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Abstract. We discuss the classical efficiency criteria in density esti-
mation and propose some variants. The context is a general density
estimation scheme that contains the cases of i.i.d. or dependent ran-
dom variables, in discrete or continuous time. Unbiased estimation,
optimality and asymptotic optimality are considered. An example of
a density estimator that satisfies some suggested criteria is given.

1 Introduction

The aim of this paper is to present a general approach to density esti-
mation, discuss the usual efficiency criteria and suggest some variants
of these criteria.

The general scheme is introduced in Section 2. It contains the
cases of discrete or continuous random variables, i.i.d. or correlated,
and observed in discrete or continuous time.

In Section 3 we describe general construction of density estima-
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tors : if the empirical measure is absolutely continuous, its Radon-
Nikodym derivative is a natural estimator of density. If not, an appro-
priate smoothing leads to the classical methods (kernel, projection).

Section 4 presents the common measures of accuracy for density
estimators, discusses their drawbacks and propose some remedies.

Existence and non-existence of unbiased density estimators are
considered in Section 5. In discrete time the emphasis is on the case
where the family of all possible densities generates a reproducing
kernel space. In continuous time we give some properties of the local
time estimator.

Section 6 is devoted to asymptotics. Optimal rates in minimax
sense are briefly discussed and we examine possible substitutes for
minimax, namely maxisets and local superoptimality.

Finally, Section 7 studies a density estimator that satisfies some
of the new criteria proposed in the paper.

2 A general scheme for density estimation

Let X = (Xi, i ∈ I) be a real stochastic process defined on a
Probability space (Ω, A, P ) ([1]) and belonging to some family X
of processes. Here I is an unbounded locally compact subgroup of
(IR, +). The Xi’s take their values in (E, BE) where E is a Borel
set in IR and BE its Borel σ-field. They are equidistributed and their
common distribution µ is supposed to be absolutely continuous with
respect to a σ-finite measure λ defined on (E, BE). The density f of
µ is unknown and is a member of a family F of densities.

The problem is to estimate f from observed variables (Xi, i ∈ J)
where J ⊂ I is a compact subset of IR. We denote by m a Haar
measure over (I, BI) i.e. a measure uniform on I (cf [19]), and by
mJ a version of m such that mJ(J) = 1.

The above general scheme contains the classical models for real
density estimation. In the sequel of this paper we shall focus on three
important cases :

A I = Z, m is the counting measure over Z (m{i} = 1, i ∈ Z) ;
J = {1, . . . , n}; E is a countable subset of IR and λ is the counting
measure over E. X is a family of sequences of i.i.d. E-valued random
variables or a family of (strictly stationary) discrete time processes.
Here

f(x) = P (X0 = x) , x ∈ E. (2.1)
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B I, J , m and X are as in A but E = IR and λ is Lebesgue
measure. Thus f is the usual density of µ :

µ(B) =
∫

B
f(x) dx, B ∈ BIR. (2.2)

C I = E = IR, m = λ is Lebesgue measure, J = [0, T ] (T >
0). X is a family of, eventually strictly stationary, continuous time
random processes. Then f is again characterized by (2.2) (λ a.e.).

3 Construction of density estimators

Suppose that (i, ω) 7−→ Xi(ω) is BI ⊗A-measurable, then a natural
nonparametric estimator of µ is the empirical measure defined as

µJ(B) =
∫

J
1IB(Xi) dmJ(i), B ∈ BE (3.1)

If µJ is absolutely continuous with respect to λ, it induces the natural
density estimator (D.E.)

f0,J =
dµJ

dλ
(3.2)

In example A, f0,J := f0,n is the frequency estimator given by

f0,n(x) =
1
n

n∑
i=1

1I{Xi=x}, x ∈ E (3.3)

In example B, µJ is not absolutely continuous when in example C
existence of f0,J is not guaranteed. If it does exist f0,J := f0,T is the
so-called local time (LT) estimator characterized by the relation

1
T

∫ T

0
1IB(Xt) dt =

∫
B

f0,T (x) dx, B ∈ BIR (3.4)

The LT associated with (Xt, 0 ≤ t ≤ T ) is then

`T (x) = Tf0,T (x), x ∈ IR (3.5)
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Note that a more explicit expression for LT is ([17])

`T (x) = lim
ε↓0

1
2ε

λ {t : 0 ≤ t ≤ T, |x−Xt| ≤ ε} , λ a.e. (3.6)

Some indications concerning existence of LT are given in Section 5.
Now, if µJ is not absolutely continuous, one can smooth it by

setting

f
(H)

J (x) =
∫

E
HJ(x, y) dµJ(y), x ∈ E, (3.7)

where the function HJ is regular enough.
Two choice of HJ are popular. First

HJ(x, y) = h−1
J K

(
h−1

J (x− y)
)
; x, y ∈ IR (hJ > 0) (3.8)

where K is bounded and such that
∫
IR K(x) dx = 1.

