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Abstract. This paper reviews Bayesian Nonparametric methods
and discusses how parametric predictive densities can be constructed
using nonparametric ideas.

1 Introduction

I will start with what might seem an unfair comment, yet it is meant
to be instructive. The topic I am writing about, “Bayesian nonpara-
metric theory”, should, in my opinion, be entitled “Bayesian theory”.
This name has however been reserved for “Bayesian parametric the-
ory”.

The goal of the Bayesian, in the first instance, is the construction
of a prior probability distribution on a space of density functions.
Exactly how large a set of densities the prior covers is the first choice
to be made; the second is the shape of the prior. It is fair to say that
the larger the set of densities, the harder it is to put a probability on
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it. Even as recently as 1982, Ghorai and Rubin concluded that “Even
though the literature on nonparametric density estimation is large,
the literature on Bayesian nonparametric estimation of the density
function is relatively small. The reason is the lack of a suitable prior
over the space of probability density functions.”

Fortunately, this is no longer the case and there are a number of
suitable and useful priors which are supported by all densities and,
technically, supported by a set of densities with respect to a measure,
such as the Lebesgue measure. In this case posterior distributions are
derived via Bayes Theorem. Some priors on spaces of distribution
functions are not supported by densities and this poses some prob-
lems. Much of the early work in Bayesian nonparametrics involved
such priors, most notably the Dirichlet process (Ferguson, 1973) and
neutral to the right priors (Doksum, 1974).

Recent work has focused on priors which are supported by densi-
ties. An extremely popular model is the mixture of Dirichlet process
prior (Lo, 1984) constructed by taking a convolution of the Dirichlet
process with a continuous kernel. These models have been exploited
by Escobar and West (1995) and many others. See Dey et al. (1998)
or Walker et al. (1999) for a review.

The parametric Bayesian constructs a prior on spaces of density
functions by first selecting a parametric family of densities, indexed
by a finite dimensional parameter θ, and then puts a prior distribu-
tion on the domain of θ. This obviously puts a prior distribution on
densities. It is also obvious that the densities supported by such a
procedure are going to be restricted. There is then the real possi-
bility of being caught out by the data. The nonparametric Bayesian
avoids such potential embarrassment by not restricting the shapes of
densities in the prior.

There is another reason why putting probability one on a para-
metric family of densities is worrying. Probability one is a sure event
and so the parametric Bayesian must believe that the true density is a
member of the parametric family. This is rarely the case in practice.
See Lindsey (1999) and Draper (1999) for more serious comments on
these points.

1.1 History

Before the seminal paper of Ferguson (1973), who formally intro-
duced the Dirichlet process, following work on the gamma process
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by Ferguson and Klass (1972), there had been little work done on
nonparametric priors. Perhaps the most well known at the time was
the class of tailfree priors (Freedman, 1963; Fabius, 1964). These
were the invention of Freedman (1963) who was concerned with prior
distributions on the integers which gave rise to consistent posteri-
ors. Further work on tailfree priors was done by Kraft (1964) and
Kraft and van Eeden (1964) who were working with what modern day
Bayesian nonparametric statisticians would recognise as Pólya trees.
Dubins and Freedman (1965) and Freedman (1965) explored further
the notion of random distribution functions on countable sets.

The most effective review of the early work in Bayes nonparamet-
rics is given in Ferguson (1974). An alternative review is given in
Lindley (1972).

The introduction of the Dirichlet process in Ferguson (1973) her-
alded the birth of modern day Bayes nonparametrics and arguably
the Dirichlet process remains the most important and widely used
(in various guises) nonparametric prior today. Ferguson (1973, 1974)
was largely concerned with developing Bayes decision rules using the
Dirichlet process, making comparisons with classic nonparametric
procedures. Antoniak (1974) extended the ideas of Ferguson by con-
sidering Dirichlet mixtures. At around the same time, Doksum (1974)
introduced the class of neutral priors, of which the Dirichlet process
is a special case.

