in the style of
19th Century research). Indeed, the discrete distribution found in
the Pólya-Eggenberger defined a fundamentally new distribution.

Theorem 5.1.1. (Eggenberger and Pólya, 1923). Let W̃n be the
number of white splits in the Pólya-Eggenberger urn after n draws.
Then,

P{W̃n = k} =
W0(W0 + s) . . .

(
W0 + (k − 1)s

)
B0(B0 + s) . . .

(
B0 + (n− k − 1)s

)
τ0(τ0 + s) . . .

(
τ0 + (n− 1)s

) (
n

k

)
.

Proof (sketch). The standard proof bears an idea similar to the
derivation of the binomial law on n independent trials. The difference
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is in that in the binomial case the trials are identical, but here the
probabilities are adaptive in time.

In a string of n draws achieving k white splits, there has to be
n − k blue draws. Suppose 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n are the time
indexes of the white draws. The probability of this particular string
is

B0

τ0
× B0 + s

τ1
× B0 + 2s

τ2
× · · · × B0 + (i1 − 2)s

τi1−2
× W0

τi1−1

×B0 + (i1 − 1)s
τi1

× · · · × B0 + (i2 − 3)s
τi2−2

×W0 + s

τi2−1
× B0 + (i2 − 1)s

τi2
× · · · × B0 + (n− k − 1)s

τn−1
.

Note that this expression does not depend on the string of indexes.
The time indexes can be chosen in

(
n
k

)
ways. �

Calculations involving combinatorial reductions of the forms found
in Riordan (1968) yield the moments.

Corollary 5.1.1. (Eggenberger and Pólya, 1923). Let Wn be the
number of white balls in the Pólya-Eggenberger urn after n draws.
Then,

E[Wn] =
W0

τ0
sn+W0.

Var[Wn] =
W0B0s

2n(sn+ τ0)
τ2
0 (τ0 + s)

.

Theorem 5.1.2. (Eggenberger and Pólya, 1923). Let W̃n be the
number of white splits in the Pólya-Eggenberger urn after n draws.
Then,

W̃n

n

a.s.−→ β
(W0

s
,
B0

s

)
.

Proof (sketch). Assume both W0 and B0 to be greater than 0. If
either one is 0, we have a degenerate urn, progressing on only on
one color, with no randomness. In this case Theorem 5.1.1 remains
valid through the appropriate boundary interpretation. The present
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theorem also remains valid through the appropriate interpretation of
a beta distribution, when one of its parameters is 0.

The proof is based on the appropriate passage to the limit. Rewrite
the exact distribution of Theorem 5.1.1 as

P{W̃n = k} =
Γ(k +W0/s) Γ(n− k +B0/s)

Γ(W0/s) Γ(B0/s) Γ(n+ τ0/s) /Γ(τ0/s)

(
n

k

)
.

So, for x ∈ [0, 1], the distribution function of the white splits is

P{W̃n ≤ nx} =
bnxc∑
k=0

Γ(k +W0/s) Γ(n− k +B0/s)
Γ(W0/s) Γ(B0/s) Γ(n+ τ0/s) /Γ

(
(W0 +B0)/s

) (
n

k

)
.

Using Stirling’s approximation to the gamma function and factorials
in the binomial coefficient, proceed to the limit as n→∞ with

P
{W̃n

n
≤ x

}
→ Γ((W0 +B0)/s)

Γ(W0/s) Γ(B0/s)

∫ x

0
uW0/s−1(1− u)B0/s−1 du;

the right hand side is the distribution function of the β(W0/s,B0/s)
random variable. �

It is curious that the limiting properties of a Pólya-Eggenberger
urn depend critically on the initial conditions.

5.2 Bernard Friedman’s urn

Bernstein (1940), Savkevich (1940), and Bernard Friedman (1949)
generalize the basic model (2) to one where one adds s balls of the
same color, and a balls of the antithecal color:(

s a
a s

)
. (3)

For mathematical convenience, as well as æsthetics, Bernard Fried-
man (1949) (and most ensuing classical studies) stayed with the case
of constant row sum.

The reason why this is convenient will be discussed when we get
into the more modern approaches to the problem. Bernard Friedman
(1949) develops a functional equation for the number of white balls.
Recalling that τn = Wn + Bn = τ0 + sn, we have a steady linear
nonrandom rate of increase. Of course, the case s = a is degenerate,
where Wn = W0 + sn. This degenerate case is of no interest, as there
is no randomness in it.
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Theorem 5.2.1. (Friedman, 1949). Let Wn be the number of white
balls in a nondegenerate Bernard Friedman’s urn after n draws. The
moment generating function φn(t) = E[eWnt] satisfies the difference-
differential equation

φn+1(t) = eat
[
φn(t) +

e(s−a)t − 1
τn

φ′n(t)
]
.

Proof (sketch). Let 1W
n and 1B

n ≡ 1 − 1W
n be respectively the

indicators of the events of drawing a white or a blue ball at the nth
step. The number of white balls after n + 1 draws is what it was
after n steps, plus the addition (possibly negative) incurred by the
ball sampled at step n+ 1:

Wn+1 = Wn + s1W
n + a1B

n = Wn + (s− a)1W
n + a.

Then
E[eWn+1t |Wn] = e(Wn+a)t E[e(s−a)1W

n t |Wn]. (4)

Further, we have the conditional expectation

E[e(s−a)1W
n t |Wn] = E[e(s−a)1W

n t |Wn,1W
n = 0]Prob{1W

n = 0 |Wn}
+ E[e(s−a)1W

n t |Wn,1W
n = 1]Prob{1W

n = 1 |Wn}

=
[
1− Wn

τn

]
+
Wn

τn
e(s−a)t.

Plug this into (4) and take expectations. �

The functional equation in Theorem 5.2.1 is not particularly easy
to solve for any arbitrary combination of values of s and a. Neverthe-
less, explicit solutions are available for special cases, such as a = 0
(Pólya-Eggenberger’s urn), and s = 0. Friedman (1949) suggested
the transformation

ψn(t) = (1− e−t(s−a))δ+γn φn(t), (5)

with
δ :=

τ0
s− a

, γ :=
s+ a

s− a
.

This gives a slightly simpler recurrences:

ψn+1(t) =
est

τn
(1− e−t(s−a))γ+1 ψ′n(t). (6)
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We shall discuss a solvable instance of this functional equation in
recursive trees. The solution in this special case should give us general
hints on how to approach the functional equation of Theorem 5.2.1.

Twentieth century research paid attention to simplifying results
by focusing on the essential elements or “asymptotics.” David Freed-
man (1965) develops an asymptotic theory for Bernard Friedman’s
urn.

Theorem 5.2.2. (Freedman, 1965). Let Wn be the number of white
balls in a nondegenerate Bernard Friedman’s urn after n draws. Let
ρ = (s− a)/(s+ a). If ρ < 1

2 , then

Wn − 1
2(s+ a)n
√
n

D−→ N
(
0,

(s− a)2

4(1− 2ρ)

)
.

A proof will be given when we present results on the more gen-
eral Bagchi-Pal urn. Freedman (1965) gives an expository section on
Bernard Friedman’s urn, where the results of Friedman (1949) are
mostly presented in terms of the difference Wn − Bn: For ρ < 1/2
the limiting distribution is normal under the

√
n scale, and it is inter-

esting to note that in the case ρ = 1
2 , one needs a different norming

factor to obtain a Gaussian limit distribution:

Wn −Bn√
n log n

D−→ N (0, (s− a)2).

For ρ > 1/2 the behavior is radically different:

Wn −Bn

nρ

D−→ β
(W0

s
,
B0

s

)
.

It is curious to note that in the case ρ < 1
2 , the effect of any initial

condition is washed out asymptotically. The urn balances itself in
the long run—each color constitutes half the urn content on average.
Contrast this with the case ρ > 1

2 , where the asymptotic proportion
of colors depends critically on the initial conditions.
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5.3 Poissonization

The next rather important, and most natural, generalization was
developed in Athreya and Karlin (1968), where the scope extends
to k × k generators for fixed as well as random schemata. These
results are surveyed in Athreya and Ney (1972), which provides a
comprehensive study of branching processes.

One main contribution in Athreya and Karlin (1968) is the idea
of embedding the discrete urn process in a continuous-time Poisson
Process. This connection later came to be known by the name pois-
sonization. Athreya and Karlin use poissonization to derive a num-
ber of important results. They also rederive the results of Freed-
man (1965). Smythe (1996) extends the scope of Athreya and Karlin
(1968) to schemata with negative diagonal elements. We shall present
the results when we get to Smythe’s extended urn. We focus first on
explaining poissonization, or the equivalence of a continuous-time
process (at certain opportune moments) to the discrete urn process.

Embedding a discrete stochastic processes in a continuous-time
process had been utilized for some time prior to Athreya and Karlin
(1968). Poissonization can be traced back to rudiments in Kac (1949).
Translating the result back in terms of the discrete process can be
done in principle, as stated in Athreya and Karlin (1968), but has
always been fraught with difficulty in practice. In later decades,
this translation was dubbed the term depoissonization. (Other forms
of poissonization appear in informatics to solve functional equations
and have a distinct analytic flavor (see Jacquet and Régnier, 1986,
and Jacquet and Szpankowski, 1998), or is treated as a bona fide
mathematical transform (see Gonnet and Munro, 1984, and Poblete,
1987).

To explain poissonization, we use an analogy from racing (Mah-
moud, 2002). Suppose A = [Aij ] is the schema of a k×k urn. Endow
every ball with an independent Poisson process with intensity 1. The
process is compounded by a reward system that emulates the urn dis-
crete process. A ball of color i produces an independent realization of
Aij children of color j, for j = 1, . . . , k, at its points of renewal. Let
us view the balls as contestants in a race. The runners are catego-
rized into teams wearing shirts of the color of the ball they represent.
When a runner of team i wins the race, an independent realization
of Aij runners (balls) wearing shirts of color j are added to the jth
team, j = 1, . . . , k. Each new runner carries a new independent Pois-
son process with the same reward system. At any point in time, given
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the last renewal point, the lack of memory in the Poisson processes
appears as if it resets all the Poisson processes afresh. We can view
this Markovian system as if whenever a race is won, the referee’s
whistle is immediately blown to restart a race among all the existing
runners—if a runner has covered a certain portion of the course in a
race, the runner is not allowed to carry over any gain to the next race;
the runner’s remaining time to cover the rest of the course remains
exponentially distributed (with parameter 1), as a result of resetting
the race. Let R(i)

n be the number of runners in team i after n races,
and let Rn = (R(1)

n , . . . , R
(k)
n )T . By the independent identical distri-

bution of running times, any of the runners is equally likely to win
the race, that is

Prob{team i wins the (n+ 1)st race |Rn} =
R

(i)
n∑k

`=1R
(`)
n

,

and an independent realization of Aij runners of color j will be added,
j = 1, . . . , k, constituting a growth rule in the number of runners
identical to that of the urn’s growth under random sampling from a
k×k Pólya urn with schema A. In other words, Rn

D= Xn, if the two
processes start with identical initial conditions R0 = X0. However,
Rn is only a discretized form of a continuous renewal process with
rewards, the renewals of which are the starting whistle of the races,
and the rewards of which at every renewal are determined by an
independent realization of A. It is helpful to think of Rn, for n =
1, 2, . . ., as a series of snapshots in time of the continuous process at
the moments when a renewal takes place.