This leads to the kernel estimator ([26]):

fK,hJ
J (x) =

∫
J

h−1
J K

(
h−1

J (x−Xi)
)

dmJ(i), x ∈ IR (3.9)

The other choice is

HJ(x, y) =
dJ∑
`=0

e`(x)e`(y); x, y ∈ E (3.10)

where (e`, ` ≥ 0) is an orthonormal system in L2 (E, BE , λ). The
associated projection estimator ([12]) is given by

fe,dJ
J (x) =

dJ∑
`=0

â`,Je`(x), x ∈ E (3.11)

where
â`,J =

∫
J

e`(Xi) dmJ(i), 0 ≤ ` ≤ dJ (3.12)

Usually one chooses a classical orthonormal system (trigonometric
functions, Hermite functions, wavelets . . . ) but it is often more con-
venient to choose a special system well adapted to F (see Section
7).

Finally note that, if f ∈ L2 (E, BE , λ), fe,dJ
J is an unbiased esti-

mator (UE) of the projection of f over the linear space
sp {e`, 0 ≤ ` ≤ dJ}.
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4 Measures of accuracy and preferences

Selection of an estimator in a class FJ of measurable density estima-
tors may be performed via a relation of preference, that is a partial
preordering on FJ ([27]).

One way to define such a relation is to use a loss L (fJ , f) based
on a norm or a semi-norm. Typical examples are

|fJ(x)− f(x)|p (x ∈ E) (4.1)

and
‖fJ − f‖p

p (4.2)

where 1 ≤ p < ∞, fJ ∈ FJ and ‖·‖p is the usual norm in Lp(λ) ([1]).
The preference associated with (4.1) is

fJ,1(x) ≺p fJ,2(x) ⇐⇒ (4.3)
(∀X ∈ X ) , EX |fJ,1(x)− f(x)|p ≤ EX |fJ,2(x)− f(x)|p

where EX denotes expectation with respect to the distribution PX of
the process X, f denotes density of Xi, fJ,1 and fJ,2 belong to FJ .

A similar relation corresponds to (4.2). Concerning the choice of
p it should be noticed that ‖·‖1 is more natural since it induces a
distance between probability measures that is invariant under some
transformations and does not depend on the dominating measure
([14]). Actually, if fJ is the density of a Probability PJ , we have ([1])

sup
B∈BE

|PJ(B)− µ(B)| = 1
2
‖fJ − f‖1 (4.4)

Now, ‖·‖2 is more convenient since it is linked to a scalar product.
This allows to decompose the error as a stochastic term and a term of
bias. Finally a more accurate measure of distance between functions
is ‖·‖∞.

On the other hand, preferences induced by (4.2) have a draw-
back : they do not take into account geometry of the space where f
lays. Thus, if for example p = 2, a more precise (but more intricate)
preference should be :

fJ,1 ≺[2] fJ,2 ⇐⇒ (∀X ∈ X ) ,
(
∀ g ∈ L2(λ)

)
,

EX

(
〈fJ,1 − f, g〉2

)
≤ EX

(
〈fJ,2 − f, g〉2

) (4.5)
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where 〈·, ·〉 is the scalar product in L2(λ). If EX ‖fJ,i‖2
2 < ∞ (i =

1, 2), (4.5) is equivalent to

fJ,1 ≺[2] fJ,2 ⇐⇒ (∀X ∈ X ) , Γ(X)

fJ,1−f ≤ Γ(X)

fJ,2−f (4.6)

where Γ(X)

fJ,i−f is the operator of order 2 associated with fJ,i − f ,
defined by

Γ(X)

fJ,i−f (g) = EX (〈fJ,i, g〉 (fJ,i − f)) , g ∈ L2(λ)

and ≤ is the classical ordering on the class of symmetric operators
([30]).

Despite the operator of order 2 is the natural extension of the
finite dimensional matrix of order 2, it scarcely appears in literature
concerning density estimation. This is really surprising even if the
qualitative character of ≺[2] is not easy to handle. A result using Γ
appears in Section 7.