The seventies and eighties saw the introduction of a number of
nonparametric priors. We will mention the work of Lo (1984), who
introduced mixtures of Dirichlet processes, in which a continuous ker-
nel is mixed with a Dirichlet process. This has turned out to be one
of the most popular and successful of all nonparametric priors. Dyk-
stra and Laud (1981) developed the idea of modelling the hazard rate
function nonparametrically via the use of an independent increment
process. Neutral priors make use of such processes to model the haz-
ard function which are, with probability one, discrete; that is the
hazard functions are increasing step functions. The model of Dyk-
stra and Laud (1981) gives continuous hazard functions. A number
of authors worked on Gaussian process priors, including Lenk (1989,
1991).

Nowadays, there are a number of nonparametric priors which have
proved to be useful. The most widely used is undoubtedly the mix-
tures of Dirichlet process prior. Other popular models include Pólya
trees and Gaussian process priors. See Dey et al. (1998) or Walker
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et al. (1999) for recent reviews.

1.2 Preliminaries

The interpretation of “nonparametric” is “infinite dimensional”. We
can then differentiate between a countably infinite space, in which
case we would consider priors which are supported by densities with
respect to the counting measure, and something like the real line, in
which case priors would be constructed to be supported by densities
with respect to the Lebesgue measure, for example. It is the latter
case that is the concern of this article.

In this section, notation and definitions will be introduced. The
data will be denoted by X1, X2 . . . and are assumed to be independent
and identically distributed from some unknown distribution function
F . The prior on the space of distribution functions will be denoted
by Π and a random distribution from Π will be denoted by F . If
all such F are absolutely continuous with respect to the Lebesgue
measure then we will write the corresponding density as f and will
in this case use Π to also represent the prior on the space of density
functions.

Let us for the moment assume the prior is supported by densities.
The likelihood function is given by

n∏
i=1

f(Xi)

While it is not possible to work around this likelihood from a Classical
perspective, it is possible to work with from a Bayesian perspective.
The posterior distribution of f is available via Bayes theorem and
the posterior mass assigned to a set A of densities is given by

Π(A|X1, . . . , Xn) = Πn(A) =
∫
A

∏n
i=1 f(Xi) Π(df)∫ ∏n
i=1 f(Xi) Π(df)

Technical details involve ensuring all objects are measurable and this
we will assume. The numerator and denominator of Πn(A) are then
understood in terms of expectations; that is, the denominator is

E{f(X1) . . . f(Xn)}

The tough part of Bayesian nonparametrics is computing these ex-
pectations. In fact it is not easy and often sampling based methods
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are required. The reason why Bayesian nonparametrics is currently
seeing a revival is precisely because of the recent advances being made
in sampling based Bayesian inference. This was pioneered by Tanner
and Wong (1987) and later by Gelfand and Smith (1990), Smith and
Roberts (1993) who introduced the Gibbs sampler to mainstream sta-
tistical awareness. In fact, the first Gibbs sampler appeared in the
PhD Thesis of Michael Escobar, which was written in 1988 and was
concerned with inference for normal means. One of his models in-
volved the Dirichlet process and a solution to this inference problem
only seems possible via the Gibbs sampler.

2 A nonparametric model based on the
Dirichlet process

The Dirichlet process prior and related priors are the most widely
known and widely used nonparametric priors on distribution func-
tions. The Dirichlet process itself is remarkably simple to work with.

2.1 The Dirichlet process

The easiest way to think of the Dirichlet process is as a stochastic pro-
cess which has sample paths behaving almost surely as a distribution
function. When thinking about a stochastic process, the finite dimen-
sional distributions are of interest and for a Dirichlet process these
are Dirichlet distributions. In fact, for any partition (B1, . . . , Bk) of
Ω, the sample space,

(F (B1), . . . , F (Bk)) ∼ Dir (α(B1), . . . , α(Bk))

where α(·) is a finite non-null measure.
The updating mechanism from prior to posterior based on an

independent and identically distributed sample is available and it
turns out that the posterior distribution is also a Dirichlet process.
We will write

F ∼ DP {α(·)}

to denote that F is a random distribution from a Dirichlet process
prior with parameter α. The posterior distribution based on an in-
dependent and identically distributed sample (X1, . . . , Xn) is given
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by

DP

(
α +

n∑
i=1

δXi

)
where δX is the measure with point mass 1 at the location X. The
well known Bayesian bootstrap (Rubin, 1982) follows by now taking
α to be a null measure.