From this equivalence principle between the continuous-time and
discrete -time processes Athreya and Karlin (1968) obtain a myriad
of results, including those earlier results of Freedman (1965).

6 Modern developments

It was natural to think of breaking the perfect symmetry of Bernard
Friedman’s urn (3). Bagchi and Pal, 1985 considered the more general
case (

a b
c d

)
, (7)

for any four integers, so long as the choice is tenable, with the ex-
ception of a few intricate cases. Namely, they require a constant row
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sum (a + b = c + d =: K), and to guarantee tenability, b > 0, c > 0,
ad if a < 0, then a divides W0 and c, and if d < 0, then d divides
B0 and b. We exclude degenerate cases: the case b = c = 0, which
is the Pólya-Eggenberger urn, and the case a = c, such a case has
no randomness. The case where one minor diagonal element is zero
(bc = 0, max(b, c) > 0), is also excluded.

Theorem 6.1. (Bagchi and Pal, 1985). Let Wn be the number
of white balls after n draws from a nondegenerate Bagchi-Pal urn. If
a− c < 1

2K,

W ∗
n :=

Wn − c
(b+c)Kn√
n

D−→ N
(
0,

bcK(a− c)2

(b+ c)2(K − 2(a− c))

)
,

If a− c = 1
2K,

W ∗
n :=

Wn − c
(b+c)Kn√
n lnn

D−→ N (0, bc).

Proof (sketch). This theorem is proved by showing that the mo-
ments of W ∗

n converge to those of the normal distribution specified;
the normal distribution being uniquely characterized by its moments.

We illustrate the proof only for the mean and variance. Higher
moments follow similar principles, but the calculations are more com-
plex. We have the recurrence

P{Wn+1 = Wn + a |Wn} =
Wn

τn
; (8)

P{Wn+1 = Wn + c |Wn} = 1− Wn

τn
. (9)

This gives conditionally

E[Wn+1 |Wn] =
(
1 +

a− c
τn

)
Wn + c. (10)

The unconditional expectation is therefore

E[Wn+1] =
(
1 +

a− c
τn

)
E[Wn] + c,

for n ≥ 0. The setting

Yn = Wn −
c

b+ c
τn (11)
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puts the equation into an iteratable form:

E[Yn+1] =
(
1 +

a− c
τn

)
E[Yn].

The solution is obtained by unwinding the recurrence all the way
back to n = 0:

E[Yn] =
(
W0 −

c

b+ c
τ0

) n−1∏
j=0

(
1 +

a− c
τj

)
=

(
W0 −

c

b+ c
τ0

)Γ(τ0/K) Γ((τn + (a− c))/K)
Γ((τ0 + (a− c))/K) Γ(τn/K)

.

By the Stirling approximation of the Gamma function, one finds
E[Yn] = O(n(a−c)/K). Because a− c ≤ 1

2K, we have

E[Wn] ∼ c

b+ c
τn +O(

√
n );

the linear term is dominant.
Although we shall not develop the variance in detail, we shall

take a brief look into its structure because the phase change in the
theorem is worthy of notice. When a − c = 1

2K, a different scale
factor is required to produce a Gaussian limit law. This is because
the variance has an essentially different form. To see this, write (8)
and (9) in the form

P{W 2
n+1 = (Wn + a)2 |Wn} =

Wn

τn
;

P{W 2
n+1 = (Wn + c)2 |Wn} = 1− Wn

τn
.

With the transformation (11), we have a recurrence

E[Y 2
n+1] =

(
1 +

2(a− c)
τn

)
E[Y 2

n ] +
(b− c)(a− c)2

(b+ c)τn
E[Yn] +

bc(a− c)2

(b+ c)2)
.

If a − c < 1
2K, this recurrence asymptotically has a linear solution.

By contrast, If a− c = 1
2K, this recurrence simplifies to

E[Y 2
n+1] =

τn+1

τn
E[Y 2

n ] +
b2 − c2

τn
E[Yn] + bc.

the complementary solution of which is linear (in fact it is τn), but
the recurrence in this case has a superlinear particular solution. �
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Corollary 6.1. In a nondegenerate Bagchi-Pal urn, if a− c ≤ 1
2K,

then
Wn

n

a.s.−→ cK

b+ c
.

Proof (sketch). By Chebychev’s inequality, for any fixed ε > 0,

P
{∣∣∣Wn

n
− cK

b+ c

∣∣∣ > ε
}
≤ O(n lnn)

ε2n2
→ 0.

Therefore,
Wn

n

P−→ cK

b+ c
.

Almost sure convergence follows as the probability space is countable.
(See the discussion in Chow and Teicher, 1978). �

The case where one minor diagonal element is zero (bc = 0,
max(b, c) > 0), has been excluded. It is handled via an elegant mar-
tingale technique in Gouet (1989) to show a strong law for Wn/n, and
via the functional central limit theorem in Gouet (1993) to show con-
vergence to a normal law modulated by a multiplicative independent
random variable.

6.1 Extended urn schemes

The Bagchi-Pal urn provided a prelude that motivated the studies of
Gouet (1997) of deterministic k× k analogues, and Smythe (1996) of
random schemata with similar constraints.

Gouet (1997) considers k×k deterministic analogues of the Bagchi-
Pal urn. In Gouet’s urn, with schema A = [aij ], the row sum is con-
stant. Negative entries on the diagonal are allowed, so long as the
urn remains tenable. Let X(i)

n be the number of nodes of color i after
n draws. Tenability is guaranteed if certain divisibility conditions are
satisfied: if ajj < 0, then ajj divides X(j)

0 , and aij , i = 1, . . . k. A
first-order theory is found in Gouet, 1997, according to which n−1X

(i)
n

converges almost surely to a beta distribution, and jointly these beta
distributions are marginals of a Dirichlet distribution.

Smythe (1996) goes one step further with the nondeterministic
analog of Gouet’s urn. Moreover, Smythe (1996) finds the second-
order theory for these urns, that is the rate of convergence in Gouet’s
strong laws.
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An urn is an extended Pólya urn if it is tenable (requiring some
divisibility conditions) and its generator E[A] := [aij ] satisfies the
conditions:

(i) aij > 0, for i 6= j.

(ii) The row sums are equal: for each 1 ≤ i ≤ k,
∑k

j=1 aij = λ1 > 0.

(iii) Each random entry has finite second moment.

(iv) For any nonprincipal eigenvalue λi, i = 2, . . . , k, we have <λi <
1
2λ1.

(v) All eigenvalues are simple.

(vi) No two distinct complex eigenvalues have equal real part, except
for conjugate pairs.

(vii) The eigenvectors are linearly independent.

(viii) There are no purely imaginary eigenvalues.

Under conditions (i)–(viii) the generator has a number of appealing
properties that makes it possible to derive results.

Theorem 6.1.1. (Smythe, 1996). Suppose A is the k × k schema
of a tenable extended urn, with a generator E[A] that has principal
eigenvalue λ1, and corresponding k-component left (row) eigenvector
VT

1 . Let X(i)
n be the number of balls of color i after n draws from the

urn, and Xn := (X(1)
n , . . . , X

(k)
n )T . Then

1√
n

(Xn − λ1nV1)
D−→ Nk(0,Σ),

for some limiting covariance matrix Σ.

Proof (sketch). Under conditions (i)—(ii), E[A] = [aij ] is a Metzler-
Leontieff matrix, and enjoys certain properties, such as, for example,
having one principal eigenvalue that equals the sum across any row,
and the components of the corresponding eigenvector are all nonneg-
ative. Suppose V1 = (v1, . . . , vk)T . Let the total number of balls
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after n draws be τn = λ1n + τ0. Consider color 1; according to the
ball addition rules, conditionally we have

E[X(1)
n |Xn−1] = X

(1)
n−1 + E

[
A11

X
(1)
n−1

τn−1
+ · · ·+Ak1

X
(k)
n−1

τn−1

∣∣∣Xn−1

]
= X

(1)
n−1 +

1
τn−1

(
E[A11]X

(1)
n−1 + · · ·+ E[Ak1]X

(k)
n−1

)
.

Similar recurrence equations can be written for the other colors, and
we can put them together in the matric form

E[Xn |Xn−1] =
(
I +

1
τn−1

E[AT ]
)
Xn−1. (12)

When this recurrence is solved, one gets asymptotically

E[Xn] ∼ λ1nV1.

As a hint on how the dominant eigenvector comes into the picture,
the various conditions on the schema, particularly condition (vii), tell
us that E[AT ], can be represented as Mdiag(λ1, . . . , λk)M−1, where
diag is a digonal matrix with the specified elements on its diagonal,
and M is a modal matrix of E[AT ]. 1 When this representation is
plugged into (12) and the equation is itereated, it gives the average
result after a lengthy, but straighforwad, computation.

Let us asymptotically center the ball counts by setting

X̃(i)
n = X(i)

n − λ1vin.

Then

E[X̃(i)
n − X̃

(i)
n−1 |Xn−1] = E[X(i)

n −X
(i)
n−1 |Xn−1]− λ1vi

=
1

τn−1

k∑
r=1

E[Ari]X
(r)
n−1 − λ1vi.

