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Abstract. The usual calculation of the P-value for the classical
problem of comparing probabilities is not always accurate. This issue
arose in the context of a legal dispute which depended on when some
written material was written in a diary. The problem raises some
issues on the foundations of statistical inference.

1 Background

A legal case concerned the question of when a certain handwritten
entry was made in a diary. One party contended that two paragraphs
on a page were written before the entries on the reverse side of that
page. It was admitted that the writing was all made under similar
conditions by one writer. The other party claimed that the short first
paragraph was written after the writing on the reverse side of that
paragraph.

The writing was subjected to forensic examination by Erich Speckin
of Speckin Forensic Laboratories. The underlying theory behind his
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examination is that the earlier writing leaves a convex impression on
the page where the pen moves. The later writing on the reverse side
introduces a number of intersections where the ink trails from the
two sides cross. The convexity of the first impression often causes
the later impression on the reverse side to leave a short skipping, a
gap in the ink trail, which is frequently detectable by examination
of enlarged photographs, when the intersection is at an appropriate
angle.

The examination is not error free. Thus an intersection where
a skipping should be detected does not always yield an observable
skipping, whereas an intersection where a skipping should not be
observed might lead to what the forensic examiner regards as an ob-
servable skipping. If the two error probabilities are €; and ¢ for the
first and later sections written, then the probabilities of observing a
skipping at an intersection are q; = €; and g, = 1 — ¢ respectively.
If the two error probabilities are small enough, ¢; is substantially
greater than q;. Then the observed skippings at a reasonable num-
ber of intersections should provide evidence to determine whether a
paragraph was written earlier or later than the writing on the reverse
side.

As we shall see in the following section, the issue involves a one-
sided test of the hypothesis that two unknown probabilities are equal.
This, in turn, raises the question of how to calculate a conservative
version of the P-value for this test and the inferential meaning of such
a calculation.

2 Several relevant hypotheses

Both parties are willing to grant that the writings on both sides of
the page were made by one person under similar conditions. One
party claims that the two paragraphs on the first side were written
before the material on the reverse side. The contending party claims
that the first short paragraph on the first side was written later than
the material on the reverse side. It accepts the claim that the second
paragraph on the first side was written earlier than the material with
which it intersects on the reverse side.

To test the reliability of the claim of the first party we should test
the hypothesis Hy : p1 = p2 = qy vs. K1 : p1 = q > p2 = qy, where
p1 and po are the probabilities of observing a skipping for the first
and second paragraphs. Mr. Speckin had observed X; = 7 skippings
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out of n; = 16 intersections for the first paragraph, and X, = 24
skippings out of mo = 261 intersections for the second paragraph.
These data lead to the estimates p; = 7/16 = 0.4375 and po =
24/261 = 0.092 for p; and py. From an informal point of view it
appears unlikely that the probability of observing a skipping at an
intersection is the same for both paragraphs.

The skippings due to the writing on the reverse side provide ad-
ditional relevant data. It seemed to me that these data should not
be ignored. Indeed, the legal case for claiming a difference between
p1 and po might be weakened if the judge were suspicious about why
these data were not presented. At my request, Speckin examined
skippings due to writing on the reverse side. He had previously found
X{ = 0 opposite the first paragraph, and then he obtained X} = 126
opposite the second paragraph.

Considering the new data, we are led to introduce additional hy-
potheses. These are Hy : p| = ph, Hs : p1 = pa < p| = ph,
Ky : py > p, and K3 : p1 = ph > po = p| where p| and p), are
the probabilities of an observed skipping for the reverse side of para-
graphs 1 and 2 respectively.

According to the claim that the material on the first side was
written before that of the reverse side, we should expect to find that
the data are consistent with Hy, Hy, and H3 and we should test these
against the corresponding alternatives K, Ko, and Ks.

Since gy and ¢ are unknown characteristics of the writer, the
parameters pq,p2,p) and ph, are unknown.

