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Abstract. This paper develops default priors for Bayesian analysis
that reproduce familiar frequentist and Bayesian analyses for models
that are exponential or location. For the vector parameter case there
is an information adjustment that avoids the Bayesian marginaliza-
tion paradoxes and properly targets the prior on the parameter of
interest thus adjusting for any complicating nonlinearity; the details
of this vector Bayesian issue will be investigated in detail elsewhere.
As in wide generality a statistical model has an inference component
structure that is approximately exponential or approximately loca-
tion to third order, this provides general default prior procedures that
can be described as reweighting likelihood in accord with a Jeffreys’
prior based on observed information.

Two asymptotic models, that have variable and parameter of the
same dimension and agree at a data point to first derivative con-
ditional on an approximate ancillary, produce the same p-values to
third order for inferences concerning scalar interest parameters. With
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some given model of interest there is then the opportunity to choose
some second model to best assist the calculations or best achieve cer-
tain inference objectives. Exponential models are useful for obtaining
accurate approximations while location models present possible pa-
rameter values in a direct measurement or location manner. We de-
rive the general construction of the location reparameterization that
gives the natural parameter of the location model coinciding with
the given model to first derivative at a data point; the derivation is
in algorithmic form that is suitable for computer algebra. We then
define a general default prior based on this location reparameteriza-
tion; this gives third order agreement between frequentist p-values
and Bayesian survivor values; in the vector case however, an adjust-
ment factor is needed for component parameters that are not linear
in the location parameterization. The general default prior can be
difficult to calculate. But if we choose to work only to the second
order, a Jeffreys’ prior based on the observed information function
gives second order agreement between the frequentist p-values and
Bayesian survivor values; again adjustments are needed for parame-
ters nonlinear in the vector location parameter; the adjustment is a
ratio of two nuisance information determinants, one for the nuisance
parameter as given and one for the locally equivalent linear nuisance
parameter.

Preamble

A location model f(y−θ) on the real line is clearly the most basic and
important model in statistics, one for which all inference approaches
should be in agreement. Elementary statistics texts however typically
restrict attention to the special case of normal densities f(e) for the
error e = y− θ and then develop a wealth of techniques based on fea-
sibility for that special case. A few advanced monographs of course
do present the inference theory for the general error case, but the the-
ory and methods are certainly not widely available. In a parallel way
various foundational approaches to statistics start with a model-data
unit, where the model together with the observed data are viewed as
the primary input ingredients for inference; and in practice this does
not include any particular topology for the parameterization.

Recent likelihod theory shows that the terminal inference model
is locaton to the second order and location to the third order in the
special model data sense just described. We exmamine the form of
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this local model structure and show that Bayesian and frequentist
methods are in agreement for linear parameters and that an easily
constructed adjustment gives agreement more generally. Thus loca-
tion model structure far from being a specialized anomaly is in fact
the statistical substance of parameter-variable relationship.

Our theme examines this general location parameterization and
the related equivalence of Bayesian and frequentist theories.

1 Introduction

Consider a continuous statistical model f(y; θ) with variable y and
parameter θ both of dimension p and with asymptotic properties
inherited from some antecedent model whose dimension n becomes
large. Let `(θ; y0) = log f(y0; θ) − log f(y0; θ̂) be the log-likelihood
function coming from a data value y0, where θ̂ is the maximum like-
lihood estimate.

For a specific data value y0 we develop in this paper a location
reparameterization β(θ) that allows third order inference to be pre-
sented as if the original model were location with canonical parameter
β(θ). This is developed in Sections 3, 4, and Section 2 provides some
needed background. The location reparameterization is a natural pa-
rameterization for a flat prior for default or nonsubjective Bayesian
analysis. Section 5 discusses this third order default prior (5.2) that
gives third order agreement between frequentist and Bayesian proce-
dures, and Section 6 discusses a second order default prior (6.1) that
gives second order frequentist-Bayes agreement and is much easier to
calculate. Section 7 provides a brief overview.

Recent likelihood results show that for third order inference from
a data point y0 we need to have available only the observed likelihood
`(θ) and observed likelihood gradient ϕ(θ) where

`(θ) = `(θ; y0) , ϕ(θ) =
∂

∂y
`(θ; y)|y0 (1.1)

Thus any model that provides a first derivative approximation to the
likelihood for some given model near a data point y0 will lead to the
same inference results. We refer to such a model that provides a first
derivative likelihood approximation as a tangent model to the given
model at the data point y0. For a recent summary of the background
methodology see Fraser, Reid & Wu (1999).
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For the scalar case with p = 1 the asymptotic form of a model at
a data point y0 was investigated (Fraser & Reid, 1993) by a Taylor
expansion of log f(y; θ) about y0 and the corresponding θ̂(y0) = θ0.
The theory shows that third order inference depends only on the
observed likelihood

`(θ; y0) = log f(y0; θ)− log f(y0; θ0) (1.2)

and the observed likelihood gradient

ϕ(θ; y0) =
∂

∂y

{
log f(y; θ)− log f(y; θ̂(y))

}
|y0 (1.3)