Thus,

q(i)n := X̃(i)
n − X̃

(i)
n−1 −

1
τn−1

k∑
r=1

E[Ari]X
(r)
n−1 + λ1vi

1A modal matrix of a given k×k matrix with k linearly independent eigenvec-
tors is the k × k matrix, the columns of which are the k eigenvectors of the given
matrix.
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is a martingale difference. For any constants b(r)jn , the combinaion

Rn :=
n∑

j=1

k∑
i=1

b
(i)
ji q

(i)
j ,

is a martingale. The main idea in the rest of the proof is to take
an arbitrary linear combination Wn =

∑k
i=1 αiX̃

(i)
n for any constants

α1, . . . , αk (not all equal to zero) and approximate it by a true mar-
tingale via asymptotically negligible adjustments. This steers the
proof toward the Cramér-Wold device (see Billingsley, 1968). That
is, we approximate Wn by Rn by setting in Rn the coefficients of X(i)

m

to 0, for m < n, and the coefficients of X(i)
n to αi, for i = 1, . . . , k.

These coefficients are determined by a recursive system of equations
that depends on the αi’s. One finds that Wn = Rn + o(

√
n ). The

martingale Rn/
√
n checks out Lindeberg’s conditional condition and

the conditional variance condition (see Hall and Heyde, 1980 for the
required technique), and the martingale central limit theorem holds
for Rn/

√
n, and consequently normality holds for Wn/

√
n. �

The proof sketch of Theorem 6.1.1 does not give insight into why
<λ2 < 1

2λ1 is required for a central limit theorem. We shall say
only a few words on this. A look into the variance structure shows
that an eigenvalue λi contributes a term of the order n2λi/λ1 in the
second moment. The two leading components in the variance are the
linear component and a component of the exact order n2λ2/λ1 . So
long as 2<λ2 < λ1, the linear component dominates asymptotically,
and scaling by

√
n results in a nontrivial random variable. However,

if 2<λ2 > λ1, the nonlinear component dominates, and the random
variable scaled by

√
n blows up. The form of Theorem 6.1.1 does not

remain valid in this case. The discussion of the variance in the proof
of Theorem 6.1 gives a glimpse into this matter in the 2× 2 case.

Remark: Smythe (1996) notes that there is no known convenient
way for getting the covariance Σ.

6.2 Invertible urn schemes

The case of constant row sum corresponds to a constant rate of
increase. For example, consider a Bagchi-Pal urn with schema of
the general form (7). Under the constraint of constant row sum
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K := a + b = c + d, the total number of balls after n draws is
deterministic; τn = W0 + B0 + Kn. Upon plugging this into (10),
the conditional equation can be transformed into a martingale rela-
tion. Moments are given by linear recurrences, for instance, taking
expectation of (10),

E[Wn] = E
[(τn−1 + a− c

τn−1

)
Wn−1

]
+ c

=
(τn−1 + a− c

τn−1

)
E[Wn−1] + c.

Contrast this with the case of nonconstant row sum. In this case,
τn is a random variable, and it is not as easy to get a recurrence; in
the expectation E[Wn−1/τn−1] one cannot take out τn−1. One needs
to seek an alternative approach. Some real-world applications (a few
are considered in this review) required the handling of urn schemes
with nonconstant row sum.

Difficulties with nonconstant row sum in the generator have been
known since Rosenblatt (1940), who looked into asymmetric Pólya-
Eggenberger urns with the schemata(

a 0
0 d

)
,

with a 6= d. Kotz, Mahmoud and Robert (2000) discuss the difficul-
ties arising in the case of nonconstant row sum. Bona fide nonlinear
asymptotics come into play. The specific example discussed in Kotz,
Mahmoud and Robert (2000) is(

1 0
1 1

)
,

where it is shown that
E[Bn] ∼ n

lnn
.

Mahmoud (2002, 2003+), handles the long-term averages in the
case of nonconstant row sum by a depoissonization method based on
stochastic differential equations and elementary linear algebra. The
operations involved require matrix inversion. Therefore these refer-
ences deal only with invertible urn schemes, or schemes the gener-
ators of which are invertible, that is schemes with generator E[A],
where (E[A])−1 exists.

Let A be a k × k schema of random entries (allowing degenerate
deterministic distributions). Recall the discussion and notation used
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in poissonization (cf. 5.3). In particular, recall tn, the renewal times.
The main line of proof in Mahmoud (2002, 2003+), is to depoissonize
by finding an asymptotic representation for the renewal times.

Let B = E[AT ], and suppose it has k′ ≤ k distinct eigenval-
ues, λ1 = λ′1, . . . , λ

′
k′ , with corresponding multiplicities ν1, . . . , νk′ . It

is known in linear algebra that the matric function eBtn has an ex-
pansion in terms of the exponential functions eλ

′
jtn (see Smiley, 1965).

There are fixed nonzero matrices E(0)
1 ,E(1)

1 , . . . ,E(ν1−1)
1 ,E(0)

2 , . . . ,

E(ν2−1)
2 , . . . ,E(νk′−1)

k′ associated with B for which

eBtn =
ν1−1∑
s=0

tsn
s!
eλ

′
1tnE(s)

1 + · · ·+
νk′−1∑
s=0

tsn
s!
eλ

′
k′ tnE(s)

k′ .

As tn
a.s.−→∞,

eBtn ∼ tν1−1
n

(ν1 − 1)!
eλ1tnE(ν1−1)

1 . (13)

For any fixed coefficients α
(s)
r , the scalar function

E
[∑k′

r=1

∑νr−1
s=0 α

(s)
r

tsn
s! e

λ′
rtn

]
can be computed from the generalized

mean-value theorem—if ftn(x) is the density of tn, there exists a
unique value t̄n, for which

E
[ k′∑

r=1

νr−1∑
s=0

α(s)
r

tsn
s!
eλ

′
rtn

]
=

∫ ∞

0

( k′∑
r=1

νr−1∑
s=0

α(s)
r

xs

s!
eλ

′
rx

)
ftn(x) dx

=
( k′∑

r=1

νr−1∑
s=0

α(s)
r

t̄sn
s!
eλ

′
r t̄n

) ∫ ∞

0
ftn(x) dx

=
k′∑

r=1

νr−1∑
s=0

α(s)
r

t̄sn
s!
eλ

′
r t̄n . (14)

The main result in Mahmoud (2003+), deals with a more general
situation than the one presented below. The original paper deals with
degenerate cases and cases with multiple principal eigenvalue. We
present a simplified form of these results for the sake of transparency.
The nondegenerate case we present is one where the coefficient α(ν1−1)

1

in (14) is nonzero. The relation (14) then simplifies to

E
[ k′∑

r=1

νr−1∑
s=0

α(s)
r

tsn
s!
eλ

′
rtn

]
∼ α(ν1−1)

1

t̄ν1−1
n

(ν1 − 1)!
eλ1 t̄n .
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Therefore, for k–component vectors C and D,

CTE[eBtn ]D ∼ α(ν1−1)
1

t̄ν1−1
n

(ν1 − 1)!
eλ1 t̄nCT E(ν1−1)

1 D, (15)

in the nondegenerate case CE(ν1−1)
1 D 6= 0. It is well known that

a Poisson process with parameter λ gives λ∆t average number of
renewals in a period of length ∆t. Consider contributions to color
1 in an incremental period ∆t. The balls are independent Poisson
processes running in parallel, with rewards at the renewal points,
giving

E[R(1)(t+ ∆t) |R(t)] = E
[
R(1)(t) + (A11R

(1)(t) + · · ·

+Ak1R
(k)(t)

)
∆t |R(t)

]
.

Similar equations can be written for the other colors. We have the
incremental equations

E
[
R(1)(t + ∆t) |R(t)

]
= R(1)(t) +

(
E[A11]R

(1)(t) + · · · + E[Ak1]R
(k)(t)

)
∆t,

E
[
R(2)(t + ∆t) |R(t)

]
= R(2)(t) +

(
E[A12]R

(1)(t) + · · · + E[Ak2]R
(k)(t)

)
∆t,

...

E
[
R(k)(t + ∆t) |R(t)

]
= R(k)(t) +

(
E[A1k]R(1)(t) + · · · + E[Akk]R(k)(t)

)
∆t.

This set of simultaneous equations can be represented compactly in
matrix form as

1
∆t

E[R(t+ ∆t)−R(t) |R(t)] = BR(t),

where B = E[AT ]. Take expectations, and let ∆t → 0 to get the
differential equation

d

dt
E[R(t)] = BE[R(t)],

the solution of which is easily seen to be

E[R(t)] = eBtR(0).

This equation is for fixed t. To depoissonize, we intend to use it at
the random renewal time tn. By the generalized mean-value theorem
it can be shown that

E[R(tn)] = eBt̄nR(0),
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for some tn. Giving the average

E[R(tn)] = E[Xn] = eBt̄nX0. (16)

Theorem 6.2.1. (Mahmoud, 2003+). Let A be the k×k schema of
a growing urn with invertible generator BT . Let X(i)

n be the number
of balls of color i after n draws, and let the composition vector be
Xn = (X(1)

n , . . . , X
(k)
n )T . Assume the scheme is nondegenerate, in the

sense that JT
k B−1E(ν1−1)

1 X0 6= 0. The composition vector satisfies

E[Xn] =
1

JT
k B−1E(ν1−1)

1 X0

X0E(ν1−1)
1 n+ ok(n).

Proof (sketch). Let R̃(i)(t) be the number of times team i has won
a race by time t, and let R̃(t) = (R̃(1)(t), . . . , R̃(k)(t))T . Suppose the
R̃(j)(t) independent realizations of Aj1 are A(r)

j1 , for r = 1, . . . , R̃(j)(t).
It is clear that

R(1)(t) = R(1)(0) +
R̃(1)(t)∑

r=1

A
(r)
11 + · · ·+

R̃(k)(t)∑
r=1

A
(r)
k1 .

Applying Wald’s equation (see Ross, 1983), we get

E[R(1)(t)] = R(1)(0) + E[R̃(1)(t)]E[A11] + · · ·+ E[R̃(k)(t)]E[Ak1].

Similar equations can be written for all the other colors, and we can
put them in a matric equation form:

E[R(t)] = BE[R̃(t)] + R(0).

Thus, at the random time tn,

BE[R̃(tn) | tn] + X0 = E[R(tn) | tn] = eBtnX0,

the expectation of which is

BE[R̃(tn)] + X0 = eBt̄nX0.