3 Three standard one-sided tests for the equal-
ity of two probabilities

The problem of testing H; vs. K is one of the most studied problems
in the statistical literature. When I declared to two colleagues that
I had a new insight on the problem, each of them referred me to
relatively recent papers that they had published on this subject Little
(1989) and Rubin and Stern (1994).

For most purposes, the standard approaches are pretty reason-
able. In my case, a superficial view of the data is compelling. It was
my desire to be more conservative than necessary that led me to look
further. I shall list three of the standard approaches first.

One of the standard approaches, which we will call the Pearson
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method, is to use as the test statistic
7o Xi/ny — Xo/ny
P=r N —1 1
\/P(l —p)(ny” +ny)

(1)

where n = ny + ng and p = (X1 + X2)/n is the maximum likelihood
estimate of the common value of p; and ps under the hypothesis H;.
If p1 > po, Zp will tend to be positive and the one-tail test of H
consists of rejecting H; if Zp is sufficiently large. Under H; the
asympototic distribution of Zp is N(0, 1), the normal distribution
with mean 0 and variance 1. The P-value for this test is taken to be
Pp = pp(Zp) where

pp(2) = P(Zp 2 z|H1) = 1 = ®(2) (2)

and @ is the cumulative distribution function for the standard normal
distribution N(0, 1).

In the early history, lack of sufficient computer power made it
important to develop an asymptotic theory, as a result of which some
of the claims are approximations which become poor when the sample
sizes are not large. Some of the recent publications, Little (1989), seek
to determine how conservative some of these approximations are. In
our application, ng is reasonably large, but n; is quite moderate in
size.

A second approach, which we shall label the Yates approach, ap-
plies a continuity correction which improves the asymptotic approxi-
mation. This method can be explained by constructing a 2 x 2 table
with entries ¢ = X7, and b = X5 in the first row, and ¢ = n; — X3
and d = ny — X2 in the second row. The table has margins n; and
ng at the bottom and m; = X; + X9 and m9 = n — my on the side.
See Table 1.

Table 1: 2 x 2 table

a=2X, b= Xy m1 = X1+ Xo
c:nl—Xl d:ng—XQ mo =1 — My

ny no n

The Yates test statistic is

/ n
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which corresponds to the chi-square statistic and Zp, except that a
and d are decreased by 1/2 and b and ¢ are increased by 1/2. Here,
the P-value is given by Py = 1 — ®(Zy).

A third approach is that of the Fisher Exact Test. This test
capitalizes on the fact that the conditional probability of observing
the 2 x 2 table, given the margins m1, mo,n1 and ne, does not depend
on the unknown common value of p; and py under the hypothesis.
This conditional probability is

zr(a) = nilnglmyIma!/nlalbleld! (4)

Note that for specified values of the margins the value of a determines
all the other entries. Thus zp may be regarded as a function of a,
and we may treat Zp = zp(X7) as the test statistic (conditional on
X1 + X3), with conditional P-value

a*

Pr = Z zr(a) (5)
a=X1
where ¢* = min(ny,m;) and m; = X7 + Xo.

For the data given, the P-values for the three approaches on the
test of H; vs. K; are Pp = 1.0(=5),Py = 6.0(—5), and Pp =
6.3(—4). In these representations the integer in parentheses repre-
sents the exponent of 10. These results bear out the general claim
that both Pr and Py tend to be more conservative than Pp in the
sense that they do not argue as strongly as Pp against the hypothesis
being tested. The fact that Py is so much greater than Pp suggests
that the asymptotic approximation needs the continuity correction in
this case where the data strongly suggest that the hypothesis is false
and at least one of the sample sizes is not large.

With the use of modern computers it is no longer necessary to
rely on asymptotic approximations, and while Pr is exact, both of
the other P-values can be also computed exactly, assuming that the
common value of p under H; is p, to yield Ppy = 2.9(—4) and
Py = 2.9(—4). The relatively large discrepancy between the ex-
act and asymptotic results is apparently due, in part, to the large
deviation effect in the tails of the distribution of the test statistic, as
well as to the modest sample size n;.