More specifically, it shows that `(θ) and ϕ(θ) fully determine the third
order model except for a fourth order Taylor coefficient, quadratic in
variable and quadratic in parameter. And more importantly, it shows
that the p-value or probability left of the data is independent of the
quadratic-quadratic fourth order coefficient. These results thus es-
tablish that the third-order p-value for testing any chosen parameter
value is dependent only on `(θ) and ϕ(θ). An exponential model
with the given `(θ) and ϕ(θ) was developed in Fraser & Reid (1993),
and related results were obtained in Cakmak et al (1995, 1998). The
model is third order and has the form

fE(y) =
c

(2π)p/2
exp

{
`{θ(ϕ)}+ ϕ′(y − y0)

}
|̃|−1/2 (1.4)

where ̃ is the information for ϕ obtained from the observed likeli-
hood `{θ(ϕ)}, c = 1 +O(n−1) is constant to order O(n−3/2), and for
discussion now p = 1 and the bars on ̃ are not needed. This extends
Barndorff-Nielsen’s (1983) p∗ formula in the sense that p∗ gives the
density at a point y0 with related `(θ) while fE gives the density ex-
pression for a general y as propagated in an exponential manner from
y0 using the given `(θ) and ϕ(θ); in structure fE can be viewed as
a first derivative extension of the p∗ formula at the given point. We
can view ϕ(θ) as the canonical parameter of the fitted exponential
model at the data point y0.

A location model with the given `(θ) and ϕ(θ) was developed in
Cakmak et al (1995, 1998). The model as developed is third order
and has the form

fL(y) =
c

(2π)p/2
exp{`{θ(β − y + y0)}|̂0|−1/2 (1.5)
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where β(θ) is the location parameter and when p = 1 is given as

β(θ) =
∫ θ

θ0
− `θ(θ)

ϕ(θ)
dθ (1.6)

where `θ(θ) = (∂/∂θ)`(θ) is the score parameter and ϕ(θ) is the
canonical exponential parameterization. Thus we view β(θ) as the
canonical parameter of the fitted location model at the data point
y0. It is straightforward to show that if the initial model is location
f{x−γ(θ)} and has continuous derivatives then the extracted β(θ) is
some version of the location parameter, that is, it is an affine function
of γ.

The exponential parameterization is important for approximate
inference calculations with a data point y0 (Fraser, Reid & Wu, 1999);
the location parameterization is important for inference presentations
from data y0 (Fraser, Reid & Wu, 1998) and provides the basis for
default Bayesian priors.

Now consider the vector parameter case with general dimension
p. Formula (1.3) is valid for vector y and θ and gives the canonical
exponential parameterization ϕ(θ) for the approximating exponential
model at the data point y0. If the dimension of y is greater than that
of θ then the differentiation in (1.1) and (1.3) needs to be in directions

V = (v1, ..., vp) (1.7)

tangent to an approximate ancillary (Fraser & Reid, 2000). The
corresponding tangent exponential model is given by (1.4). For in-
ference results based on this see for example, Fraser & Reid (1995),
and Fraser, Reid & Wu (1999).

Also for the vector case, an approximating location model would
have the form (1.5) and would allow the presentation of third order
inference results as if the original model were location with canonical
parameter β(θ); for some discussion see Fraser, Reid & Wu (1998).
The existence of β(θ) to the third order was established in Cakmak et
al (1994); in Sections 3 and 4 we develop a Taylor series expansion for
β(θ) in terms of the observed likelihood `(θ) and observed likelihood
gradient ϕ(θ). This is the vector parameter version of (1.6).

2 Background: The scalar case

Consider a statistical model f(y; θ) with scalar variable and parame-
ter and asymptotic properties as some external parameter n becomes
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large: we assume that log f(y; θ) is O(n) and that the maximum like-
lihood value θ̂ is unique and is Op(n−1/2) about θ as discussed for
example in DiCiccio, Field & Fraser (1990).

Fraser & Reid (1993) examined the two dimensional Taylor expan-
sion of `(θ; y) = log f(y; θ) about (θ̂(y0), y0), where y0 is an arbitrary
point, typically an observed data point and θ̂(y0) = θ0 is the corre-
sponding maximum likelihood value. Further results on this and an
expansion about (θ0, ŷ(θ0)) were examined by Cakmak et al (1995,
1998), where ŷ(θ0) is the maximum density value for some chosen
parameter value θ0. We will be concerned with the first type of ex-
pansion here and let aij designate the Taylor coefficient for the ith
derivative with respect to θ and the jth derivative with respect to y
taken at the expansion point:

log f(y; θ) = Σaij(θ − θ0)i(y − y0)j/i!j! (2.1)

The log density is examined in a moderate deviations range about
the expansion point by using standardized coordinates θ̃, ỹ,

θ̃ = (θ − θ0)̂1/2 , ỹ = (y − y0)k̂̂−1/2 (2.2)

where ̂ = −`θθ(θ0, y0) is the observed information, k̂ = `θ;y(θ0; y0) is
the observed gradient of the score, and `(θ; y) here is taken to be the
log density, log f(y; θ), with subscripts denoting differentation. The
asymptotic properties show that the new coefficients ãij are O(1) with
i+ j = 2, are O(n−1/2) with i+ j = 3, and are O(n−1) with i+ j = 4;
we neglect terms of order O(n−3/2) and higher. For simplicity of
notation we choose to write these modified variables and coefficients
as just θ, y, and aij .

