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Abstract. Given an i.i.d. sequence of n letters from a finite alpha-
bet, we consider the length of the longest run of any letter. In the
equiprobable case, results for this run turn out to be closely related
to the well-known results for the longest run of a given letter. For
coin-tossing, tail probabilities are compared for both kinds of runs
via Poisson approximation.

1 Introduction

The extensive literature on the behavior of the longest head run in a
sequence of independent coin tosses goes back at least to the classic
result of Erdös and Rényi, 1970. Their approach has been generalized
and used extensively in sequence matching problems in statistical
genetics (see, for example, Chapter 11 of the book of Waterman,
1995).

The problem of the longest run of heads or tails, by contrast,
seems to have been largely neglected, although it is of some interest
at least in the context of DNA sequences (Ewens and Grant, 2001,
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p. 162). The purpose of this note is to examine the behavior of
the longest run of any letter in a sequence of letters from a finite
alphabet. It turns out that there is a very easy way to make the
connection between this problem and that of the longest head run
for coin-tossing (and more generally, for equiprobable models). A
natural extension of the equiprobable results to sequences generated
by a Markov chain is also presented. The final section goes beyond
the equiprobable model to treat the more difficult general case for
finite alphabets.

2 The Equiprobable Model

Let A be an alphabet of k letters, a1, . . . , ak, and assume we have
a sequence of n letters from A, chosen with equal probabilities 1/k.
Let

Rk,n := length of the longest run of a given letter ai,

Lk,n := length of the longest run of any letter.

Heuristically, to approximate Lk,n one can use the same reasoning
used to approximate Rk,n (cf. Waterman, 1995, p. 264). A run of
ai of length m has probability k−m, and there are roughly n possible
starting positions for this run. Thus

E[number of runs of ai of length m] ≈ nk−m,

and if the longest run is unique, its length Rk,n should satisfy 1 ≈
nk−Rk,n , giving Rk,n ≈ logk(n). This intuition can be made rigorous
(Gordon et al, 1986) to give

E(Rk,n)
logk(n)

−→ 1 as n →∞.

Analogous heuristic reasoning with the longest run of any letter gives

E[number of runs of length m] ≈ nkk−m = nk−(m−1),

leading to
Lk,n ≈ logk(n) + 1 ≈ Rk,n + 1.
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With this intuition, the proposition that follows is perhaps not
surprising.

Proposition 2.1. E(Lk,n) = E(Rk,n−1) + 1.

Proof. Let T map sequences {sj} from A into dyadic (0, 1) sequences
{ŝj} by letting T (s1) = 0 and, for j ≥ 1,

T (sj) = 1(sj = sj−1),

where 1(.) denotes the indicator function.

Lemma 2.1. {ŝj}j≥2 is a Bernoulli sequence with p = 1/k. �

Proof of Lemma 1.1 We have

P (ŝj = 1) =
k∑

i=1

P (ŝj = 1|sj−1 = ai)(1/k) = (1/k)
k∑

i=1

1/k = 1/k.

Now for i ≥ 2, consider P (ŝi = εi, . . . , ŝi+l = εi+l) where εj =
0 or 1. This probability equals

P (si ∆i si−1, . . . , si+l ∆i+l si+l−1)

where ∆j means = if εj = 1 and 6= if εj = 0. It is easily checked that
the latter probability equals

i+l∏
h=i

P (sh ∆h sh−1) =
(1

k

)j(k − 1
k

)l−j

,

where j =
∑i+l

h=i εh is the number of 1’s among εi, . . . , εi+l. But as
already noted,

P (ŝh = εh) =
{

1
k if εh = 1
k−1

k if εh = 0
,

so

P (ŝi = εi, . . . , ŝi=l = εi+l) =
i+l∏
h=i

P (ŝh = εh),

establishing Lemma 2.1. �

Remark: The lemma is not true if the letters ai occur with different
probabilities.
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Now let R̂k,n−1 denote the longest run of 1’s in {ŝj}. Note that

Lk,n({sj}) = 1 + R̂k,n−1({ŝj}) and R̂k,n−1
D= Rk,n−1.