In the case of the Dirichlet process, there is no dominating mea-
sure. Each random distribution chosen from a Dirichlet process has a
probability mass function yet no two random distributions will have
jumps in the same place. This means that E{f(X1)} does not make
any sense and so Bayes Theorem is not available to obtain the poste-
rior distribution. Other ideas are required; see Ferguson (1973) and
Doksum (1974), for example.

Since α(·) is a finite measure it is possible to write α(·) = cG(·)
where c > 0 and G is a probability measure on Ω. Straightforward
manipulation of the Dirichlet distribution gives

EF = G

in the sense that E F (A) = G(A) for all sets A. In fact,

F (A) ∼ be{α(A), α(∞)− α(A)}

where ‘be’ denotes the beta distribution, and consequently

VarF (A) =
G(A){1−G(A)}

c + 1

From this we can see that the variance is fully determined by the
shape of G. So it might be considered that G plays too large a part
in the prior. To ensure the prior is not too concentrated about G, it
might be chosen to make c small, forcing the variance to be as large
as possible. This can be done, but there is a snag to this which needs
to mentioned, and was discovered by Sethuraman and Tiwari (1982).
They showed that as c → 0, then F →d F ∗ where a random F ∗ is
a probability measure with point mass 1 at θ and θ ∼ G. Thus, for
small c, the prior is putting a lot of probability on distributions which
are highly discrete, having at least one big jump.

2.2 Mixtures of Dirichlet processes

Blackwell (1973) proved that a Dirichlet process is discrete and it is
this discreteness which is not liked. The mixture of Dirichlet process
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model avoids the discreteness and was first given attention by Lo
(1984), who considered a randomly generated density function given
by

f(x) =
∫

K(x; θ) dP (θ)

where K(·; θ) is a continuous kernel, and a density function for each
θ, and P is a Dirichlet process. The constructive definition of the
Dirichlet process (Sethuraman and Tiwari, 1982; Sethuraman, 1994)
gives

P (θ) =
∑
j

ωj 1(νj ≤ θ)

where {ωj}∞j=1 are random weights whose distribution depends only
on α(Ω) and the {νj} are independent and identically distributed
from α(·)/α(Ω). So, if K(x; θ) = Kh(x − θ), a normal kernel with
variance h2, then the model is easily seen to be a mixture of normal
model. See Richardson and Green (1997) for an alternative distribu-
tion of weights and means and a more complicated sampling strategy,
involving reversible jump Markov chain Monte Carlo.

The most common form of the mixture of Dirichlet process model
is as a hierarchical model, and is given here;

Xi|θi ∼ K(·; θi) i = 1, . . . , n

θ1, . . . , θn|P ∼iid P

P ∼ DP {cG(·;φ)}

c ∼ πc(c) and φ ∼ πφ(φ)

where φ are the parameters of G. This can be viewed as a more
flexible version of the parametric hierarchical model, introduced by
Lindley and Smith (1972);

Xi|θi ∼ K(·; θi) i = 1, . . . , n

θ1, . . . , θn|φ ∼iid G(·;φ)

φ ∼ πφ(φ)

It is well known that P can be integrated out of the nonparametric
model, see for example Blackwell and MacQueen (1973), leading to
the revised, but equivalent, hierarchical model;

Xi|θi ∼ K(·; θi) i = 1, . . . , n
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p(θ1, . . . , θn) = g(θ1;φ)
n∏

i=2

c g(θi;φ) +
∑i−1

j=1 δθj
(θi)

c + i− 1

c ∼ πc(c) and φ ∼ πφ(φ)

Here g is the density function corresponding to G.
The posterior distribution is mathematically intractable and only

sampling strategies are going to be able to obtain posterior summaries
of interest. Kuo (1986) tried out an importance sampling scheme but
the efficient algorithms that are currently in use are all based on
MCMC methods.