A reexpression of the original θ and y has the following pattern
in terms of the standardized variables

θ̃ = θ+b1θ2/2n1/2 +b2θ3/6n , ỹ = y+c1y2/2n1/2 +c2y3/6n (2.3)

where the initial coefficients are unity as a consequence of (2.2). The
reexpressions can be chosen to give special structure to the reex-
pressed model. For exponential model and for location model struc-
ture appropriate transformations give the following two matrix arrays
of Taylor coefficients aij :

a+
3α4−5α2

3−12c

24n

−α3
2
√

n
−{1+

α4−2α2
3−5c

2n
} α3√

n

α4−3α2
3−6c

n

0 1 0 0 −
−1 0 c

n
− −

−α3√
n

0 − − −
−α4

n
− − − −

 (2.4)



Location Reparameterization and Default Priors ... 61
a+

3α4−5α2
3−12c

24n
0 −{ 1−5c

2n
} α3√

n

−α4−6c

n

0 1
−α3√

n

α4
n

−
−1

α3√
n

−α4+c

n
− −

−α3√
n

α4
n

− − −
−α4

n
− − − −

 (2.5)

where a = −(1/2) log 2π. As the reexpressions (2.3) of the given
model are different for the two model types, we have that the struc-
ture parameters α3, α4, and c are in general different in (2.4) and
(2.5): in the first case α3 and α4 describe latent exponential struc-
ture and c records departure from exponential form; and in the second
case α3 and α4 describe latent location structure and c records de-
parture from location form. Also we have the remarkable fact that in
each case the first row is determined by the remaining rows, an im-
portant property underlying the development of the approximations
(1.4) and (1.5); in other words a density is available from a likelihood
inversion, a rather important extension of the more familiar Fourier
or saddlepoint inversion.

The reparameterization that gives the exponential approximation
(1.4) is available from the second column of (2.4) as the first derivative
of likelihood with respect to y:

ϕ(θ) =
(
∂

∂y
`(θ; y)− ∂

∂y
`(θ̂; y)

) ∣∣∣∣∣
y0

this agrees with the expression in (1.1) and the second term here is to
accommodate the present definition of `(θ; y) which need not include
the standardization at the maximum likelihood value θ̂(y).

In the scalar parameter case, the reparameterization that gives
the location approximation (1.5) is recorded as (1.6); for details see
Cakmak et al (1995, 1998).

3 Background: Multivariate case

Consider a statistical model f(y; θ) with p-dimensional variable and
parameter, and asymptotic properties as described in Section 2. We
consider a Taylor expansion of `(θ; y) = log f(y; θ) about (θ0, y0),
where θ0 = θ̂(y0) is the maximum likelihood value corresponding to
a data value y0 of interest. This gives

`(θ; y) = a+ai(yi−y0
i )+aij(θi−θ0

i )(θj−θ0
j )/2!+aj

i (θi−θ0
i )(yj−y0

j )+· · ·
(3.1)
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where tensor type summation is assumed over {1, 2, . . . , p} and for
example ak

ij = (∂/∂θi)(∂/∂θj)(∂/∂yk)`(θ; y)|(θ0,y0). Note the change
of notation from the preceding section where i gave the order of a
derivative while now it designates a coordinate of θ or y. The coeffi-
cients can be recorded as a general matrix type array

a ai aij aijk · · ·
0 ai

j aij
k

...

aij ai
jk

...
...

aijk
...

...
...

...
...

...
...


(3.2)

following Cakmak et al (1994).
The log density is examined in a moderate deviations region by

using location-scale standardized coordinates

θ̃i = cij(θj − θ0
j ) , ỹi = dij(yj − y0

j ) (3.3)

chosen so that the new second order coefficients in columns 1 and 2
have Kroneker delta or identity matrix form,

ãij = −δij , ãi
j = δi

j (3.4)

It follows that the new coefficients with three indices are O(n−1/2)
and with four indices are O(n−1), as in Section 2; here we incorporate
this dependence within the coefficients. The resulting log-likelihood
ratio function at y = 0 is

`(θ) = −1
2
δijθiθj + aijkθiθjθk/6 + aijk`θiθjθkθ`/24 + . . . (3.5)

and the gradient of this log-likelihood ratio at y = 0 has α-th coor-
dinate

`α(θ) = δα
j θj + aα

jkθjθk/2 + aα
jk`θjθkθ`/6 + . . . (3.6)

In these expressions we have again omitted the tildes for ease of nota-
tion. Also the expressions (3.5) and (3.6) are based on log-likelihood
ratio

`(θ; y) = log f(y; θ)− log f(y; θ̂) (3.7)

which is consistent with our general concern as to how likelihood itself
determines an underlying density and model; in particular there is
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no constant term in the expression (3.6) and this is a consequence of
having a particular mode of expression for the variable near zero.

Nonlinear reexpressions of the initial parameter and of the initial
variable have the form indicated by (2.3) when presented in terms
of the location scale standardized variables. Reexpressions can then
in turn be chosen to give for example an approximating exponential
model analogous to (2.4). We do not develop here the coefficients of
the corresponding Taylor array but do note that the related exponen-
tial model which has the c-type array equal to zero can be written
generally as (1.4) in terms of the original variables; the canonical
parameter is given by (1.3) and the observed log-likelihood by (1.2).