On any stochastic path whatever, we have n races by time tn; the
components of R̃(tn) must add up to n. So,

n = E[JT
k R̃(tn)]

= JT
k B−1

(
eBt̄n − I

)
X0.
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Recalling that we are in the nondegenerate case JT
k B−1E(ν1−1)

1 X0 6=
0, from (15) we have

n ∼ t̄
(ν1−1)
n

(ν1 − 1)!
eλ1 t̄n JT

k B−1E(ν1−1)
1 X0. (17)

By (13) and (16) we finally have

E[Xn] = eBt̄nX0 ∼
t̄
(ν1−1)
n

(ν1 − 1)!
eλ1 t̄n E(ν1−1)

1 X0,

which gives the result when compared with (17). �

While the leading asymptotics in Theorem 6.2.1 do not depend on
the initial conditions, the lower-order asymptotics do (see Inoue and
Aki, 2001, where a particular urn with a fixed schema was analyzed).

7 Connection of Pólya urns to search trees

The binary search tree is a fundamental construct of computer sci-
ence that is used for efficient storage of data, and the modeling of
many algorithms. For definitions and combinatorial properties see
Mahmoud (1992); for applications in sorting see Knuth (1998) or
Mahmoud (2000).

Under the constraints of modern technology, external computer
memory is much cheaper than internal memory. That is why inter-
nal memory is usually small. Speedwise, data in internal memory
are accessed much faster than data residing outside. In applications
involving large volumes of data special data structures are preferred
to store the bulk of data outside the computer on (slow) secondary
storage. Fragments therein are brought into internal memory upon
request for fast local searching. These data structures involve gener-
alizations of the binary search tree into data structures the nodes of
which are blocks or buckets. Two such generalizations are presented.
The analysis of both is amenable to urn models results. Surprisingly,
they both exhibit an interesting phase transition in their distribution.

To handle data in high dimensions, the binary tree is generalized
in yet another direction. Quad trees and k–d trees are suitable storage
media for geometry algorithms, such as nearest neighbor queries. The
analysis of these trees, too, is amenable to Pólya urn models.
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The results presented below had all been obtained mostly by other
methods, but it has recently become clear that they can all be ob-
tained via various urn models. Mahmoud (2002) provides many of
these alternative proofs.

7.1 Binary search trees

A binary tree is a structure of nodes each having no children, one
left child, one right child, or two children (one left and one right). In
practice, the tree carries labels (data), and is endowed with a search
property . According to the search property, the label of any node
is larger than the labels in its left subtree and no greater than any
label in its right subtree, and this property permeates the structure
recursively.

Several models of randomness are commonly used on binary trees.
The uniform model in which all trees are equally likely is useful in
formal language studies, compilers, computer algebra, etc. Kemp
(1984) is a good source for this subject. The random permutation
model comports more faithfully to sorting and data structures. In
the random permutation probability model, we assume that the tree
is built from permutations of {1, . . . , n}, where a uniform probability
model is imposed on the permutations instead of the trees. When all
n! permutations are equally likely or random, binary search trees are
not equally likely. It is well known in enumerative combinatorics that
the number of distinct binary trees is (n+ 1)−1

(
2n
n

)
< n! (see Knuth,

1998). By the pigeon-hole principle, several permutations must “col-
lide” and correspond to the same tree, but there are permutations
that each correspond to precisely one tree. The random permutation
model does not give rise to a uniform distribution on binary trees.
Generally the model is biased toward shorter trees, which is a desir-
able properly for fast searching applications (see Mahmoud, 1992).
The random permutation model covers a wide variety of real-world
applications, such as sampling data from any continuous distribution,
where the data ranks almost surely form a random permutation.

The term random tree will refer to a tree built from a random per-
mutation. A tree grows from a permutation (π1, . . . , πn) of {1, . . . , n}
as follows. The first element π1 is inserted in an empty tree, a root of
a new nonempty tree is allocated for it. Each subsequent element πj

is taken to the left or right subtree according as whether it is smaller
or larger than the root. In the subtree, the element is inserted recur-
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sively. The search continues until an empty subtree is found where
the element is inserted into a new node, just like π1 was initially
inserted in the root.

A binary search tree is often extended by supplying each node
with a sufficient number of distinguished nodes called external to
uniformly make the outdegree of each original tree node (now called
internal) equal to 2. Figure 1 shows an extended binary search tree
grown from the permutation 3, 7, 4, 2, 6, 1, 5.
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Figure 1: An extended binary tree on 7 internal nodes.

The number of internal nodes with k external children, k = 0, 1, 2,
provides certain space efficiency measures on binary search trees. For
example, leaves in the original tree (nodes with two external children
in the extension) are wasteful nodes that are allocated pointers that
are not used (in a real implementation they carry nill value). This
efficiency measure can be found from the following.

Theorem 7.1.1. (Devroye, 1991). Let Ln be the number of leaves
in a binary search tree of size n. Then,

Ln − 1
3n

n

D−→ N
(
0,

2
45

)
.

Proof (sketch). It is well known that the random permutation
model on binary search trees gives an evolutionary stochastic process
in which the external nodes are equally likely (see Knuth, 1998). That
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is, if a tree is grown in steps by turning a randomly chosen external
node into an internal node, the resulting binary tree shapes follow
the random permutation probability distribution.

Color each external node with an external sibling with white, and
color all the other external nodes with blue. When insertion hits a
white external node, the node is turned into an internal one, with
two white external children; its sibling turns blue. If insertion hits
a blue external node, it turns into an internal node with two white
external children. The schema(

0 1
2 −1

)
underlies this process. If Wn is the number of white balls in the urn
after n draws, it follows from Theorem 6.1 that

Wn − 2
3n

n

D−→ N
(
0,

8
45

)
.

But then Wn = 2Ln. �

Theorem 6.1.1 gives a bit more; it specifies a multivariate joint
distribution for the profile of nodes of various outdegrees in the tree,
of which the distribution of the leaves is only one marginal.

7.2 Fringe-balanced trees

Binary trees are quite efficient (see Mahmoud, 1992 for numerous
applications). To improve the speed of retrieval even more, height
reduction heuristics known as balancing are employed. One such
heuristic is the local balancing of the fringe (Poblete and Munro,
1985). Fringe-balancing is a local “rotation” that compresses sub-
trees near the leaves into shorter shrubs. The operation is performed,
when the insertion of a new node falls under an internal node that
happens to be the only child of its parent in the binary tree. When
this occurs a compression operation called rotation promotes the me-
dian of these three nodes to become the parent and repositions the
other two nodes under it in a manner preserving the search prop-
erty. Figure 2 illustrates some cases of fringe balancing. The cases
not shown in Figure 2 are only mirror images of those depicted. The
introduction of these rotations reduces the total path length, but the
cost of rotation becomes a factor in the construction of the tree.
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To model rotations, we color the leaves according to a scheme in
which the number of times the leaves of a particular color are chosen
for insertion corresponds to rotations. Color 1 generally represents
balance. If insertion falls at a leaf of color 1, a tolerable degree of
imbalance appears in the tree and is coded by colors 2 and 3: color
2 for the leaf, the sibling of which is internal; the two children of
this internal node are colored with color 3 (Figure 2(a)). If insertion
falls at a leaf of color 2, the insertion fills out a subtree forming a
perfectly balanced shrub of height 2. The four balanced leaves of this
perfectly balanced shrub are colored with color 1 (Figure 2(b)). If
instead insertion falls at a leaf of color 3, more imbalance is present,
and balance is restored by a rotation and again a perfectly balanced
shrub of height 2 appears; the four leaves of this shrub are colored
with color 1 (Figure 2(c)).
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(a) Imbalance appears when insertion hits a leaf of color 1.
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(b) Insertion at a leaf of color 2 fills out a subtree.

• •

• • •2

3 3 1 1 1 1





 \

\

�
�

L
L







J
JJ

�
�

L
L

�
�

L
L

z

y x

y

z

x→
⇒

(c) A rotation is executed when insertion hits a leaf of color 3.

Figure 2: Insertions in a fringe-balanced binary search tree.
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After n insertions in an empty tree, the number of times insertion
falls at a leaf of color 3 is the number of rotations, to be denoted by
Rn. The underlying urn has the schema−2 1 2

4 −1 −2
4 −1 −2

 .

This tenable urn scheme is not exactly an extended urn à la Smythe
(1996), because it has negative elements off the main diagonal. How-
ever, Smythe’s proof can be adapted, to work here, too, indicating
that Smythe’s results can be generalized to a superclass of extended
urn models.

Theorem 7.2.1. (Mahmoud, 1998; Panholzer and Prodinger, 1998).
Let Rn be the number of rotations after n insertions in an initially
empty fringe-balanced binary search tree. Then,

Rn − 2
7n√
n

D−→ N
(
0,

66
637

)
.

As mentioned before, there is no known convenient method to
find variances in Smythe-like schemes. So far, each instance of such
an urn scheme has been handled in an ad-hoc mannar in the original
references. The variance in Theorem 7.2.1 was obtained by recur-
rence methods (in fact in exact form). (The same exact result is
presented in Hermosilla and Olivos, 1985). Panholzer and Prodinger,
1998 report on an analytic approach to Theorem 7.2.1.

7.3 m-ary Search Trees

Search speed is reduced with increased branching, as data are dis-
tributed among more subtrees. The m-ary tree has branching factor
m, and each node holds up to m − 1 keys. The tree grows from n
keys according to a recursive algorithm: The first insertion falls in
an empty tree; a root node is allocated for it. The second key joins,
but the two keys are arranged in increasing order from left to right.
Subsequent keys (up to the (m − 1)st insertion) are likewise placed
in the root node, and after each insertion the keys are sorted in in-
creasing order. The (m − 1)st insertion fills out the root node; a
subsequent key goes to the ith subtree if it ranks i among the first
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m keys. Within the subtree the insertion procedure is applied recur-
sively. Figure 3 shows a ternary tree grown from the permutation
6, 4, 1, 5, 3, 9, 2, 8, 7.

4 6

1 3 5 8 9

22 7

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ












Figure 3: A ternary search tree (m = 3).

Unlike the binary case of deterministic size, for m ≥ 3 the size
of the m-ary tree is random. The size is a measure of the space
efficiency of the algorithm. The tree growth can be modeled by an
urn consisting of balls of m− 1 different colors. Color i corresponds
to a “gap” (an insertion position) between two keys of a leaf node
with i − 1 keys, for i = 1, . . . ,m − 1 (i = 1 corresponds to insertion
in an empty tree). A leaf node containing i− 1 keys has i gaps (i− 1
real numbers cut up the real line into i intervals). A key falling in a
node with i ≤ m− 2 keys will adjoin itself in the node, increasing its
number of keys to i, and consequently the number of gaps to i + 1.
The corresponding rule for the growth of the associated urn is to
promote i balls of color i into i+ 1 balls of color i+ 1; this insertion
affects colors i and i+ 1 and no other.