However, we have a more serious problem due to the fact that the
hypothesis H; is a composite hypothesis, and the distribution of the
data depend on the unknown common value of p; and po under the
hypothesis. That problem will be attacked in the next section.
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4 The effect of composite hypotheses

Technically speaking, the P-value for a composite hypothesis is de-
fined differently than what we have apparently done. If we have a
composite hypothesis H : § € © and a test statistic T, then the P-
value is P = supycg p(T;6) where p(t;60) = P(T > t|H,0). In using
Pp and Py, we implicitly assumed that the asymptotic normal distri-
bution N (0, 1), which is independent of the nuisance parameter, the
common value of p; and py assumed under Hi, represented the true
distribution of the test statistic. This asympotic distribution is not a
very good fit in the tails; the true distribution of Zp and Zy depends
on p, and a true P-value should take into account P(p) = p(T';p) for
all values of p € (0,1).

Although the Fisher approach provides an exact test, that test is
exact only if we condition on the margins. That procedure is appro-
priate in some tests of independence for 2 x 2 tables, but it is not
exactly so here. In the case of testing for independence with specified
margins, X1+ Xo would be an ancillary statistic, but it is only approx-
imately ancillary in our problem Little (1989). Thus even the Fisher
test yields a range of P-values depending on the nuisance parameter,
and we should consider the maximum of these P-values. Note that to
define a P-value, one must have a test statistic. For the case where
the marginals are given, we could use X; as the test statistic. But
if the marginals are not specified, a more natural test statistic would
be the usual P-value using the Fisher exact test, assuming, without
proper justification, that the marginals are specified.

Unfortunately, the range of P-values corresponding to various val-
ues of p is uncomfortably large for Pp and Py. Our calculations in-
dicate that Pp(p), Py (p) and Pr(p) attain their maximum values of
3.29(-3), 1.03(-3), and 2.93(-4), at p = 0.012,0.0092 and 0.15 respec-
tively. On the other hand, if we do exact calculations, assuming that
p is the only value of p to consider, we would have values of 2.91(-4),
2.89(-4), and 2.86(-4) respectively. These compare with our original
values of 1.0(-5), 6.0(-5) and 6.3(-4) respectively.

One of our difficulties comes from the poor quality of the asymp-
totic approximations in this example where one of the sizes is moder-
ate, and large deviation effects are relevant. Another major problem
comes from the fact that using the proper definition of the P-value
provides another large effect. The range of values from 1.0(-5) to
3.3(-3) is enormous, although not enough to make one believe in H;.
Note that Pr(p) is very stable. Somewhat surprisingly Pp(p) tends
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to be about 2.9(-4) over a large range of values of p, but different
from Pp = 6.3(—4). Figure 1 shows how these P-values depend on p.

0.003

0.002

P(p)

0.001
Il

0.0

0.0 0.2 0.4 0.6 0.8 1.0

p

Figure 1: P-values for Pearson, Yates, Fisher, and LR

5 Modified P-values

While P-values have played a useful role in statistical inference, their
use is subject to considerable criticism by Bayesians. One major
limitation in the general case is that the P-value does not put enough
emphasis on the role of the alternative hypotheses. What good is it to
use the data to reject a hypothesis as unreasonable, if the same data
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would show that the potential alternative is also unreasonable? This
latter criticism does not apply in the current problem. Granted that
P-values have limited inferential value, does it pay to use a precise
definition in this example? Here the maximum value of Pp(p) is
attained at p = 0.012 which is very inconsistent with the estimate
p = 37/277 = 0.111 assuming H;. A 95% confidence interval for p
would be (0.077,0.155). Over this range the maximum of the three
measures Pp(p), Py (p), and Pp(p) are 4.5(-4), 3.8(-4), and 2.9(-4)
respectively.