Our primary interest is the location model approximation analo-
gous to (2.5) which then has the form (1.5). In particular we seek the
location reparameterization β(θ) that gives the vector generalization
of (1.6).

For this we follow Cakmak et al (1994) and examine to what
degree the statistical model departs from being of location model
form. In particular, if the model as it stands is location, say `(θ; y) =
log f(y − θ), then the first derivative property at y = 0 is `θ(θ; 0) +
`;y(θ; 0) = 0. Accordingly for a general model we define a nonlocation
measure at y0 by

d(θ) = {d1(θ), . . . , dp(θ)}′ (3.8)

where di(θ) = `i(θ) + `i(θ) and

`i(θ) =
∂

∂yi
`(θ; y)|y0 , `i(θ) =

∂

∂θi
`(θ; y)|y0 (3.9)

when expressed in terms of the standardized coordinates (3.3) with
(3.4) . It follows that likelihood ratio describes a location model
if and only if d(θ) ≡ 0 for the standardized model satisfying (3.4)
based on (3.3). We do note that the sandardization (3.4) does match
particular y coordinates with corresponding θ coordinates.

As an illustration of the nonlocation discrepancy functions d(θ)
we record some steps in the analysis of an example (Fraser et al, 1994)
that does have an underlying location model.

Example 3.1. Consider independent y1, . . . , yn where yi has den-
sity f(yi; θi) = exp{−yiθi + log θi}, and where mean life

E(yi) = θ−1
i = exp{α+ β(xi − x̄)}
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is assumed to be log linear in α and β and where x is a concomitant
variable. The observed log likelihood is

`(α, β) = −Σ exp{−α− β(xi − x̄)}y0
i − nα

and the score parameters are

`1(α, β) = Σ exp{−α− β(xi − x̄)}y0
i − n ,

`2(α, β) = Σ exp{−α− β(xi − x̄)}y0
i (xi − x̄)

Tangent directions to a second order ancillary are obtained as

dy
dα

|(y0,θ̂0) = (y0
1, . . . , y

0
n)′ ,

dy
dβ

|(y0,θ̂0) = {y0
1(x1 − x̄), . . . , y0

n(xn − x̄)}′

from a full dimensional pivotal quantity (z1, . . . , zn), where zi = θiyi,
and dyi/dα = y0

i and dyi/dβ = y0
i (xi − x̄) are calculated for fixed

pivotal at (y0, θ̂0). Then as d`(θ; y)/dyi = − exp{−α− β(xi − x̄)} we
obtain

ϕ =
∂`

∂V ′ |y0 = −Σ exp{−α− β(xi − x̄)} ·
(
y0

i

y0
i (xi − x̄)

)

and(
`1(α, β)
`2(α, β)

)
= ϕ(α, β)− ϕ̂(α, β)

= −Σ exp{−α− β(xi − x̄)}
(
y0

i

y0
i (xi − x̄)

)
+

(
n

0

)

We then have immediately that the discrepancies are

d1(θ) = `1(θ) + `1(θ) = 0
d2(θ) = `2(θ) + `2(θ) = 0

where the scale adjustment indicated for (3.4) is implicit in the model.
This shows the existence of a local location parameterization. Of
course here the full model is location in α and β and accordingly the
conditional model is also location in α and β, as just verified by the
current methods.
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4 Location reparameterization

Consider further the asymptotic model f(y; θ) with p dimensional
parameter and p dimensional variable; also we continue with the re-
definition of `(θ; y) = log f(y; θ) − log f(y; θ̂) as log-likelihood ratio
and use the location scale standardized version as obtained from the
chosen transformations (3.3) with (3.4) .

We seek a reparameterization β(θ) for the statistical model f(y; θ)
so that the model has location form with respect to β(θ) to first
derivative at a data point y0. For this in Section 3 we defined a
nonlocation measure d(θ) based on the first derivative structure of
the model at the point y0.

If the model is location at y = y0 = 0 then d(θ) in (3.8) is equal to
zero. More generally we seek a transformation, typically nonlinear, of
θ to say θ̃ = β(θ) so that a nonnull d(θ) for the initial model changes
to a null d(θ) when recalculated for the model expressed in terms of
the new θ̃. For this we examine the form of the nonlocation measure
as expanded about the centered maximum likelihood value θ̃0 = 0.
For α in {1, . . . , p} we have the α-th score and α-th gradient

`α(θ) =
∂`

∂θα
|y=0 = −δαjθj + aαjkθjθk/2 + aαjk`θjθkθ`/6 + . . . (4.1)

`α(θ) =
∂`

∂yα
|y=0 = δα

j θj + aα
jkθjθk/2 + aα

jk`θjθkθ`/6 + . . . (4.2)

where we have incorporated the usual n−1/2, n−1, . . . into the co-
efficients. It follows that the nonlocation measure (3.8) has α-th
coordinate given by

dα = (aαjk + aα
jk)θjθk/2 + (aαjk` + aα

jk`)θjθkθ`/6 + . . .