The urn rule corresponding to filling out a node is a little different.
The node already contains m− 1 gaps corresponding to m− 1 balls
of color m − 1. The insertion falls in a gap and the node fills out
defining m empty subtrees (at the next level in the tree). The m
empty subtrees are represented by m balls of color 1 in the urn . The
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schema is

−1 2 0 0 0 . . . 0 0
0 −2 3 0 0 . . . 0 0
0 0 −3 4 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −(m− 2) m− 1
m 0 . . . 0 −(m− 1)

 .

The characteristic equation |AT − λI| = 0 expands into

(λ+ 1)(λ+ 2) . . . (λ+m− 1) = m!.

This scheme is an extended urn scheme à la Smythe (1996). The
eigenvalues of which have the property that <λ2 <

1
2λ1 = 1

2 , for m
up to 26, <λ2 >

1
2 , for m ≥ 27.

Theorem 7.3.1. (Chern and Hwang, 2001). Let Sn be the size of
an m–ary search tree grown from a random permutation of {1, . . . , n}.
If the branch factor 3 ≤ m ≤ 26, then

Sn − n/(2(Hm − 1))√
n

D−→ N (0, σ2
m),

for some effectively computable constant σ2
m.

The limiting variance σ2
m can be computed by recurrence (Mah-

moud, 1992 gives an exact formula). Chern and Hwang (2001) prove
asymptotic normality in the range 3 ≤ m ≤ 26 by a method of recur-
sive moments. If m > 26, the associated urn is no longer an extended
urn in the sense of Smythe (1996). Chern and Hwang (2001) argue
that no limit distribution for the size of the m-ary tree exists under
the central limit norming because of too large oscillations in all higher
moments.

7.4 2–3 trees

To guarantee fast retrieval, m–ary trees are balanced by operations
that grow the tree by first accessing an insertion position, and if that
causes imbalance, keys are sent up, recursively, and if necessary, they
go all the way back, forcing a new root to appear. We illustrate this
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balancing in 2–3 trees. The nodes here are of two types, type 1 holds
one key, and type 2 holds two keys (the corresponding branching is
respectively 2 and 3). The search phase for the insertion of a new
key follows the same general principles as in the m-ary tree. When
insertion falls in a node of type 1, it is promoted into type 2. When
insertion of a key K overflows a leaf of type 2, already carrying x
and y, the median of the three keys x, y,K is sent up, and the type-2
leaf is split into two type-1 leaves. If the median promotion puts
it in a type-1 internal node, the node is expanded into type-2 to
accommodate the new key, and the two new type-1 leaves, together
with the sibling of the old type-2 leaf are arranged according to order
as in the usual ternary search tree. If instead, the median promotion
tends to put it in an already filled type-2 node, the node is split,
recursively, etc. Figure 4 illustrates the insertion of a key into a 2–3
tree. All the leaves in a 2–3 trees are at the same level, guaranteeing
that any search will be done in O(log n).
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Figure 4: A 2–3 tree before and after inserting the key 2.

The fringe balancing principle, established in Yao (1978), states
that most of the nodes are leaves—the number of leaves in the tree
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well approximates the size. More precisely, Yao (1978) argues that
bounds on the expected size can be found from the expected number
of leaves.

Theorem 7.4.1. (Yao, 1978, Bagchi and Pal, 1985). Let Sn be
the number of nodes after n insertions in an initially empty 2–3 tree.
Then,

9
14
n+O(1) ≤ E[Sn] ≤ 6

7
n+O(1).

Proof (sketch). We first determine Ln, the number of leaves, on
average. Each key in a type-1 leaf defines two insertion gaps; associate
two white balls with these gaps. Each pair of keys in a type-2 leaf
defines three insertion gaps; associate three blue balls with these gaps.
From the evolution rules of the tree, the schema(

−2 3
4 −3

)
underlies the urn of white and blue balls. By Theorem 6.1, we have

E[Wn] =
4
7
n+O(1), E[Bn] =

3
7
n+O(1).

On average, the number of leaves is given by

E[Ln] =
1
2
E[Wn] +

1
3
E[Bn] ∼ 3

7
n. (18)

It is well known that the number of leaves in an m-ary tree on n
nods is related to Xn the number of internal nodes by

Ln = (m− 1)Xn + 1.

The size of the 2–3 tree with Ln leaves is maximized if all internal
nodes are of type-1, in which case Ln = Xn + 1, and is minimized if
all internal nodes are of type-2, in which case Ln = 2Xn + 1. Thus,
the size, Sn = Ln +Xn, is sandwiched:

Ln +
Ln − 1

2
≤ Sn ≤ Ln + Ln − 1.

The result follows upon taking expectations and plugging in (18). �

Yao (1978) describes a series of refinements by which the bounds
in Theorem 7.4.1 can be improved. These refinements consider larger
and larger shrubs on the fringe of the tree. They can be modeled by
urns with more colors.
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7.5 Paged binary trees

Another generalization of binary search trees, suitable for internal
memory algorithms working in conjunction with a slow external mem-
ory, is the paged binary tree, the leaves of which are buckets that can
carry up to c keys. Each internal node carries one key and has a
right and a left child. When a searching algorithm climbs along a
path starting at the root, and reaches the leaf at the end of the path,
the block of data in the leaf is fetched from external memory, thus
a batch of data is brought into internal memory at one time, where
they can be subjected to fast searching. Usually the capacity c is
chosen to coincide with a “page” of memory, the standard unit of
size of a data block in computer memory.

The tree grows from n keys according to a splitting policy. Up
to c keys go into the root node. In practice the keys are kept in
sorted order to enhance fast local searching. Toward a balanced
split, c = 2b is usually an even number. When the (2b + 1)st key
appears, the tree is restructured: The root bucket is turned into an
internal node retaining only the median of the 2b+ 1 keys. Two new
pages are created and adjoined as the right and left children of the
internal node. Each of the two leaves is half filled. The b keys below
the median, are placed in the left page, the rest in the right. This
branching facilitates later search and insertion. A subsequent key is
guided to the left subtree if it is less than the root key, otherwise it
goes into the right subtree. Within the appropriate subtree the inser-
tion procedure is applied recursively. Figure 5 illustrates a paged tree
with page capacity 2, arising from the permutation 6, 3, 1, 4, 2, 5; the
process experiences two splits: First when the key 1 is inserted, the
median 3 of the set {6, 3, 1} is kept in the root, then again when 5 is
inserted, the node containing 4 and 6 splits, keeping the median 5 at
the root. In Figure 5 the pages are shown as boxes and the internal
nodes as circles.

The associated urn consists of balls of b + 1 different colors, and
has a (b + 1) × (b + 1) schema. Color i corresponds to a “gap” (an
insertion position) between two keys of a leaf node carrying i+ b− 1
keys, for i = 1, . . . , b+1. A key falling in an unfilled leaf with i+b−1
keys (i ≤ b) will increase its keys to i+b and consequently the number
of gaps to i+ b+ 1. The corresponding growth rule in the associated
urn is to promote i balls of color i into i + 1 balls of color i + 1;
this insertion affects colors i and i + 1 and no other. The urn rule
corresponding to splitting is distinguished. A splitting node contains
2b keys with 2b + 1 gaps of color b + 1. The insertion falls in one of



Pólya urns: Review 87

m
m

3

51
2










J
J

JJ

4 6
�
��

L
LL

Figure 5: A paged binary tree with page capacity 2.

these gaps, and an overflow occurs forcing a splitting: Two half-filled
leaves appear, each containing b keys, thus having b+1 insertion gaps
each; the urn gains 2b+ 2 balls of color 1. The schema is

A =



−(b+ 1) b+ 2 0 0 0 . . . 0 0
0 −(b+ 2) b+ 3 0 0 . . . 0 0
0 0 −(b+ 3) b+ 4 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2b (2b+ 1)
2b+ 2 0 . . . 0 −(2b+ 1)

 .

The characteristic equation |AT − λI| = 0 expands into

(λ+ b+ 1)(λ+ b+ 2) . . . (λ+ 2b+ 1) =
(2b+ 2)!
(b+ 1)!

.

The simple roots of this characteristic equation satisfy <λ2 <
1
2<λ1 =

1
2 , for b ≤ 58. For all b ≥ 59, <λ2 >

1
2 . This scheme is an extended

urn scheme à la Smythe, 1996 for b up to 58 (last capacity admitting
normality is c = 116).

Theorem 7.5.1. (Chern and Hwang, 2001). Let Sn be the size of
a paged binary tree (with page capacity c = 2b), after n insertions.
Then

S∗n =
Sn − n/((2b+ 1)(H2b+1 −Hb+1))√

n

D−→ N (0, σ2
b ),

for some effectively computable constant σ2
b .

The limiting variance σ2
b can be obtained with quite a bit of

tedious recurrence computation. Chern and Hwang (2001) prove



88 Mahmoud

asymptotic normality for 1 ≤ b ≤ 58 by a method of moments (the
last capacity for which normality holds is 116). Chern and Hwang
(2001) argue that for b > 58, the normed random variable S∗n no
longer has a normal limit.

7.6 Bucket quad trees

The quad tree, introduced in Finkel and Bentley (1974), is a suitable
data structure for d-dimensional data (see Samet, 1990 or Yao, 1990
for applications). A point in d dimensions defines 2d quadrants; other
data are grouped according to the quadrant they belong to. The 2d

quadrants are canonically numbered 1, 2, . . . , 2d. To expedite work
with blocks of data, the nodes are turned into buckets to hold c points.
Devroye and Vivas (1998) suggest a balancing policy that associates
with each bucket a guiding index , which is a dummy point composed
of d coordinates, the ith coordinate of which is the median of the c
keys’ ith coordinates. As median extraction of c numbers is involved
in each coordinate, it is therefore customary to take c = 2b + 1, an
odd number.

The bucket quad tree has 2d subtrees, numbered 1, . . . , 2d, from
left to right. It grows by putting up to c keys in the root node.
When a bucket is filled to capacity, its index is computed and stored
with the data. A subsequent point belonging to the qth quadrant
goes to the qth subtree, where it is subjected to the same algorithm
recursively to be inserted in the subtree. Figure 6 shows six points
in the unit square, and the corresponding two-dimensional quad tree
with bucket capacity 3; the index for the first three point is indicated
by the symbol ×; the canonical count goes from the bottom left
quadrant of the index and proceeds clockwise.