However, there is a mismatch between the confidence and P-
values. It seems strange to say that “I am 95% confident that the
P-value is 4.6(-4)”. With my remaining confidence, the P-value could
conceivably be be very large. It would seem more sensible to say
something like “I am 99.9% confident that the P-value is 0.001” In-
creasing the confidence leads to increasing the range of potential val-
ues of p, and consequently increasing the maximum P-value over that
range. With such matching we achieve approximately 99.95% confi-
dence for Pp(p) < 7.1(—4), Py (p) < 4.6(—4) and Pr(p) < 2.9(—4).
Thus a substantial increase in confidence leads to a relatively small
increase in P-values. Table 2 presents various level confidence inter-
vals of confidence y for p, based on z successes out of n trials. Under
H, the intervals for (z,n) = (31,277) are the confidence intervals for
p while (z,n) = (126,277) is relevant for Hs.

Table 2. Intervals with confidence v for a probability based on z
successes out of n trials.

z/n 24/277 31/277 126/277 133/277
1y

5(-2)  0.05630 0.12617  0.07732 0.15508  0.39519 0.51553  0.41999 0.54072
1(-2)  0.04872 0.13940  0.06836 0.16933  0.37735 0.53398  0.40193 0.55906
5(-3)  0.04606 0.14454  0.06518 0.17484  0.37071 0.54089  0.39519 0.56591
1(-3)  0.04082 0.15562  0.05884 0.18666  0.35695 0.55529  0.38120 0.58018
5(-4)  0.03888 0.16009  0.05646 0.19141  0.35158 0.56093  0.37574 0.58577
1(-4) 0.03490 0.16995 0.05156 0.20183  0.34010 0.57305  0.36405 0.59774
5(-5)  0.03339 0.17399  0.04967 0.20610  0.33552 0.57797  0.35937 0.60254
1(-5)  0.03023 0.18302  0.04570 0.21560  0.32556 0.58852  0.34920 0.61300
5(-6)  0.02900 0.18677  0.04414 0.21953  0.32152 0.59283  0.34507 0.61725
1(-6)  0.02641 0.19520  0.04083 0.22834  0.31266 0.60234  0.33600 0.62660
5(-7)  0.02539 0.19872  0.03951 0.23202  0.30904 0.60624  0.33228 0.63044
1(-7)  0.02322 0.20668  0.03669 0.24030 0.30102 0.61490  0.32406 0.63894
5(-8)  0.02236 0.21002  0.03556 0.24377  0.29772 0.61848  0.32067 0.64245
1(-8)  0.02052 0.21759  0.03312 0.25162  0.29037 0.62646  0.31313 0.65028
5(-9)  0.01979 0.22078  0.03214 0.25493  0.28734 0.62977  0.31000 0.65352
1(-9) 0.01821 0.22803  0.03000 0.26242  0.28055 0.63719  0.30302 0.66079
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The comparison of these three approaches seems to favor the
Fisher approach, where the maximum P-value of Pr(p) = 2.93(—4)
is relatively small, and takes place at p = 0.145 which is not far from
p. The large values of Pp(p) and Py (p) for small values of p reflects
the fact that the denominator of Zp, which is a normalizing factor
when p is close to p, no longer serves that purpose well when p is very
small.

6 Other approaches

Given the stability of the Fisher approach, it seems unlikely that
there will be much room for improvement in this special problem of
testing for the equality of two probabilities. For more complicated
problems, e.g. testing Hz vs. K3, we may not have the benefit of the
advice of Fisher to select such an effective test statistic. We propose
to introduce two new methods, one using a Bayesian approach and
both depending on the likelihood-ratio test statistic. We would hope
that the use of the likelihood-ratio would free us of the need to depend
on some clever choice of the test statistic.

We elaborate on the likelihood-ratio approach for which we use
the abbreviation LR. The likelihood for this model is L(pi,p2) =
l(Xl, Xg;pl,pg) where

ni—ri n2—T2

l(z1,22;p1,p2) = p1* (1 —p1) p3° (1 — p2)

Let Z;, be the log of the likelihood-ratio for the two hypotheses H;
and K calculated at the maximum likelihood estimates under the
two hypotheses.