= dα
jkθjθk/2 + dα

jk`θjθkθ`/6 + . . . (4.3)

where say dα
jk = aαjk + αα

jk is a sum of a first column element and a
second column element one row higher.

Now consider a quadratic reparameterization

θi = θ̃i + bijkθ̃j θ̃k/2 (4.4)

that can make the recalculated quadratic discrepancy dα
jk = 0. For

this we modify the methods in Cakmak et al (1994) so as to obtain a
pattern that can be generalized to eliminate the higher order terms
in (4.3).
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If the initial parameter θ is replaced by the quadratic reexpression
(4.4), then the new aαjk is

aαjk − bαjk − 2bkαj

and the new aα
jk is

aα
jk + bαjk

with the result that the new dα
jk is

dα
jk − 2bkαj (4.5)

We show that the bkαj can be chosen so that the new quadratic dis-
crepancy is zero.

To show that the equations (4.5) are not quite as trivial as they
might first appear in tensor notation we record representatives. If
{α, j, k} = {1, 1, 1} we obtain

d1
11 = 2b111

which gives b111 = d1
11/2 and then more generally gives

biii =
1
2
di

ii (4.6)

If {α, j, k} = {1, 1, 2} we obtain

d1
12 = b112 + b211 , d2

11 = 2b112

which gives b112 = d2
11/2 and b211 = d1

12 − d2
11/2, and then more gener-

ally gives
biij = dj

ii/2 , bjii = di
ij − dj

ii/2 (4.7)

If {α, j, k} = {1, 2, 3} we obtain

d1
23 = b213 + b312 , d2

13 = b123 + b312 , d3
12 = b123 + b213

which can be solved giving more generally for different i, j, k

bijk =
1
2
(dj

ik + dk
ij − di

jk) (4.8)

Note reassuringly here that (4.8) also reproduces (4.6) and (4.7) by
letting various indexes be equal. It is of interest as background for
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the higher order terms to record the Jacobian determinants for the
successive groups of linear equations

|2| = 2 ,
∣∣∣∣ 1 1
2 0

∣∣∣∣ = −2 ,

∣∣∣∣∣∣
0 1 1
1 0 1
1 1 0

∣∣∣∣∣∣ = 2

We have shown that a quadratic representation from θ to a can-
didate β(θ) = θ̃ can eliminate the quadratic terms in the nonlocation
measure. Now suppose that an (m − 1)st order reparameterization
has eliminated the (m − 1)st order terms with preceding terms al-
ready eliminated. Then for a given parameterization θ we have that
the discrepancies

dα
j1j2 = 0, . . . , dα

j1···jm−1
= 0 (4.9)

and we seek an mth order reparameterization

θα = θ̃α + bαj1···jm
θ̃j1 · · · θ̃jm/m! (4.10)

so that the new dα
j1···jm

are equal to zero. As a preliminary, we note
that the reexpression (4.10) has no effect on lower order discrepancies
(4.9). Appendix A outlines the argument that shows linear equations
can be solved to give the bα in terms of the dα. Of course this shows
the existence of the location reparameterization but it also gives a
procedure for the computer algebra implementation of the power se-
ries for β(θ) in terms of θ. Such a power series would be the multi-
parameter analog of an expansion for the scalar β(θ) recorded in (1.6).

Example 4.1. Consider the scalar parameter case and suppose
the `(ϕ) is available as a function of the exponential parameter ϕ.
Then using the standardized expression from (2.4) we obtain

`(ϕ) = − 1
2
ϕ2 − α3ϕ

3/6n1/2 − α4ϕ
4/24n

−`ϕ(ϕ) = ϕ+ α3ϕ
2/2n1/2 + α4ϕ

3/6n

β(ϕ) = ϕ+ α3ϕ
2/4n1/2 + α4ϕ

3/18n (4.11)

giving the start of the expansion for the location parameter in terms
of the exponential parameter.

As a particular case consider the simple exponential model
ϕ exp{−ϕx} with data value say x = 1. The observed likelihood is

`0 = −ϕ+ logϕ = −ϕ
2

2
+
ϕ3

3
− ϕ4

4
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giving α3 = −2 and α4 = 6. The expression for β from (4.11) is then

β = ϕ− ϕ2

2
+
ϕ3

3

which records the lead terms in the log function and is consistent
with log ϕ as a version of the location parameter of the model.

Theorem 4.1. If f(y; θ) has location form f{y − γ(θ)} and if f
and γ have continuous derivatives, then β(θ) is an affine function of
γ(θ) and is thus an alternate version of the location parameter.

Proof. Let γ(θ) be the parameter θ for the calculations in Example
4.1. The nonlocation measure dα is identically zero and all the dα

i1...ik
are equal to zero. The resulting bαi1...ik

are then equal to zero and
β(θ) = θ.

5 Frequentist inference and default priors

Much of inference theory until the 1950’s tended to seek procedures
that satisfied optimality criteria. The supporting arguments were
persuasive but the theory in many cases did not produce answers for
the wealth of more complicated statistical models that were emerging.
The Bayesian approach made prominent by Savage (1954) and others
provided answers to many problems, by using the likelihood function
together with an objective or subjective choice of prior probability
measure. The strict Bayesian view would argue that such answers
were definitive but the less committed would be at least skeptical.
Of course, the frequentists could have used likelihood as a central
inference ingredient and modified it by suitable pragmatic weight
functions and obtained the same wealth of answers, but the focus on
optimality somehow prevented this.