A node holding j keys in this tree has j+1 insertion positions, j =
1, . . . , c − 1. We shall consider an idealized probability distribution
on quad trees induced by growing them by choosing an insertion
position at random (all insertion positions being equally likely). This
probability model is most suited for simulation.

The balls in the associated (2b + 1) × (2b + 1) urn scheme have
2b+1 different colors. Color i accounts for i−1 keys in a leaf node, for
i = 1, . . . , 2b+ 1. A key falling in an unfilled leaf with i− 1 keys will
be placed in the leaf and the number of attraction positions increases
from i to i+ 1. The corresponding growth rule in the associated urn
is to promote i balls of color i into i + 1 balls of color i + 1; this
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Figure 6: Points in the unit square and their corresponding quad tree
with bucket capacity 3. The symbol × is the index of X1, X2 and X3.

insertion affects colors i and i+ 1 and no other. When the (2b+ 1)st
key joins a node containing 2b keys, 2d insertion positions appear on
the next level. The complete schema is

A =



−1 2 0 0 0 . . . 0 0
0 −2 3 0 0 . . . 0 0
0 0 −3 4 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2b (2b+ 1)
2d 0 . . . 0 −(2b+ 1)

 .

Let X(i)
n be the number of balls of color i, for i = 1, . . . , 2b+1. In

this schema the row sums may not be the same, but it is an invertible
scheme, and the results of Theorem 6.2.1 apply. The characteristic
equation |AT − λI| = 0 expands into

(λ+ 1)(λ+ 2) . . . (λ+ 2b+ 1) = (2b+ 1)! 2d.

The principal eigenvalue λ1 is clearly a function of both the capacity
and dimension. For instance, with c = 3 (that is, b = 1) and d = 4,
the bucket 4–dimensional quad tree has a principal eigenvalue λ1 =
2.651649306 . . ., and the profile

E[X(1)
n ] ∼ 1.599129368 . . . n,
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E[X(2)
n ] ∼ 0.6875537100 . . . n,

E[X(3)
n ] ∼ 0.3649662279 . . . n.

From these average measures one can deduce the average number of
leaves, and consequently the size of the tree to be

E[Sn] ∼ 0.6030697064 . . . n.

7.7 Bucket k-d trees

The k-d tree was introduced by Bentley in, 1975 as a means of data
storage amenable to computational geometry algorithms, such as
range searching (Samet, 1990 surveys applications of this tree). The
bucket k-d tree is a tree for d dimensional data. It is a binary tree
of bucketed nodes of capacity k each. Up to k keys (usually an odd
number, say 2b+ 1) go into the root. When 2b+ 1 keys aggregate in
the root node, a dummy index is computed and stored with the keys.
The index is the median of the first coordinates of the points in the
node. A subsequent key goes into the left subtree if the key’s first
coordinate is less than the root’s index; otherwise the key goes into
the right subtree. In whichever subtree the key goes, it is subjected
recursively to the same insertion algorithm, but at level ` in the tree,
the (` + 1)st coordinate of the inserted key is used in a comparison
against an index that is the median of the (`+ 1) coordinates of the
c keys of a filled node (if the node is not filled, the key adjoins it-
self to that node). The process cycles through the coordinates with
the interpretation that d+ 1 wraps around into the first coordinate.
Figure 7 shows eight points in the unit square and the corresponding
3–2 tree; the indexes are indicated by the symbol ×.

A node holding j keys in this tree has j+1 equally likely insertion
positions, j = 1, . . . , c−1. The k-d tree’s (2b+1)×(2b+1) associated
urn grows just like that of the quad tree. The balls in the associated
urn have 2b+1 different colors. The difference concerns the policy of
handling an overflow. An insertion hitting a leaf containing 2b keys,
fills out the leaf; and two insertion positions appear on the next level.
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Figure 7: Points in the unit square and their corresponding 3–2 tree.

The complete schema is

−1 2 0 0 0 . . . 0 0
0 −2 3 0 0 . . . 0 0
0 0 −3 4 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2b (2b+ 1)
2 0 . . . 0 −(2b+ 1)

 .

The k-d urn scheme coincides with that of a bucket 1-dimensional
quad tree. For instance, with k = 3 (that is, b = 1), in the random
bucket 3-2 tree the average number of nodes allocated after n key
insertions is

E[Sn] = 0.3938823094 . . . n,

which can be found from Theorem 6.2.1.

8 Connection to recursive trees

The random recursive tree is a combinatorial structure used to model
a variety of applications such as contagion, chain letters, philology,
etc. (see the survey in Smythe and Mahmoud, 1996, and the 40 plus
references therein).
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The model has been generalized in a number of directions to take
into account the experience of the chain letter holder or to fit oper-
ation on computers. These generalizations are sketched below. The
associated results were mostly derived by other methods, such as re-
currence and moments methods. Bergeron, Flajolet and Salvy, 1992
give a completely analytic approach to the subject. It has recently
become clear that a unifying approach via urn models ties all these
results.

8.1 Standard recursive trees

Starting out with one root node, the random recursive tree grows in
discrete time steps. At each step a node in the tree is chosen uniformly
at random to be the parent of a new entrant. If the nth node is labeled
with n, all root-to-leaf paths will correspond to increasing sequences.
Note that there is no restriction on node degrees in recursive trees.
In fact they can grow indefinitely (Javanian and Vahidi-Asl, 2003+,
find a central limit theorem for an appropriately normed version of a
node degree). Figure 8 shows all the recursive trees of order 4.
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Figure 8: Recursive trees of order 4.

Recursive trees have been proposed as a model for chain letters
(Gastwirth, 1977), where a company is founded to spread a particu-
lar item (lottery tickets, good luck charm, etc.). The initial recruiter
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looks for a willing participant to buy a copy of the letter. The re-
cruiter and the new letter holder compete with equal chance to recruit
a new participant. The process proceeds in this way, where at each
stage all existing participants compete with equal chance to attract
the next participant in the scheme.

There is a profit associated with selling a copy of the letter. The
promise is that everybody will make profit. Nevertheless, when the
number of participants grows to n, it is unavoidable that many letter
holders purchased the letter but did not sell it. These are frustrated
participants in the scheme (leaves in the tree).

How many frustrated participants are there? This is the question
that Najock and Heyde (1982) address, and find out that about half
of the participants will be frustrated, on average. Najock and Heyde
(1982) characterize the exact and asymptotic distribution of the num-
ber of leaves in a random recursive tree, using recurrence methods;
we give a proof based on urns.

Theorem 8.1.1. (Najock and Heyde, 1982). Let Ln be he number
of leaves in a random recursive tree of size n. This random variable
has the exact distribution

Prob{Ln = k} =
1

(n− 1)!

〈n− 1
k − 1

〉
,

where
〈

n
k

〉
is the Eulerian number of the first kind, for k = 1, . . . , n−

1. The number of leaves also exhibits Gaussian tendency:

Ln − 1
2n√
n

= N
(
0,

1
12

)
.

Proof (sketch). Color the leaves of a recursive tree with white, the
rest of the nodes with blue. When a white leaf recruits, it is turned
into an internal blue node and acquires a new node as a white child.
When a blue node recruits, it attracts a white leaf as a child. This is
a Friedman’s urn with the schema(

0 1
1 0

)
,

starting out with one white ball. If Wn is the number of white balls
after n draws, then Ln = Wn−1.
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With γ = −1, δ = −1, and τn = n+1, the functional equation (6)
is specialized here to

ψn+1(t) =
ψ′n(t)
n+ 1

=
ψ′′n−1(t)
(n+ 1)n

= . . . =
1

(n+ 1)!
× dn+1

dtn+1
ψ0(t).

Reverting to the moment generating function φn(t), cf. (5), with the
boundary condition φ0(t) = et, we have the solution

φn(t) =
1
n!

(1− et)n+1 d
n

dtn

( et

1− et
)
,

From this form it is easy to show by induction that the probability
generating function, φn(ln t) coincides with the well known generating
function of the sequence of Eulerian numbers of the first kind (see
Graham, Knuth and Patashnik, 1994).

The central limit tendency is an immediate application of Theo-
rem 5.2.2. �

Gastwirth and Bhattacharya (1984) address a variation regarding
the profit. In some chain letter schemes the success of the recruits
of a letter holder adds to his own profit. A letter holder gets a
commission whenever anyone in his own subtree recruits. A measure
of this success is the size (number of nodes) of the subtree rooted at
k.

Theorem 8.1.2. (Gastwirth and Bhattacharya, 1984). Let Snk be
the size of the subtree rooted at the kth entrant to a recursive tree.
As both k and n increase to infinity in such a way that k/n→ γ, the
distribution of this size approaches a geometric law:

Snk
D−→ Geo(γ).

Proof (sketch). At the kth stage, color the entrant k with white,
all else (k − 1 nodes) with blue. Whenever a node recruits, paint its
child with the same color. The Pólya-Eggenberger urn(

1 0
0 1

)
underlies this process; the urn starts out with the initial conditions
W0 = 1 and B0 = k−1. So, Snk = Wn−k, which has the exact Pólya-
Eggenberger distribution. Here the number of white splits W̃n =
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Wn−1. Write the distribution of the white splits (see Theorem 5.1.1)
as

P{W̃n−k = j} =
(k − 1) Γ(n− j − 1) Γ(n− k + 1)

Γ(n) Γ(n− k − j + 1)
.

Passage to the limit, via Stirling’s approximation to the Gamma func-
tion, as k, n→∞ in such a way that k/n→ γ, gives

P{S̃nk − 1 = j} → kn−j−1(n− k)j → (1− γ)jγ. �

Meir and Moon (1988) brought the notion of the number of nodes
of a certain outdegree in a recursive tree into the spotlight. They cal-
culated the means of the number of nodes of outdegree 0 (the leaves),
1, and 2, and came up with a partial computation of the variance
covariance matrix. Mahmoud and Smythe (1992) approached the
subject via urn modeling.

Theorem 8.1.3. (Mahmoud and Smythe, 1992). Let X(j)
n be the

number of nodes of outdegree j (for j = 0, 1, 2) in a random recursive
tree. The vector Xn = (X(0)

n , X
(1)
n , X

(2)
n )T converges in distribution

to a multivariate normal
1√
n

(Xn − µn) = N3(0,Σ).

where µ = (1
2 ,

1
4 ,

1
8)T , and the covariance matrix

Σ =


1
12 − 7

72 − 5
432

− 7
72

71
432 − 37

864

− 5
432 − 37

864
473
5184

 .