Another aspect that is often neglected is the fact that a good
density estimator must mimic the shape of the curve associated with
f . This property is not guaranteed by a small integrated quadratic
error, see Figure 1 where the empirical integrated quadratic error is
small but the shape of curve is not restored. In this context ‖·‖∞ is
interesting as well as

‖f − fJ‖2,∞ = ‖f − fJ‖∞ +
∥∥f ′ − f ′J

∥∥
∞ +

∥∥f ′′ − f ′′J
∥∥
∞ (4.7)

Concerning optimality it is well known that, in many situations,
an exact optimal D.E. does not exist. An outstanding exception is
the case where an unbiased estimator is available (see Section 5).

Now a weak form of optimality is minimaxity. Recall that a
D.E. fM,J is said to be minimax if ([27])

min
fJ∈FJ

sup
X∈X

EX L (fJ , f) = sup
X∈X

EX L (fM,J , f) (4.8)

In [32], Wertz has shown existence of a minimax D.E., in the i.i.d.
case, with respect to a special Banach space type loss. Unfortunately
his proof uses compacity arguments, so that explicit construction of
fM,J is not possible in general.
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Figure 1: L.T.D.E. for Gaussian process (simulation, [25])

5 Unbiased density estimators

Unbiasedness is a property that generates optimal estimators via
completeness at least in the i.i.d. case ([11]).

Recall that fJ is an unbiased density estimator (UDE) if

(∀X ∈ X ) , EX fJ(x) = f(x) (λ a.e.) (5.1)

If an UDE does exist, f is said to be estimable.

5.1 Non-existence of UDE in the general case

In his famous pioneer work ([26]), Rosenblatt showed that, in the
i.i.d. case, a UDE cannot exist if F is the class of all continuous real
densities.

His proof is based on the following arguments : if fn is UDE the
associated measure provides a UE for the distribution function. By
completeness this UE is the empirical distribution function Fn. This
is a contradiction since Fn is not absolutely continuous. Thus the key
of the proof is non-absolute continuity of the empirical measure with
respect to Lebesgue measure.

It is also possible to explain non-existence of UDE by using the
fact that f(x) is a local parameter. We refer to [11], chapter II for
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details. As an application we have the following : if F is the family
of densities that have regularity r in a neighbourhood Vf of x, a UE
for f(x) does not exist. Here we have r ≥ 0 and ‘f has regularity r’
means that the derivative f [r] does exist in Vf and satisfies a Holder
condition of order r− [r] (resp. is bounded and continuous if [r] = r).

5.2 Existence of UDE in special cases

We now turn to situations where construction of UDE is feasible.
The following statement furnishes necessary and sufficient condi-

tions for existence of UDE if #J = 1.

Proposition 5.2.1. ([11])
1) If F contains the densities [λ(B)]−11IB, B ∈ BE (0 < λ(B) <

∞) then f is estimable if and only if λ is purely atomic.
2) If F ∈ L2(λ) then there exists a UDE f1(X1, ·) such that

f1(·, x) ∈ sp(F), x ∈ E, if and only if sp(F) equipped with the scalar
product of L2(λ) is a reproducing kernel prehilbertian space.

The first part of this Proposition characterizes model A. We give
two examples of applications of the second part :

a) If sp(F) is finite-dimensional, f is estimable and f1(·, ·) is the
reproducing kernel of sp(F).

b) In model B, if F is the family of continuous square integrable
densities with support of their Fourier transform included in [−1

2 , 1
2 ]

then

f1(x) =
sin ((X1 − x)/2)

(X1 − x)/2
, x ∈ IR (5.2)

This example appears in [20].
We now turn to model C. In this case, the local time estimator is

UDE. More precisely it is easy to establish the following :

Lemma 5.2.1. ([7]) Let X = (Xt, 0 ≤ t ≤ T ) be a measurable
process such that PXt

= µ, 0 ≤ t ≤ T , and that admits a local time
`T .

Then, µ is absolutely continuous with density f and EX

(
`T (·)

T

)
is a version of f .

Concerning existence of local time, it is ensured by the follow-
ing conditions ([17]).
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a) If X has absolutely continuous sample paths then

P
(
X ′(t) = 0

)
= 0 for almost all t (5.3)

is necessary and sufficient for existence of LT.
b) X admits a LT satisfying `T ∈ L2 (λ⊗ P ) if and only if

lim inf
ε→0

1
ε

∫∫
[0,T ]2

P (|Xt −Xs| ≤ ε) dsdt < ∞ (5.4)

This condition is connected with irregularity of sample paths (see
[10]).