Our viewpoint here is that observed data together with an ap-
propriate statistical model entails certain inference results or presen-
tations, and that these exist apart from any proposed sequence of
such data-model combinations; in short, the probability component
is provided by the model and an assumed valid data value. Of course,
conditioning may be involved, see for example Fraser (2001).

Recent likelihood analysis as initiated by Barndorff-Nielson (1983,
1986) provides inference for scalar parameters in a wide variety of con-
texts with continuous variables; some extension to discrete variables
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is in development. The details of development show these results to
be definitive and highly accurate in wide generality. The results use
only the observed likelihood function `(θ) from (1.2) and the observed
likelihood gradient ϕ(θ) from (1.3) or from the extensions using vec-
tors V in (1.7).

In particular for inference concerning a value ψ for a scalar pa-
rameter ψ(θ), the essential p-value p(θ) is obtained from the signed
likelihood root r(ψ) together with a special maximum likelihood type
departure q(ψ) (for example: Barndorff-Nielsen, 1986; Fraser & Reid,
1995; Fraser, Reid & Wu, 1999) using a combining formula such as
the Lugannani & Rice (1980) formula, the Barndorff-Nielsen(1986)
formula or modifications thereof.

The Barndorff-Nielsen formula has the form

p(ψ) = Φ(r∗) = Φ(r − r−1log
r

q
) (5.1)

where Φ is the standard normal distribution function and r∗(ψ) is a
corrected likelihood root implicitly defined by (5.1).

For some recent discussion and formulas see Fraser, Reid & Wu
(1999). This reference also develops a third order formula for the
Bayesian survivor function s(ψ) which can be presented as (5.1) but
with q replaced by a special score type departure qB(ψ).

We will be concerned with Bayesian and frequentist results that
agree to third order. In the simple case of data y0 from a location
model f(y − θ) the frequentist p-value

p(θ) =
∫ y0

−∞
f(y − θ)dy

and the Bayesian survivor function

s(θ) =
∫ ∞

θ
f(y0 − θ)dθ

based on a flat prior are obviously equal. This has long been ac-
knowledged often from widely different viewpoints. And it provides
a framework for various arguments supporting the general use of the
flat prior. For a vector location model f(y−θ), the equality holds for
parameter components ψ(θ) = a′θ + b that are linear in the location
parameter. But in general the equality is not available for curved
parameter components. See Fraser & Reid (2001) for discussion and
various details concerning curved parameters, as well as an adjust-
ment factor to target a prior on a component curved parameter of
interest.
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As a default prior for general Bayesian use we propose

dβ(θ) = πdef(θ)dθ (5.2)

where πdef(θ) = |dβ/dθ|; in the scalar parameter case the default
prior can be expressed simply using (1.6) as

πdef(θ) = |`θ(θ)
ϕ(θ)

| (5.3)

which uses (1.2) and (1.3) or its more general version derived from
(1.7).

Theorem 5.1. If f(y; θ) is a scalar model with location form

f{x(y)− γ(θ)}h(y)

then the default prior from (5.2) or (5.3) gives

πdef(θ) = |dγ(θ)
dθ

|

which is the flat prior in the location parameter γ(θ).

Proof. This is a trivial consequence of Theorem 4.1 for the scalar
variable and scalar parameter case.

In general applications with continuous variables the default prior
πdef(θ) gives third order agreement between frequentist and Bayesian
theory for linear location parameters. The frequentist theory uses
appropriate conditioning, and the Bayesian theory uses the flat prior
from the third order location model approximation to the given model.
Both of these follow viewpoints that are acceptable to particular areas
of inference theory. Subjective priors can then in turn be presented
relative to the default prior πdef(θ); thus the default prior πdef(θ)
can be viewed as a reference prior. Bernardo’s (1979) reference pri-
ors have of course this objective; they do however involve sample
space averages and full model information functions. By contrast,
the present development is based on the large sample form of the
model and uses only the observed likelihood and how such likelihood
would change in the neighbourhood of the data point; this is closer to
some Bayesian ideal, unless the data point were treated as a mathe-
matical point with no record of local sensitivity towards likelihood. In
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some oral presentations the present default priors have been referred
to as deference priors, deferring to model form. Curved component
parameters however do need a targetting adjustment (Fraser & Reid,
2001), given as the ratio of nuisance information determinants.

6 Second order default priors

We have discussed aspects of the third order asymototic model and
given various references to background material. In particular the
theory conforms to reasonable conditioning requirements (for some
recent discussion, see Fraser, 2001), and produces the exponential
reparameterization ϕ(θ) and the location reparmeterization β(θ) for
the given statistical model, at least, for the continuous variable case.
We have also noted that the exponential parameterization ϕ(θ) is eas-
ily computed using (1.1) and (1.3) with (1.7), but that the location
parameterization is not readily available, being obtained as an iter-
atively defined power series (Section 4). This latter puts substantial
constraints on the direct use of (5.2) for Bayesian default analysis.