The probability of any sequence {ŝj} is (k−1)N0

kn−1 , where N0 is the
number of zeros in the sequence, not counting ŝ1. The number of
sequences {sj} that map into a given {ŝj} under T is just k(k−1)N0 ,
because every time there is a change of letter in {sj}, there are k− 1
possibilities for the next letter; and there are k possible choices of
initial letter. Hence, if s denotes a generic sequence {sj} from the
alphabet A,

E(Lk,n) =
∑

s

Lk,n(s)k−n =
∑

ŝ

[R̂k,n−1(ŝ) + 1]
k(k − 1)N0

kn

= E[R̂k,n−1 + 1] = E(Rk,n−1) + 1.�

The argument given above extends easily to show

Corollary 2.1. V ar(Lk,n) = V ar(Rk,n−1).

This variance is essentially independent of n (Waterman, p. 277).
Thus the expected length of the longest run of heads or tails in a

sequence of (fair) coin tosses grows as log2(n), the same rate as the
expected longest head run. If A = {a, c, g, t}, the DNA alphabet,
and we assume independence and equal probabilities for the bases,
the longest run of any of the four bases grows in length as log4(n), the
same rate as the longest run of a given base (compare the statement
on p. 162 of the noteworthy book of Ewens and Grant, 2001, where
the authors have apparently misinterpreted a result of Karlin et al.,
1983, personal communication).

The result of Proposition 2.1 may seem a bit counterintuitive,
despite the heuristic justification we began with. However, taking for
illustration the case of k=2, it is still true for large n that P (L2,n ≥ j)
is nearly twice as large as P (R2,n ≥ j) when j becomes moderately
large; this is a simple consequence of the near-independence of the
events {Head run of length at least j} and {Tail run of length at least
j} for large n. Taking n = 2, 000, where the expected length of the
longest head run is about 10, Poisson approximation (cf. Arratia et
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al., 1990, for a clear explanation of Poisson approximation in this
context) gives, for example,

P (R2,n ≥ 13) = .11432 ± 2.000 x 10−4,

P (R2,n ≥ 14) = .058922 ± 5.369 x 10−5.

It is simple to modify the approach of Arratia et al. (1990) to get
tail probabilities for L2,n (but note that b2 in Theorem 1 of Arratia
et al. will no longer be zero in this case). We get

P (L2,n ≥ 13) = .21556 ± 4.594 x 10−4,

P (L2,n ≥ 14) = .11432 ± 1.185 x 10−4.

If the events {Head run of length at least j} and {Tail run of length
at least j} were independent, the calculations for R2,n would give

P (L2,n ≥ 13) = .21557,

P (L2,n ≥ 14) = .11437,

in very good agreement with the previous results.

3 The Markov Chain Case

The results of the preceding section for sequences of independent coin
tosses can be generalized to a special case of sequences generated by
Markov chains. Assume again an alphabet A of letters a1, . . . , ak,
generated by a symmetric Markov chain with transition probabilities
c on the diagonal and (1−c)/(k−1) on the off-diagonals. The station-
ary distribution for such a Markov chain is uniform on {a1, . . . , ak}
and we assume the chain is started with this initial distribution. De-
fine T as before, mapping sequences {sj} from A into dyadic (0,1)
sequences {ŝj}.

Lemma 3.1. {ŝj} is a Bernoulli sequence with p = c.

Proof. It is straightforward to show that {ŝj} is a Markov chain,
with transition probabilities 1 − c in the first column and c in the
second. �

Let Lc
k,n denote the longest run of any letter in the Markov chain

{sj} and R̂c
k,n−1 the longest run of 1’s in {ŝj}. As before, R̂c

k,n−1
D=
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Rc
k,n−1, the longest head run in a Bernoulli(c) sequence, and from our

construction,

Lc
k,n = 1 + R̂c

k,n−1.