2.3 Sampling the model

The clever idea of Escobar (1988) was to sample the posterior distri-
bution of (θ1, . . . , θn) using a Markov chain, which he constructed by
successively sampling from the full conditional densities,

p(θi|θ−i, x1, . . . , xn) i = 1, . . . , n

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) and, for example,

p(θ1|θ−1, x1, . . . , xn) ∝ K(x1; θ1)

{
c g(θ1) +

n∑
i=2

δθi
(θ1;φ)

}

This algorithm is what we know now to be a Gibbs sampler. Escobar
(1988) used this idea to estimate the normal means. MacEachern
(1994) developed an alternative sampling strategy which was still
based on the Gibbs sampler. Current mixture of Dirichlet process
sampling strategies are based on the idea of MacEachern (1994).
A sample from p(θ1, . . . , θn) defines a random variable Sn, defined
on Sn = {1, . . . , n}; Sn is the number of clusters or the number
of distinct elements in Sn. The distinct θi are independent and
identically distributed from g and denote these distinct elements
by θ∗j , j = 1, . . . , Sn. The scheme also defines a random variable
s = (s1, . . . , sn) which indicates the cluster in which θi lies. That is,
si = j means that θi is in the jth cluster and θi = θ∗j . Let k denote
the number of clusters, and nj , for j = 1, . . . , k, the number of cases
in each cluster. Then let n−j and k− denote the same things with
case i removed. The basic algorithm is as follows:
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1) Generate (si, θi)|s−i, θ−i, xi, c, φ by taking si = j with probability
proportional to

qj = n−j K(xi, θ
∗
j )

or taking si = k− + 1 with probability proportional to

q0 = c

∫
K(xi, θ) g(θ;φ) dθ

If si = k−1 + 1 then a new location θi = θ∗k for the new cluster,
with 1 element in it, is sampled from the density proportional
to

K(xi; θ) g(θ;φ)

2) Generate θ∗j |x1, . . . , xn, k by taking θ∗j from the density propor-
tional to ∏

si=j

K(xi; θ)

 g(θ;φ)

Step 1) is repeated for i = 1, . . . , n and step 2) for j = 1, . . . , k.

3) Generate φ|θ∗1, . . . , θ∗k, k from the density proportional to
k∏

j=1

g(θ∗j ;φ)

 πφ(φ)

4) Generate c|k from the density proportional to

ck Γ(c)
Γ(c + k)

πc(c)

A good review is given in MacEachern (1998).
Difficulties arise with this Gibbs sampler and others like it if

K(x; θ) and g(θ;φ) do not form a conjugate pair. The integration
needed to find q0 will not be possible. Modifications to the algo-
rithm required to cope with this problem are given in MacEachern
and Müller (1998). The only tricky aspect in this case is sampling
from the density proportional to K(x; θ) g(θ;φ), which is not surpris-
ing, as it is also required to be sampled from in an MCMC algorithm
within the parametric framework (see Wakefield et al., 1994). Fur-
ther work and references can be found in West et al. (1994), Müller
et al. (1996), MacEachern (1998).
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A sample from the predictive density function, say x∗ ∼ fn(·), is
easy to obtain. One simply takes θ∗ ∼ p(·|θ1, . . . , θn) and then takes
x∗ ∼ K(·; θ∗). Here, p(·|θ1, . . . , θn) can be thought of as
p(θn+1|θ1, . . . , θn).

3 Parametric Inference

It seems to me that there is a contradiction at the heart of Bayesian
parametric inference. Probability one is put on a family of paramet-
ric densities and then more often than not, after the data has been
observed, some sort of check is made to see whether the data is com-
patible with the choice of parametric model. Probability one was not
meant after all. Of course, checking a parametric model is a prudent
thing to do but clearly incompatible with probability one being as-
signed to the model a priori. If one knows that one is going to check
the model after seeing the data, it is an internal contradiction in the
inference process to assign probability one at the outset. See Lindsey
(1999) for further remarks on this point.