Now suppose we restrict our attention to second order asymp-
totic analysis. The available theory as cited in preceding sections
shows that the statistical model is exponential to the second order in
a moderate deviations region and is location to the second order in
a moderate deviations range. Also the construction of these approx-
imation models shows that the exponential model and the location
model are in fact the same model, just differing in the modes of ex-
pression for the variable and the parameter. This has substantial
implications.

For an exponential model a second-order default prior is given by
Jeffreys’ (1946) prior; indeed Welch & Peers (1963) show in effect
that the frequentist p-value, p(θ), and the Bayesian survivor value
s(θ) based on Jefferys’ prior are equal to the second order.

For the more general asymptotic context here, we can note that
Jeffreys’ prior is parameterization invariant and thus can be calcu-
lated in the location model reexpression of the model where of course
it is a flat prior. It follows then that to second order the default prior
πdef(θ) can be expressed in terms of the information function from
the exponential reexpression of the model. It follows that to secord
order the default prior is given by

πdef(θ)dθ = dβ(θ) = |jϕϕ(θ; y0)|1/2dϕ(θ) (6.1)
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where jϕϕ(θ; y0) is the observed information function

jϕϕ(θ; y0) = − ∂

∂ϕ

∂

∂ϕ′
`(θ; y0)

which is in fact the expected information for the approximating sec-
ond order exponential model.

If the initial model is exponential then this reproduces Jeffreys’
prior. And if the initial model is location then this present method
gives the flat prior in that parameterization. From a more general
viewpoint it is just Jeffreys’ prior for the visible statistical model,
visible to the second order. Also in passing we can note that the
analysis in Section 2 with our present discussion gives an alternate
proof of the Welch & Peers (1963) result.

7 Some overview

We have noted that recent likelihood analysis has been remarkably
successful for statistical inference, at least for the case with contin-
uous observable variables. The model is sectioned in accord with
appropriate conditioning, the nuisance parameters are eliminated by
subsequent marginalization, and the p-values are obtained by likeli-
hood inversion, which is a generalization of third order Fourier in-
version. And all of this has clear uniqueness aspects, at least to the
third order.

A pragmatic check is to examine the extremes, of small sample
sizes and difficult distributions (Fraser, Reid & Wu, 1999). For ex-
ample a sample of one from a location Cauchy gives (Fraser, 1990)
acceptable p-values using (5.1). However, as noted by Prof. Chris
Field the asymptotic methods can have difficulies with a location
model with two modal points, but even the maximum likelihood it-
self has difficulties with such models; two mode models it should be
noted can arise easily with a sample of two from the location Cauchy.
Nevertheless the methodology is widely applicable and reliable, as
indicated by simulations, even though there are fringes where issues
can arise.

In our present context it does however seem appropriate to ex-
amine the proposed default priors in the presence of an extreme such
as the location Cauchy. The third order prior (5.3) gives the seem-
ingly appropriate flat prior (Theorem 5.1). The second order flat
prior (6.1) is flat near the maximum likelihood value, drops to zero
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towards infinity, but has a singularity at θ = θ̂0 ± 1. This is not
surprising given that the exponential parameterization

ϕ(θ) = 2(θ − θ̂0)/{1 + (θ − θ̂0)2}−1

is redescending giving a reparameterization that is not one-one; this
feature seems not to upset the third order p-values or the third order
default prior but does cause moderate perturbations with the second
order Bayes methods.

With moderate data and reasonable models we can expect like-
lihoods that are convex downwards and are amenable to likelihood
analysis. The direct integration of likelihood with or without a weight
or prior functions does have risks but the present proposal is to start
with a recalibrated likelihood that reflects how the variable in the
neightbourhood of the data is measuring the parameter of the model.
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Recent likelihood theory for the continuous variable case has made
extensive use of conditioning down, so that the free variables have the
dimension of the parameter. While in general this is not available
exactly, it is available widely to third order which is the level of
accuracy for the recent theory (see for example, Fraser & Reid, 2000,
2001).

Sufficiency is not mentioned in the present discussions, which ad-
dress models with continuous observable variables. Suppose now that
there is a sufficient statistic s(y) having the same dimension p as the
parameter. Also suppose for ease of argument that the conditioned
variable given s(y), say t(y), has constant dimension which would
then be n − p. It follows that the distribution of t(y) given s(y) is
parameter free: let u(y) be a multivariate probability integral trans-
formation of t(y) as obtained from the conditional distribution given
s(y). Then the conditional distribution of u(y) given s(y) is free
of s and thus u and s are independent. It follows that f(s; θ) and
f(s|t; θ) are equal, that is, the marginal and conditional models are
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equal. This says that an analysis using sufficiency can be duplicated
by a conditional analysis. For a simple example consider (y1, y2) from
the normal (θ, σ2

0). The model for ȳ is N(θ, σ2
0/2): the conditional

model for ȳ given the configuration y2 − y1 is also N(θ, σ2
0/2). If,

however, we depart from normality then sufficiency is quite generally
not available, but the conditional analysis remains available and is
routine. Accordingly we follow the conditional approach and sug-
gest that there is no need for sufficiency methods for inference in the
continuous case.