Proposition 3.1. E(Lc
k,n) = E(Rc

k,n−1) + 1.

Proof. A sequence {sj} with N0 changes of state has probability(
1− c

k − 1

)N0

cn−1−N0 ,

and there are (k − 1)N0 sequences of this type. The result follows as
in Proposition 2.1. �

4 Unequal Probabilities

. Returning now to the independent case, consider a more general
model, again with the alphabet A, but where the probabilities for
the letters {ai}k

i=1 are given by {pi}k
i=1. Again let Lk,n denote the

longest run of any letter. Let p∗ denote the maximum of p1, p2, . . . , pk

and suppose first that there is only one letter a∗ appearing with
probability p∗.

For clarity we begin with the case k = 2, and suppose that p >
1/2. Apply again the heuristic of Section 1. With q = 1− p, we now
have

E[number of runs of length m] ≈ n(pm + qm) = npm[1 + (q/p)m],

which leads to

L2,n ≈ log1/p(n) + log(1/p)[1 + (q/p)m] ≈ log(1/p)(n).

Similar reasoning in the case of k > 2 would give

Lk,n ≈ log(1/p∗)(n).

This reasoning is confirmed by the a.s. result for this case; it is
straightforward to modify the classical proof for longest head runs
(Erdös and Rényi, 1970) to show that

P ( lim
n→∞

Lk,n

log1/p∗(n)
= 1) = 1. (1)
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As for E(Lk,n), (1) suggests that its limit behavior is the same as
that of E(Ra∗

k,n), where Ra∗
k,n now denotes the longest run of the letter

a∗ appearing with probability p∗. Indeed, we expect that in this case
as n increases, the longest run of any letter will, with ever higher
probability, be the longest run of a∗. We have

E(Lk,n) = E(Lk,n;Lk,n = Ra∗
k,n) + E(Lk,n;Lk,n 6= Ra∗

k,n) (2)

Using Hölder’s inequality on the second term on the right-hand
side of (2),

E(Lk,n;Lk,n 6= Ra∗
k,n) ≤ [E(Lk,n)2P (Lk,n 6= Ra∗

k,n)]
1/2

.

Because the variance of Lk,n does not grow with n, the term
E(Lk,n

2) is dominated by log2
1/p∗(n). Consider again the case k = 2,

with p > 1/2. The longest head run RH
2,n grows as log1/p(n), and the

longest tail run RT
2,n as log1/q(n). Using again Poisson approximation

to estimate P (RT
2,n < t) and P (RH

2,n < t) for log1/q(n) < t <
log1/p(n), we have

P (RT
2,n ≥ t) ≈ nqt, P (RH

2,n < t) ≈ exp{−npt}.

Thus if t is chosen to make

log2
1/p(n)[nqt + exp{−npt}] −→ 0 as n →∞,

the second term on the right-hand side of (2) converges to zero and

E(L2,n)− E(RH
2,n) −→ 0 as n →∞.

Choosing the closest integer to the value of t satisfying

t = log1/q(n) + (2 + ε)log1/qlog1/p(n)

for ε > 0 will accomplish this. A similar approach will work for
k > 2 as long as there is a unique a∗ corresponding to the maximal
probability p∗. Thus in the non-equiprobable case with a unique a∗,
the value of E(Lk,n) is essentially the same, for large n, as that of
E(Ra∗

k,n).
Table 1 below (based on 5,000 simulation runs) confirms our in-

tuition that as p gets further from .5, the difference between E(L2,n)
and E(RH

2,n) diminishes quickly.
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Table 1. Comparison of E(L2,n) and E(RH
2,n) for p > .5

p E(L2,500) E(RH
2,500) E(L2,1000) E(RH

2,1000) E(L2,2000) E(RH
2,2000)