A simple resolution to this problem is provided by assigning prob-
ability one to all densities. There is then no reason to check the model.
However, parametric models are useful and the work of this section is
concerned with how Bayesian parametric inference can be performed
while prior distributions are nonparametric. The basic idea is to se-
lect a parametric model for parametric Bayesian inference while ac-
knowledging the model is wrong. From a predictive perspective there
is a straightforward way to selecting the best parametric model.

A parametric Bayesian model will provide a predictive density,
say pn(x), which is given by

pn(x) =
∫

f(x; θ) πn(θ) dθ

where πn(θ) is the posterior distribution for θ. The idea then is
to select the model which has predictive closest, in some sense, to
the predictive provided by the nonparametric model. In this respect
it can be viewed as a minimum distance estimation idea. Such a
nonparametric predictive density can be provided by the Mixture of
Dirichlet Process model described in the previous section and let this
predictive be denoted by

fn(x) =
∫

f(x) Πn(df)
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If λ indexes the models under consideration, which could be either
discrete or continuous, the preferred model, λ̂, is the one which min-
imises

d(pn(·;λ), fn(·))

Here d represents a distance between density functions and candidates
include the Hellinger distance,

d(f, g) =
{∫

(
√

f −√g)2
}1/2

and the Kullback–Leibler divergence,

d(f, g) =
∫

g log(g/f)

The work presented in Gutièrrez-Peña and Walker (2001) used the
Kullback–Leibler divergence though the derivation was via a decision
theoretic approach using the logarithmic score utility function. The
well known elements of a decision problem are as follows:

(1) a set of decisions; {λ ∈ Λ}.

(2) a set of states of nature; {f ∈ F} and F is the set of densities
with respect to the Lebesgue measure, for example .

(3) a utility function U(λ, f) evaluating the desirability of λ when
f is the true density function.

(4) a probability distribution on the space of density functions repre-
senting beliefs in the true state of nature. In a Bayesian context,
this probability is the prior Π in the no sample problem and is
Πn once the data Xn = xn has been observed.

With the Kullback–Leibler divergence, the utility of model λ assum-
ing f to be the true density function is given by

U(f, λ) =
∫

log pn(x;λ) f(x) dx

According to the decision theory, the best decision to take is the one
maximising the posterior expectation of U(f, λ), that is, maximise

U(λ) =
∫

U(f, λ) Πn(df)

=
∫

log pn(x;λ) fn(x) dx
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This maximiser is obviously the minimiser of d(pn(·;λ), fn(·)) with
d the Kullback–Leibler distance. See de Groot (1970) and Bernardo
and Smith (1994) for more information about the Bayesian theory
underpinning decision theory.

The Kullback–Leibler distance is therefore appealing to use. How-
ever there is a detail about the Kullback–Leibler divergence which
is unappealing. The desired asymptotics are as follows. We desire
d(fn, f0) → 0 almost surely, where f0 is the true density function. Un-
fortunately, if d is the Kullback–Leibler distance then the required
sufficient conditions on Π in order for the asymptotics to hold are
currently unknown. This is not the case if d is the Hellinger distance.

3.1 Hellinger consistency

Throughout this section we will assume all relevant unknowns are
densities and, for simplicity, are densities with respect to the Lebesgue
measure. Consequently we will only consider priors which are sup-
ported by such densities. Let Ω be the set of all densities with respect
to the Lebesgue measure. A Hellinger neighbourhood of the density
function g is given by

Ac
ε(g) = {f ∈ Ω : d(f, g) < ε}

where d(f, g) is the Hellinger distance between densities f and g,
given by

d(f, g) =
{∫ (√

f −√g
)2}1/2

=
{
2
(

1−
∫ √

f g

)}1/2

and use will be made of h(f) = 1
2d2(f, f0). If Πn is the sequence

of posterior distributions based on a sample of size n from f0 (with
distribution function F0), the density function generating the obser-
vations, then Bayesian consistency is concerned with conditions to be
imposed on the prior Π for which

Πn(Aε(f0)) → 0 almost surely [F0]

for all ε > 0. Here we write

Πn(A) =
∫
A Rn(f) Π(df)∫
Rn(f) Π(df)

where

Rn(f) =
n∏

i=1

f(Xi)/f0(Xi)
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and X1, X2, . . . are the data. The inclusion of
∏n

i=1 f0(Xi) in both
numerator and denominator has reasons which will become clear later
on.