The data dependence of a statistical procedure is closely related
to the use of conditional statistical procedures. But the statistical
literature has certainly not embraced the use of conditional methods;
for example, issues raised in Cox (1958) are not yet part of core
statistical thinking. Of course there are some important conditional
methods for eliminating nuisance parameters; but these can all be
handled by a more general marginalization method. For some recent
discussion see Fraser (2001). For a Bayesian illustration derived from
Cox (1958) suppose that z has a Bernoulli (1/2) distribution and y|z
has a model with information Ii(θ) if z = i. Should the Bayesian
use Jeffreys’ prior which is I(θ) = {I1(θ) + I2(θ)}/2 or should he
use the conditional Jeffreys’ which is Iz(θ) where z has the observed
value of the indicator. The use of the conditional Jeffreys’ does seem
persuasive and two distinguished Bayesian colleagues would seem to
agree. Our viewpoint here is that Bayesian analysis should work
from the measurements actually made and not invoke a model that
describes measurements that were not made.

The proposals in Section 5 go beyond this somewhat standard use
of conditional methods. The recent likelihood theory shows that in-
ference to third order uses only observed likelihood and the sensitivity
of the likelihood function at the observed data point. This led to the
use of tangent models at an observed data point; it also led to the
viewpoint that data with a model entails certain inference results or
presentations apart from any proposed sequence of such data model
combinations (Section 5). This could not be viewed as a generally
accepted inference approach at the present time. It does have rea-
sonable grounds as discussed above and the counter argument would
seem to require a distribution on such model data combinations. Our
viewpoint is that inference from a model data combination itself de-
serves direct attention, and many larger issues can be addressed from
this.
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Are sample space derivatives an unattractive feature for Bayesian
adoption? Certainly they depart from subjective and recent default
Bayesian approaches. Is this convention? Or does the use of an ob-
served likelihood not suggest that sensitivity of likelihood to the data
input is of some relevance? And it may be preferable to the sample
space averages involved in the definition of expected information. The
success of such likelihood methods in inference theory does suggest
that it can be of value to the Bayesian approach.

Normality is widely used as an approximation for sums of inde-
pendent variables. Recent theory establishes that sums of log densi-
ties provides an approximate exponential model, for which accurate
p-values are readily available. This later is useful for frequentist infer-
ence and the present viewpoint is that it can be useful for Bayesian
inference, taking it to second order accuracy from a frequent first
order accuracy.

Appendix A. Iteration for the location param-
eter

We now show that the coefficients bαj1...jm
in the expansion (4.10) for

θ can be solved for so that the mth order discrepancies dα
j1...jm

are
equal to zero.

If we substitute (4.10) in (3.5) we find that the new aαj1···jm is

aαj1···jm − bαj1···jm
−mbjm

αj1···jm−1

and the new aα
j1···jm

is

aα
j1···jm

+ bαj1···jm

with the result that the new mth order discrepancies are

dα
j1···jm

−mbjm
αj1···jm

(A.1)

Can we choose the bαj1···jm
so that these new mth order discrepancies

are all zero?
The discrepancies (A.1) appear as the coefficient of θ̃j1 · · · θ̃jm/m!

and thus must be symmetrized as in the quadratic case following
(4.5). For example, the coefficient of θ̃m

1 /m! for the α-th coordinate
gives immediately the equation

dα
1···1 = mb11···1α
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but the coefficient of θ̃m−2
1 θ̃2θ̃3/(m− 2)! gives the equation

dα
1···123 = (m− 2)b11···123α + b21···13α + b31···12α

where each item has m subscripts. More generally if j1 appears m1

times, . . ., jr appears mr times with Σmi = m and j1 < · · · < jr then
the symmetrized form of (A.1) is

dα
j1···jr

= m1b
j1
j1···jrα + · · ·+mrb

jr
j1···jrα (A.2)

where each term has m subscripts and a ji as superscript requires
one less ji as subscript with the missing ji replaced by α.

Now consider the full set of integers that appear in an (A.2) type
of equation and let j1 appear m1 times, . . ., jr appear mr times where
j1 < · · · < jr and Σmi = m+1. We consider the r different equations
that use this collection of integers for superscript and subscripts.
Specifically we take α = j1 in the dα

j1···jr
equation, . . ., α = jr in the

dα
j1···jr

equation; the Jacobian of the r equations in the r different b’s
is

J =

∣∣∣∣∣∣∣∣∣∣∣

m1 − 1 m2 · · · mr−1 mr

m1 m2 − 1 · · · mr−1 mr
...

...
...

...
m1 m2 · · · mr−1 − 1 mr

m1 m2 · · · mr−1 mr − 1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)r−1m

(A.3)
Accordingly we can solve for the b’s:

bji
j1···jr

=
Ji

J
(A.4)

where Ji is the determinant J but with the ith column replaced by
the vector of d’s that are recorded in sequence above. For this we
note that the total number of ji’s is mi and thus that the subscript
array on the left side is different for each ji as superscript. With
various values of r = 1, . . . ,m+ 1 and various integers j1 < · · · < jr
with various frequencies m1, . . . ,mr with Σmi = m+1 we determine
the mth order parameter adjustment to give the mth order location
property.

Iteration on m then determines the power series representation
for the location parameter β(θ) in terms of the original parameter θ.
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