Proof (sketch). Suppose the leaves (nodes of outdegree 0) are col-
ored with white, nodes of outdegree 1 are colored with blue, nodes
with outdegree 2 with red, all else with black. By the same com-
binatorial arguments used before to connect the tree to an urn, one
reasons that the urn scheme associated with the development is

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 0

 .
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This is an extended urn, so the rest of the proof follows from Theo-
rem 6.1.1. �

In principle, one can continue to refine the coloring of the nodes of
a recursive tree, to reflect the number of nodes of outdegree 0, 1, . . . ,m.
One needs m+2 colors, one for each outdegree up to m, and one ad-
ditional color for all the nodes of outdegree higher than m. The
result would be a multivariate normal in m + 1 dimensions, the
(m+ 1)× (m+ 1) covariance matrix would require formidable linear
algebra computations.

There is interest also in the structure of the branches or the
subtrees rooted at node k. For example, Javanian and Vahidi-Asl
(2003+), determine a central limit theorem for the root outdegree of
the subtree rooted at k, as n → ∞. While the size of the subtree
rooted at k measures the success of the kth entrant in a chain letter
scheme, the number of leaves is a measure of his legal liability. The
leaves in the subtree are unsuccessful participants in the scheme, who
purchased the letter but were not able to sell it. These leaves repre-
sent the potential number of complaints against the kth participant.

Theorem 8.1.4. (Mahmoud and Smythe, 1991). Let L(k)
n be the

number of leaves in the subtree rooted at k in a random recursive tree.
For k fixed,

L
(k)
n

n

P−→ 1
2
β(1, k − 1),

as n→∞.

Proof (sketch). A color code renders the colored nodes balls in an
urn. Color the leaves of the subtree with white, the internal nodes
of the subtree with blue, the nodes outside the subtree with red, to
come up with the urn schema: 0 1 0

1 0 0
0 0 1

 .

This extended urn scheme follows Gouet’s, 1997 first order theory. �

It is worth noting that in the original proof of Mahmoud and
Smythe (1991), the (scaled) difference between the number of white
and blue balls is shown to be a mixture of normals, the mixing density
is that of β(1, k − 1).



Pólya urns: Review 97

8.2 Pyramids

There is no restriction on the outdegree of the nodes of a recursive
tree. Some chain letter schemes put a restriction on the number of
copies a letter holder can sell. If a letter holder wishes to continue
after he makes a certain number of sales, he must reenter (purchase
a new copy). A reentry is a new participant (a new node in the tree).
We illustrate the urn and associated type of result in the binary
case. The tree modeling in this scheme is a pyramid , a recursive
tree where outdegrees are restricted. A binary pyramid grows out
of a root. When a node attracts its second child, it is saturated,
and not allowed to recruit. The unsaturated nodes are equally likely
recruiters. Only the first five trees in Figure 8 are binary pyramids.

Theorem 8.2.1. (Gastwirth and Bhattacharya, 1984). Let Ln be
the number of leaves in a binary pyramid of size n. Then, as n→∞,

1
n
E[Ln]→ 1

2
(3−

√
5).

Proof (sketch). Color the leaves with white, the rest of the unsat-
urated nodes with blue. Leave the saturated nodes uncolored. When
a leaf recruits, it remains unsaturated (of outdegree 1), and acquires
a leaf under it; when a blue node recruits, it becomes saturated (col-
orless), but also acquires a leaf under it. From the point of view of
the urn, colorless balls are tossed out. The schema is(

0 1
1 −1

)
the result follows upon completing the eigenvalue computation out-
lined in Theorem 6.2.1. �

The original proof of Theorem 8.2.1 is established via diffusion
theory, where additionally a central limit theorem is obtained.

8.3 Plane-Oriented recursive trees

Orientation in the plane was not taken into account in the definition of
recursive trees. The two labeled trees in Figure 9 are only two draw-
ings of the same recursive tree. If different orientations are taken to
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represent different trees, we arrive at a definition of a plane-oriented
recursive tree. In such a tree, if a node has outdegree ∆; there are
∆ children under it, with ∆ + 1 “gaps.” The leftmost and rightmost
insertion positions are gaps, too. If these gaps are represented by
external nodes, we obtain an extended plane-oriented recursive tree.
Figure 10 shows one of the plane-oriented recursive trees of Figure 9
after it has been extended; the external nodes are shown as squares
in Figure 10. As a stochastic process, the plane-oriented recursive
tree grows by choosing one of the gaps at random, all gaps in the tree
being equally likely. This uniform distribution on gaps gives rise to
a uniform distribution on plane-oriented recursive trees.

1

2

3 4

•

•

• •�
��

T
TT

1

2

4 3

•

•

• •�
��

T
TT

Figure 9: Two different plane-oriented trees.

Mahmoud, Smythe and Szymański (1993) characterized the exact
and limit distribution of the number of leaves in a random plane-
oriented recursive tree, using recurrence methods. Let Ln be the
number of leaves in a random plane-oriented recursive tree. The
exact distribution of Ln can be treated by counting methods. This
random variable has the exact distribution

Prob{Ln = k} =
1

(2n− 3)!!

〈〈n− 1
k − 1

〉〉
,

where
〈〈

n
k

〉〉
is the Eulerian number of the second kind (see Graham,

Knuth and Patashnik, 1994), and for odd j, the double factorial j!!
is j(j − 2)× . . .× 5× 3× 1.

Theorem 8.3.1. (Mahmoud, Smythe and Szymański, 1993). In
a plane-oriented recursive tree of size n, the number of leaves, Ln,
exhibits the Gaussian tendency

Ln − 2
3n

n

D−→ N
(
0,

1
9

)
.
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Figure 10: An extended plane-oriented recursive tree.

Proof (sketch). The equally likely objects in this model are the in-
sertion positions or gaps (external nodes in the extended tree). Color
each gap underneath a leaf with white, the rest of the gaps with blue.
When a leaf recruits, it is turned into an internal node and acquires
a new child as a leaf, with a white external node under it. Two blue
gaps appear underneath the new internal node, as right and left sib-
lings of the new leaf. When insertion hits a blue gap, it turns into a
leaf, with one white gap under it; two blue gaps appear as siblings of
the new leaf (net gain of only one blue gap). This is an urn process
with the schema (

0 2
1 1

)
,

The central limit tendency is an immediate application of Theorem
6.1. �

8.4 Phylogenetic trees

Certain forms of recursive trees have been used as models for phy-
logeny (see Aldous, 1995). An explicit form was suggested in McKen-
zie and Steel (2000) as a model for evolutionary relations allowing
simple testing of the similarity between actual and simulated trees.

The phylogenetic tree is a binary tree with labeled leaves. The
edges connected to the leaves are called pendants. The tree grows
under some probability model. One appealing model is the Yule pro-
cess, in which a species modeled by this stochastic system evolves by
having a uniformly chosen pendant “split.” This coincides precisely
with the extended binary search tree (under the random permuta-
tion model), the external nodes of which are equally likely insertion
position; Theorem 7.1.1 applies.
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Other flavors of phylogenetic trees are discussed in McKenzie and
Steel (2000), such as the unrooted version of the Yule model, and
rooted and unrooted versions under a uniform probability model (all
combinatorial trees of a particular size are equally likely). Similar
results are derived, also with the aid of urns.

Figure 11 shows a phylogenetic tree on four species (leaves) and
one on five species evolving from it by the splitting of an edge (pointed
to by a down arrow). A pair of leaves at distance 2 (two leaves that
are adjacent to a common internal node) are called a cherry . The
number of cherries represents the number of species that are “cousins”
or most similar on the hereditary scale.
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Figure 11: A phylogenetic tree on four species, and a tree on five
species arising from it by the splitting of the edge pointed to.

Theorem 8.4.1. (McKenzie and Steel, 2000). Let Cn be he number
of cherries in a rooted uniform phylogenetic tree on n species. Then

Cn − n
4√

n

D−→ N
(
0,

1
16

)
.

Proof (sketch). What is equally likely in this tree model are the
edges. Color the edges in a cherry with white, and all the other
pendants with blue. Nonpendant edges are colored with red. When
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a white pendant splits, the number of cherries remains the same, with
two associated white pendants as before the splitting. But the new
edge connected to the common internal vertex of the cherry is not
pendant; the number of red edges increases by one. The old white
sibling pendant of the splitting edge is no longer involved in a cherry,
and must be turned blue. When a blue pendant splits, a new cherry
appears, with two associated white edges, the nonpendant part of
edge becomes red. When a red edge splits, it is partitioned into
two red edges (net increase of one red edge), and a blue pendent is
attached.

The colored edges evolve as the balls of an extended urn with the
scheme  0 1 1

2 −1 1
0 1 1

 ,

An eigenvalue analysis, as required in Theorem 6.1.1 gives a multi-
variate central limit result. The marginal distribution for the number
of white pendants satisfies

Wn − n
2√

n

D−→ N
(
0,

1
4

)
.

But then Wn = 2Cn. �

8.5 Bucket recursive trees

Bucket recursive trees were introduced in Mahmoud and Smythe,
1995 to generalize the ordinary recursive tree into one with nodes
carrying multiple labels.

Every node in a bucket recursive tree has capacity b. The tree
grows by adding labels (recruiting agents) from {1, . . . , n}; at the
jth step j is inserted. The affinities of all the recruiters are equal.
The first agent goes into the root and recruits a second agent for
the same office, then the two compete with equal chance to recruit
a third, and so on. Up to b recruiters go into the root, filling it
to full capacity. The b agents of the root office compete with equal
chance to recruit the (b + 1)st agent, who starts a new subordinate
office (node attached as a child of the root). For each new entrant,
the existing members of the tree compete with equal probabilities
(adaptive in time) to recruit the entrant. If an agent belonging to an
unfilled office succeeds in attracting the new entrant, the entrant joins
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the recruiter’s office. If the recruiter’s office is full, the new entrant
starts a new subordinate office attached as a child of the recruiter’s
office. Figure 12 shows a bucket recursive tree with bucket capacity
2, after 8 recruits join the system.

1 2

3 7 4 5 6

8

�
�

�
�

�
��

Q
Q

Q
Q

Q
QQ

Figure 12: A bucket recursive tree with bucket capacity 2.

After n agents are in the system, the number of offices is Sn,
the size of the tree. An urn of balls of b colors corresponds to the
recruiting process. The affinity of an office with i agents in it is i
and is represented in the urn by i balls of color i. When an office of
capacity i < b recruits, the urn loses i balls of color i and gains i+ 1
balls of color i+ 1. When a full office recruits, we only add a ball of
color 1 to the urn. The schema is

−1 2 0 0 0 . . . 0 0
0 −2 3 0 0 . . . 0 0
0 0 −3 4 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . −(b− 1) b
1 0 . . . 0 0

 .