For Hellinger consistency there are two conditions which a prior
Π needs to possess. These are necessary conditions but to date are
the most straightforward sufficient conditions. The first property has
become a standard requirement for both weak (see Schwartz, 1965)
and strong consistency. I will refer to it as the Kullback–Leibler
property for Π and is given by

Π{f : dK(f, f0) < δ} > 0

for all δ > 0. Here dK(f, g) =
∫

g log(g/f). Since f0 is unknown,
this Kullback–Leibler property can only be known to hold if Π{f :
dK(f, g) < δ} > 0 for all δ > 0 and all densities g.

The second property is one which all reasonable priors will pos-
sess. A prior Π is said to have property Q if

h(fnA(ε)) > ε for all n and for all ε > 0 when A(ε) = {f : h(f) > ε}.

Here fnA is the predictive density based on the posterior distribu-
tion restricted to the set A. The idea behind property Q is that the
predictive density based on a posterior restricted to the set A, which
does not include any density closer than ε to f0 in the Hellinger sense,
can never itself get closer than a distance ε to f0. This class of prior
would seem to include all reasonable ones; in fact it would be disap-
pointing to find a prior in regular use which did not have property
Q.

Theorem 3.1.1. If Π has the Kullback–Leibler property and prop-
erty Q then Πn is Hellinger consistent.

Proof. Let A = Aε = {f : h(f) > ε}. A key identity is given by∫
A

Rn+1(f) Π(df) =
fnA(Xn+1)
f0(Xn+1)

∫
A

Rn(f) Π(df)

We then define

Jn =

√∫
A

Rn(f) Π(df)

so that

E (Jn+1|Fn) = Jn

∫ √
f0 fnA = Jn {1− h(fnA)}
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where Fn = σ(X1, . . . , Xn). The numerator for Πn(A) is J2
n and the

above gives Jn < exp(−nd) almost surely for all large n and for all d <
− log(1−ε). The denominator of Πn(A) is In =

∫
Rn(f) Π(df) which

with the Kullback–Leibler property is bounded below by exp(−nc)
almost surely for all large n and for all c > 0. Then pick c < d.

While mathematically one requires both the Kullback–Leibler
property and property Q to guarantee Hellinger consistency, prac-
tically the Kullback–Leibler property is sufficient. The prior would
actually need to be quite strange for it not to have property Q.

See Barron et al. (1999) and Ghosal et al. (1999) for alternative
sufficient conditions for priors to give rise to a Hellinger consistent
sequence of posterior distributions.

3.2 Parametric prediction using fn

For a sample of size n, we assume the parametric predictive density
will be from a family of densities, say p(·;λ). The best parametric
predictive density according to our criterion will be p(·; λ̂) where λ̂
minimises d(p(·;λ), fn(·)). We assume such a minimiser is unique,
but in fact this does not really matter.

Gutièrrez-Peña and Walker (2001) use parametric predictive den-
sities obtained via Bayes theorem. There is actually no need for this.
The true predictive is given by fn and for parametric prediction one
only needs to select a parametric density from those competing den-
sities which is closest to fn.

Here fn can be the predictive from the mixture of Dirichlet process
model with the sufficient conditions to ensure the Hellinger consis-
tency of fn. See Ghosal et al. (1999) for these sufficient conditions.
From now on we will write p(·;λ) as pλ. Now, for any λ,

d(pλ, f0) ≥ d(pλ, fn)− d(fn, f0)

and d(fn, f0) → 0 almost surely and so

lim sup
n

d(pλ, fn) ≤ d(pλ, f0)

From the definition of λ̂ we have that

d(pλ, fn) ≥ d(p
λ̂
, fn)

for all n, and hence

lim sup
n

d(p
λ̂
, f0) ≤ d(pλ, f0)
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almost surely for all λ. Hence, eventually λ̂ sticks to those λ which
minimise d(pλ, f0) and if this minimiser, say λ0 exists and is unique,
then clearly λ̂ → λ0 almost surely. This is precisely the required
asymptotic result. Asymptotically, it is known that the best para-
metric model will be selected.