.51 9.2966 8.5228 10.3092 9.5336 11.3852 10.6202

.55 9.7952 9.5572 10.8918 10.6856 11.9500 11.7834

.67 13.5642 13.5636 15.2722 15.2720 17.0014 17.0012

We turn finally to the non-equiprobable case when the letter a*
corresponding to the maximal probability p∗ is not unique. Sup-
pose without loss of generality that a1, a2, . . . , ar all appear with the
maximal probability p∗, where 2 ≤ r ≤ k. Then our heuristic gives

Lk,n ≈ log1/p∗(nr) + log1/p∗[1 + o(1)]

and we might expect

E(Lk,n) ≈ E(Ra1
k,n) + log(1/p∗)(r). (3)

Some suppport for (3) appears to be given in a theorem of Karlin
et al. (1985), p. 36. (No proof of the theorem in Karlin et al. is
given, and I have not found a published proof elsewhere.) A special
case of the much more general theorem of Karlin et al. considers s
independently generated sequences of length n, on the same k-letter
alphabet, but with possibly different probabilities in the s sequences.
Denote by K2,s the longest word present in at least two of the s
sequences. Let

λ := max
u,v

(
k∑

i=1

p
(u)
i p

(v)
i ),

where p
(l)
i denotes the probabilities for the lth sequence, l = 1, 2, . . . , s

and the maximum is taken over all pairs 1 ≤ u < v ≤ s.

Theorem 4.1. (Karlin et al., 1985). As n → ∞, E(K2,s) has
precise growth order

[log
((s

2

)
n2
)

+ logλ(1− λ) + 0.577]/(−logλ).

In our case, we take s = r+1. For sequence 1 we take probabilities
{pi} = {p(1)

i }, where p1 = p2 = . . . = pr, and 2 ≤ r ≤ k. Sequence
j, 2 ≤ j ≤ r + 1, will consist entirely of the letter aj−1. It is easy
to check that in this case λ = p∗, and the longest word common to
at least two of the r + 1 sequences will be the longest run of any one
of the letters ai, 1 ≤ i ≤ r.
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At first glance, the theorem appears to give the wrong result,
owing to the term log

((
r+1
2

)
n2
)
. However, the theorem refers to the

case of “shifts allowed”; i.e., a word of a given length starting in
position i in one sequence could be matched by the same word starting
at position j in a different sequence. For any pair of sequences, this
makes roughly n2 potential sites for a match, and there are

(
r+1
2

)
pairs of sequences to examine. For our situation, matches can only
occur between sequence 1 and one of the other sequences, so there
are only r pairs to consider; and “shifts” are irrelevant, as sequences 2
through (r+1) consist of identical letters. Thus the relevant number
of comparisons is rn, rather than

(
r+1
2

)
n2.

This would give the growth of E(Lk,n) in the non-equiprobable
case as [log(n) + log(r)]/log(1/p∗). For the letters a1, a2, . . . , ar, the
rate of growth of E(Rai

k,n) is, by results quoted earlier, log(n)/log(1/p∗).
Thus allowing runs of any letter increases the expected length of a
run by an amount log(r)/log(1/p∗), where r is the number of let-
ters appearing with the highest probability p∗, in agreement with the
heuristic. The maximum increase of 1 is achieved when r = k, i.e.,
in the equiprobable case, an intuitively reasonable result.

One thousand simulation runs with n = 10,000, using p = (.4, .4, .2)
and p = (.3, .3, .3, 1), appear to provide support for the result of (3).

Table 2. Comparison of predicted and calculated difference of
E(Lr,10000) and E(Rp∗

r,10000)

{pi} p∗ r log1/p∗(r) E(Lr,10000)− E(Rp∗
r,10000)

(.4, .4, .2) .4 2 .756 .741
(.3, .3, .3, .1) .3 3 .912 .918
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