The characteristic equation |AT − λI| = 0 expands into

(λ+ 1)(λ+ 2) . . . (λ+ b) = b!.

Again, this urn scheme is Smythe’s, 1996 extended urn scheme,
the eigenvalues of which have the property that <λ2 <

1
2λ1 = 1

2 , for
b up to 26 (see Mahmoud and Smythe, 1995 for a proof). For b ≤ 26,
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one obtains a multivariate normal law among the number of balls of
different kinds. Through graph-theoretic considerations, one obtains
the average size of the tree from the profile of colors (see Mahmoud
and Smythe, 1995 for details).

Theorem 8.5.1. (Mahmoud and Smythe, 1995). Let Sn be the
size of a bucket recursive tree after n insertions. If the node capacity
b satisfies 3 ≤ b ≤ 26, then

Sn − n/Hb√
n

D−→ N (0, σ2
b ),

where σ2
b is an effectively computable constant.

The limiting variance σ2
b requires some rather lengthy computa-

tion. If b ≥ 27, the associated urn no longer satisfies the sufficient
condition for asymptotic normality in an extended urn in the sense
of Smythe (1996). It is argued in Mahmoud and Smythe (1995) that
(Sn − n/Hb)/

√
n does not converge to a normal limit, if b ≥ 27.

(Mahmoud and Smythe (1995) show that under a different scale, a
nonnormal limit exists.)

8.6 Sprouts

A random recursive sprout , introduced in Mahmoud (2003+), is a
random tree that grows just like the ordinary recursive tree, except
that the recruiter attracts a random number of nodes instead of just
1. If the recruiter is internal, Y ≥ 1 leaves are adjoined to it; and
if a leaf is chosen as parent, X ≥ 1 leaves are attached to it as
children, and the parent leaf turns into an internal node. The random
variables X and Y are of course discrete on positive integers, and may
generally be different. The standard recursive tree is a case where
deterministically X ≡ Y ≡ 1.

The random sprout extends the domain of application of recursive
trees. For example, it may model a chain letter scheme, where the
company starts out with one recruiter who seeks buyers for a copy of a
letter he is holding. At some point the recruiter will sell a copy of his
letter to X persons whom he may meet socially. The initial founder
of the company remains in contention and all X + 1 letter holders
go competing for the next batch of buyers with equal chance. The
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chain letter scheme propagates in society, however, whenever someone
who sold copies of the letter before finds buyers he sells according to
the distribution Y (presumably stochastically larger than X). The
model takes experience into account. Those who have the experience
of selling before can generally sell more than new inexperienced letter
holders.

Suppose the leaves of the sprout are colored white and the internal
nodes are colored blue, and think of these nodes as balls in an urn.
The progress of the tree corresponds to the growth of an urn with
the schema

A =
(
X − 1 1
Y 0

)
.

Let Sn be the size of the sprout, Let µx := E[X], and µY := E[Y ].
Here, X0 = (1, 0)T , and the transposed generator is

B =
(
µx − 1 µY

1 0

)
,

with eigenvalues

λ1,2 =
(µX − 1)±

√
(µX − 1)2 + 4µY

2
.

As both µx ≥ 1 and µY ≥ 1, the two eigenvalues are real and distinct.
By Theorem 6.2.1,

E[Xn] =
µY

µY − λ2

(
µX − 1− λ2

1

)
n+ o2(n).

Adding up the two components of Xn, we arrive at the average size
of a random sprout:

E[Sn] = µY
µX − λ2

µY − λ2
n+ o(n).

9 Extensions and future directions

Starting with a simple 2× 2 urn model, the theory was developed in
many directions and was used in many applications. There are still
numerous promising directions under investigation.

For example, Pemantle (1990) looked into schemata that are adap-
tive in time. That is, the ball addition matrix itself is changing with
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time. This adaptive urn process is proposed as a model for the opin-
ion polls in the American presidential election, where voters may be
changing their mind throughout the campaign.

Aldous, Flannery and Palacios (1988) considered a generalized
model where the drawing probabilities of a certain color are not just
the proportion of balls of that color in the urn, but more generally
a proportional factor of it—for a k × k scheme, with X

(i)
n being the

number of balls of color i after n draws, the probability of picking
color i at the nth draw is ciX

(i)
n−1/

∑k
j=1 cjX

(j)
n−1, for a vector of pro-

portionality constants (c1, . . . , ck)T . The results remain pretty much
the same; for example, we have strong convergence of proportions to
a constant vector with components related to the principal eigenvec-
tors. Janson (2003+), presents a broader context.

Certain variations of Pólya urns have become popular models in
clinical trials (see Wei, 1977, 1978a, 1978b, and contributions in Bai,
Hu and Rosenberger, 2002, and Rosenberger, 2002). Bai and Hu
(1999) recognize the need for adaptive schemata in clinical trials.
Under impositions of slow change, they still get results resembling
those of Smythe (1996). Namely, if An is the schema used at the nth
step, and there exists a matrix A such that

∑∞
n=1 n

−1 ||An−A||∞ <
∞, then central limit theorems similar to those in Theorem 6.1.1
apply (still, subject to an eigenvalue structure like Smythe’s with
second largest real part less than half of the principal eigenvalue).

For the spreading of several epidemics simultaneously, Kriz (1972)
proposed a model of several parallel generalized Pólya urns leading
naturally to the notion of a joint vector of independent Pólya distri-
butions, which was called the polytomic Pólya distribution.

We portrayed growing tenable urns in the review. There are
classes of tenable urns that do not grow. For example, the urn with
the scheme (

−1 1
1 −1

)
(19)

remains of the same size as the starting urn, after any number of
draws. This is the Ehrnfest urn (Ehrenfest and Ehrenfest, 1907),
used for modeling diffusion of gas particles; Karlin and McGregor
(1965) provide a contemporary view. Initially the model comprises
two chambers of particles. A particle is chosen at random from among
all the particles in the two chambers, and moved to the other cham-
ber. This process is equivalent to one Pólya urn, where all the balls
are put together, those of one urn are colored white, those of the other
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are colored blue, then the urn evolves according to the schema (19).
The long-term trend reveals the degree of mixing between the two
gases.

We briefly give the reader the flavor of the kind of question one
might address, and the sort of answer one gets in a nongrowing urn
by one example in the Ehrnfest model. The total number of balls
in the combined urn is fixed, say τ0, but the number of balls of one
particular color has a discrete distribution over nonnegative integers
in the range {0, 1, . . . , τ0}.

Theorem 9.1. (Ehrenfest and Ehrenfest, 1907). Suppose the
Ehrenfest model starts out with W0 particles in one chamber and B0

in the other. Let Wn be the number of particles in the first chamber
after n exchanges. Then

Wn
D−→ B

(
W0 +B0,

1
2

)
.

Proof (sketch). After n exchanges, there are Wn white and Bn

blue balls respectively in the combined Pólya urn. For Wn to be k
after n draws, we must either have k + 1 white balls in the previous
step, and draw white, thus decreasing the white balls by one, or have
k−1 white balls in the previous step, and increase the white balls by
drawing blue:

P{Wn = k} =
k + 1

W0 +B0
P{Wn−1 = k + 1}

+
W0 +B0 − k + 1

W0 +B0
P{Wn−1 = k − 1}.

After justifying the existence of a limit P{Wn = k} → P (k), we find
that the limit must satisfy

P (k) =
k + 1

W0 +B0
P (k + 1) +

W0 +B0 − k + 1
W0 +B0

P (k − 1).

Reorganize as

(W0 +B0)(P (k)− P (k − 1)) = (k + 1)P (k + 1)− (k − 1)P (k − 1).

From this write down a system of equations for k, k − 1, . . . , 0 (with
the natural interpretation that P (−1) = 0), and add them up to
obtain

P (k + 1) =
W0 +B0 − k

k + 1
P (k).
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By induction this gives

P{Wn = k} → P (k) =
1

2W0+B0

(
W0 +B0

k

)
,

for each k = 0, . . . ,W0 +B0. �

The common theme in all the forgoing material is that one ball is
sampled at random. Applications warrant modeling urns subject to
multiple draws. For instance, we may consider an urn of white and
blue balls where at each stage a pair of distinct balls is withdrawn.
The pair is returned to the urn, and depending on the multiset out-
come, we may decide to add a certain number of white balls and
a certain number of blue balls. In this case we have a rectangular
schema. The instance


W B

WW −1 2
WB 0 1
BB 1 0


appears in Tsukiji and Mahmoud, 2001 in an application to circuits.
The binary recursive circuit can be viewed as the second member in a
hierarchy of random graphs, with the recursive forest being the first
in the hierarchy. The F th member of the hierarchy grows from an
initial set of nodes (inputs in the context of circuits); at each stage,
F distinct parents (fan-in of the circuit) are chosen to parent a new
child. A forest of recursive trees (F = 1) is the simplest member of
the hierarchy. Figure 13 shows all binary (F = 2) circuits after two
insertions into an initial graph of two isolated nodes of outdegree 0
(fan-out 0 in the context of circuits).
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Figure 13: All binary circuits of size 4 grown from two inputs. Square
nodes are outputs.
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The rectangular urn schema above is obtained by coloring outputs
(nodes of fan-out 0) with white, all else with blue, and arguing as
usual the various changes in the colors upon withdrawing two parents.
Via martingale difference formulation, Tsukiji and Mahmoud, 2001
find the central limit tendency

Ln − 1
3n√
n

= N
(
0,

2
45

)
for Ln, the number of outputs in the random circuit after n insertions.

The eigenvalue theory used for results such as Smythe (1996),
Mahmoud (2003+), and Bai and Hu (1999) would not be a natural
course of investigation for rectangular urns. However, martingale
theory remains viable.

Very recently, an analytic attack by Flajolet, Gabarró and Pekari
(2003+), has been successful for 2 × 2 schemes. In this approach
various types of functional equations are set up and solved, in some
cases exactly. The approach yields explicit large deviation rates, and
detects elliptic functions. The case(

s+ 1 0
1 s

)
,

with s ≥ 1, declared problematic in Bagchi and Pal, 1985, is shown to
have a stable, but nonnormal law. (In this case s = λ2 ≥ 1

2λ1 = s+1.)
This is a continuing effort, and the results will soon be announced.
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