3.3 Minimising Hellinger distance

The aim is to minimise d(pλ, fn) which is equivalent to maximising

U(λ) =
∫ √

p(x;λ) fn(x) dx

This is not going to be easy an easy task in general. A general solution
is to maximise an approximation to U based on sampling;

Û(λ) =
1
N

N∑
j=1

√
p(Xj ;λ)
fn(Xj)

where the {Xj}N
j=1 will be available as a Markov sample from fn.

Section 2 described how to obtain such a sample.
The maximisation can then be performed on

Û(λ) =
N∑

j=1

ωj p1/2(Xj ;λ)

where
ωj =

1

N f
1/2
n (Xj)

This should be straightforward to maximise with modern computing
technology and software. The Newton-Raphson method is one possi-
ble approach and in fact there are many other routines available.

It should be pointed out that there is a lot of literature already
about the subject of minimum Hellinger distance estimation. This is
from a Classical perspective and the idea is to estimate the parameter
λ from a parametric family by minimising

d(pλ, gn)

where gn is typically a kernel density estimator. See Beran (1977)
and Lindsay (1994), for example.
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4 Further work and discussion

Here we collect some ideas for future research and discuss their merits.

4.1 Kullback-Leibler divergence

If instead of using the Hellinger distance, we use the Kullback-Leibler
divergence, the desired asymptotics become

Un(λ̂) ≡
∫

log{p(x; λ̂)} fn(x) dx →
∫

log{p(x;λ0)} f0(x) dx

almost surely, where λ0 maximises
∫

log{p(x;λ)} f0(x) dx and λ̂ max-
imises

∫
log{p(x;λ)} fn(x) dx. As mentioned previously, there are

some nice features about using the Kullback-Leibler divergence. For
example, if we take the Bayesian bootstrap, then

Un(λ) ≡ 1
n

n∑
i=1

log{p(xi;λ)}

and now λ̂ is the maximum likelihood estimator. If Λ is a finite set
then under certain regularity conditions,

Un(λ̂) →
∫

log{p(x;λ0)} f0(x) dx

almost surely, where λ0 maximises∫
log{p(x;λ)} f0(x) dx

The asymptotics concerning the convergence highlighted in the pre-
vious paragraph has not, to my knowledge, been studied. Perhaps
the most closely related work has been done by Berk (1965; 1970).

4.2 The decision space

A relevant question is what exactly is the decision space. This de-
pends on the preferences of the experimenter and so there is no right
or wrong set of decisions. On the other hand, there does not seem
to be any reason why the set should depend on the data and this
suggests the general set indexed by λ. The set Λ does not need to be
specified in full at any fixed point in time.
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An important question is when a model, say p(x; λ̂) is “good
enough” as a predictive or whether a better model should be sought;
that is, the enlargement of Λ. For example, one question could be
whether the value of Un(λ̂) is “acceptable”, or whether the dimension
of Λ could be increased leading to a new value of Un(λ̂). Does the
increase in dimension lead to a big enough increase in the utility?
These are not easy questions to answer - work is in progress.

4.3 Discussion

The message trying to emanate from this paper is that Bayesian infer-
ence is not divided between parametric and nonparametric. Bayesians
of both persuasions are placing prior distributions on sets of densities
and it is the size of these sets which distinguishes the two camps. It
seems to me that more faith and justification is required for those
restricting the sets of densities to parametric families.

There also seems a blatant contradiction at the heart of Bayesian
parametric inference involving the checking of models. This point
has been raised before (Lindsey, 1999). However, it is also obvious
that parametric models are useful and so a coherent construction
of a parametric predictive density function needs to be considered.
Logically, the prior must then be placed on a set of densities from
which the experimenter is certain the true density function can be
found, so that no model checking need take place.

The predictive density can then be decided via Bayesian decision
theory, making use of a utility function on the joint decision and state
of nature spaces. The precise density being the one from the decision
set which maximises the posterior expected utility function.
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