In order to study some properties of LTE we now introduce a
condition slightly stronger than (5.4) :

H. The density fs,t(y, z) of (Xs, Xt) is defined and measurable
over (Dc ∩ [0, T ]2) × G where G is an open neighbourhood of D =
{(x, x), x ∈ IR}, and the function

FT (y, z) =
∫∫

[0,T ]2
fs,t(y, z) dsdt (5.5)

is finite in a neighbourhood of D and continuous at each point of D.

We then have

Proposition 5.2.2. ([7]) If H holds, X has a LT such that

lim
h→0

sup
a≤x≤b

EX

∣∣∣fK,h
T (x)− f0,T (x)

∣∣∣ = 0, a < b (5.6)

K ∈
{
K : K ≥ 0,

∫
K = 1, K a.e. continuous, with compact support

}
.

Moreover EX (f0,T ) is a continuous version of f and, if fs,t =
f|t−s|, 0 ≤ s, t ≤ T , variance of f0,T (x) is

VX f0,T (x) =
2
T

∫ T

0

(
1− u

T

) (
fu(x, x)− f2(x)

)
du, x ∈ IR (5.7)

Note that (5.6) signifies that the kernel estimator is an approxi-
mation of f0,T . A similar result may be obtained for the projection
estimator.
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It is noteworthy that f0,T is accurate if sample paths are irregular.
If not, (5.3) and lemma 5.2.1 ensure existence and unbiasedness of f0,T

but in general this LTE has the non-attractive property VX f0,T (x) =
∞ !

6 Asymptotics

Asymptotics gives information concerning selection of a ‘good’ den-
sity estimator but this point of view has some limitations. As ob-
served by Van der Vaart ([31]) : ‘Although asymptotics is both prac-
tically useful and of theoretical importance, it should not be taken for
more than what it is : approximations’.

In the general scheme presented in Section 2 asymptotics is ex-
pressed by m(J) →∞ where m is a fixed version of Haar measure.

In this context efficiency is evaluated by rates of convergence as-
sociated with criteria described in Section 4.

6.1 Asymptotic quadratic error

In this subsection we briefly indicate some optimal rates (in minimax
sense) in mean square. Such a rate, say vJ , is defined by :

lim
m(J)→∞

inf
fJ∈FJ

sup
X∈X

v−1
J EX (fJ(x)− f(x))2 > 0, x ∈ IR (6.1)

and
sup
X∈X

EX (fM,J − f(x))2 = O (vJ) , x ∈ IR (6.2)

as m(J) → +∞ and for some fM,J ∈ FJ .
In case A the optimal rate is vJ := vn = n−1, when in case B

with i.i.d. observations it is well known that vn = n−2r/(2r+1) where
r is regularity of f , (see e.g. [29]). This rate may be extended to
strong mixing mixing processes under some conditions (see [7]). If f

is analytic the rate turns to be
log n

n
([18], [20]).

Concerning model C, vJ := vT depends on smoothness of sample
paths of the observed process. If sample paths are regular enough
vT = T−2r/(2r+1) ([6], [7]). Now irregularity of sample paths provides
additional information that allow to improve rates. In order to spec-
ify that improvement we introduce the following condition:
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H’. lim sup
T→∞

1
T

∫∫
[0,T ]2

[fs,t(x, x)− f2(x)] dsdt < ∞

Proposition 6.1.1. ([7]) If H and H’ hold

VX f0,T (x) = O
(
T−1

)
(6.3)

Note that this ‘superoptimal’ rate occurs as soon as f is continu-
ous. Thus regularity of f does not influence rate of f0,T .

The same exceptional rate takes place for fK,hT
T but, in order

to control bias, one must choose hT according to r (cf [5], [7]).
Minimaxity of T−1 is obtained in [?]. Moreover a family of inter-

mediate minimax rates of the form (log T )a T−b (a > 0, b > 0) hold
for appropriate families of processes (cf [3]).

Finally, it can be proved that suitable sampling schemes retain
the various rate (cf [4] and [7]).

Results of the same type can be derived for EX ‖fJ − f‖2
2 ([23],

[28]) and ‖fJ − f‖∞ ([7], [28]).

6.2 Adaptive estimators

If regularity of r is unknown one may employ procedures that, in a
way, simultaneously estimate r and f (see [24]). In the i.i.d. case
these ‘adaptive estimators’ are asymptotically minimax, eventually
within a logarithmic term (see e.g. [15]). This kind of results is
of theoretical importance and leads to nice mathematics. However
their usefulness is somewhat restricted since densities that appear in
practice are in general C∞ or piecewise-C∞.

Now, in continuous time, the situation is a bit different: fK,hT
T

and fe
T require adaptivity (see e.g. [13]) whereas the LTE achieves

the best rate as soon as f is continuous, under assumptions H and
H’ (Proposition 6.1.1). Here smoothness of sample paths influences
rates. An adaptive estimator with respect to that smoothness appears
in [2].

6.3 Substitutes for minimax

Critics against the pessimistic ‘minimax principle’ are well known.
For exemple, P. Hall in the discussion paper [21] claims : ‘ If we
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organized our lives so that we performed as well as possible the worst
of circumstances, but made a mess of things the rest of time, we’d
not get very far. So too it is with statistical estimators’.

G. Kerkyacharian and D. Picard ([21]) have recently suggested to
substitute for the minimax principle the notion of maxiset.

The maxiset of a given density estimator is the set of densities
over which the estimator attains a specific rate of convergence.

Continuous time provides an example of maxiset: in the context
of our general scheme ‘the set of densities’ should be replaced by
‘the set of processes’. For example, the maxiset of f0,T is the set of
processes satisfying H and H’, when for fK,hT

K an additional condition
appears: f must have regularity r, provided hT ' T−1/2r.

Another remedy to minimax should be selection of a privileged
small subset F0 of densities. A ‘good’ estimator would achieve a
superoptimal rate (i.e. better than the optimal rate over F) over
F0 dense in F (local superoptimality) and a quasi-optimal rate
over F −F0. The example studied in the next Section illustrates this
strategy.

7 An example

We now consider an example of density estimator that illustrates
some ideas suggested above.

Let (Xi, i ∈ N) be a sequence of i.i.d. real random variables with
values in (E, BE , λ) where E = (a, b) (−∞ ≤ a < b ≤ ∞) and λ is a
Probability measure.

Let e0 = 1, e1, e2, . . . be a bounded orthonormal basis of L2(λ)
supposed to be infinite dimensional and separable. We suppose that
f belongs to L2(λ) and define the estimator

f̂n =
d̂n∑
j=0

âjnej (7.1)

where âjn =
1
n

n∑
i=1

ej(Xi), 0 ≤ j ≤ dn and

d̂n = max

{
j : 0 ≤ j ≤ dn, |âjn| ≥ c

(
log n

n

)1/2
}

(7.2)
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where c > 0 and the integer dn are selected by the Statistician.
Slightly different estimators appear in [16] and [15].

If dn → ∞ and
dn

n
→ 0 a suitable choice of c implies that d̂n is

asymptotically close to an optimal truncating index (cf [8], [9]). Thus
f̂n is an adaptive estimator.

Now set aj(f) =
∫

ejf dλ, j ≥ 0, f ∈ L2(λ);

F ′
0(k) =

{
f : f ∈ L2(λ), ak(f) 6= 0, aj(f) = 0, j > k

}
and

F ′
0 = ∪∞k=0F ′

0(k)

then F ′
0 is dense in L2(λ) and we have

nC
f̂n−f

N−→ C(
∑k

j=0 ej(X0)ej−f), f ∈ F ′
0(k), k ≥ 0 (7.3)

where N stands for convergence in nuclear norm ([30]), hence

nEX

∥∥∥f̂n − f
∥∥∥2

2
→

k∑
j=0

(∫
e2
jf − a2

j (f)
)

, f ∈ F ′
0 (7.4)

Moreover the maxiset of f̂n associated with the superoptimal rate
n−1 is exactly F ′

0.
On the other hand∥∥∥f̂n − f

∥∥∥
∞

= O

((
log log n

n

)1/2
)

a.s., f ∈ F ′
0 (7.5)

Now it can be established that, if

F = {f : |aj(f)| ≤ ϕ(j), j ≥ 0}

where ϕ(j) ↓ and
∞∑

j=0
ϕ2(j) < ∞, then

sup
f∈F

EX

∥∥∥f̂n − f
∥∥∥2

2
= O (vn log n) , f ∈ F − F0 (7.6)

where F0 = F ∩ F ′
0 and (vn) is the minimax rate associated with

a family of linear estimators (cf [9]). A similar result holds for∥∥∥f̂n − f
∥∥∥
∞

.
Finally, according to the idea given in Section 6, one may choose

a given sequence (g`, ` ≥ 0) of densities and construct (e`, ` ≥ 0) by
orthonormalization. If (e`) is uniformly bounded, the associated es-
timator f̂n has the rate n−1 over the convex set F ′

0 generated by
(g`, ` ≥ 0).
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