Zr, = ((nm + n2)H(p) — i H(p1) — noH(p2))(sgn(p1 — p2))  (6)
where H is the entropy given by
H(p) = —[plog(p) + (1 — p)log(1 — p)] (7)

and p1 = Xi1/n1, p2 = Xo/ng, and p = (X1 + X2)/(n1 + ng).

Then pr(z;p) = P(Zr > z|Hy,p), Pr(p) = pr(Z1;p), P
PL(ﬁ), and

Pip) =Y (”i ) (”i )wi‘”’é(l—p)nﬁ"”i‘fé (8)
x*cA

T )
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where x* = (z7,23) and A = {x*: Z] > Z.}.

Finally we introduce Pp which is the posterior probability of the
hypothesis H based on a somewhat artificial and arbitrary prior dis-
tribution, for which the theoretical calculations are relatively simple.
We assume that the prior distribution of p; and po is a mixture of
two distributions. One of these distributions is a beta distribution in
po on the line where p; = po = pg. The other distribution takes p;
and py to have independent beta distributions. With a slight abuse
of notation we may write, for the distribution law £ of (p1,p2),

L(p1,p2) = wBe(ag,by) + (1 — w)Be(ay, b1) * Be(ag, ba) (9)

to indicate that with probability w, p; = po = pp which has a beta
distribution with parameters (ag,bp) and with probability 1 — w, py
has the beta distribution with parameters (a1, b1) and p2 has the beta
distribution with parameters (a9, by) and p; and ps are independent.

Then the posterior distribution, given the data, X = (X1, X2),
has the same form and can be written

L(p1,p2|X) = w*Be(ag, by) + (1 —w”)Be(ay, by) * Be(az, b3)  (10)

where Pg = w* is the posterior probability of the hypothesis H;. The
necessary calculations are described as follows. If the data yield X;
successes out of ny trials with probability p; and X5 successes out of
ng trials with probability ps, then a] = a1+X1, b7 = bi+n1—X1, ab =
a2+X2, b; = b2+n2—X2, aé = a0+X1+X2, ba = b0+n1+n2—X1—X2,
and

w* w BIBQB();

= 11
1—w* 1—wB{BiB (11)

where B; = B(a;,b;), B = B(a},b}), B is the beta function

7771

B(Cl, 62) = F(CI)F(CQ)/F(CI + 62)

and I" is the gamma, function.

Low values of a; and b; correspond to a prior beta distribution
which, in some sense, assumes very little about the distribution of p;.
For example a; = by = 1 yields a uniform distribution on the interval
from 0 to 1 for p;. On the other hand a; = by = 20 would correspond
to a prior distribution which assumes that p; tends to be rather close
to 0.5. There is a good deal of subjectivity in the process of applying
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the Bayesian philosophy in our current problem, and I recommend it
with reservations.

At this point let us summarize our results and notation on P-
values. In general we have a test statistic T for testing a hypothe-
sis H, against an alternative K, a conventional P-value, and a nui-
sance parameter § € ©. Let p(¢t;0) = P(T > t|H,0), P, = p(T; é),
where 6 is the maximum likelihood estimate of @ under H , and
Py = suppcop(T;0). Given a 95% confidence interval Ps is the supre-
mum of p(T';0) for # in that interval. Similarly, P; corresponds to
the maximum P-value over an approximately matching confidence in-
terval Table 3 summarizes the various P-values for testing H;. (The
last two digits of the tabled values of Py are not reliable).

Table 3. P-values for testing H; vs. K;.
Pearson Yates Fisher LR

P 1.04(-5) 5.97(-5) 6.28(-4)

P 291(-4) 2.89(-4) 2.86(-4) 2.79(-4)
Py 329(-3) 1.03(-3) 2.93(-4) 1.04(-3)
Py 4.62(-4) 3.80(-4) 2.93(-4) 2.80(-4)
Py 7.09(-4) 4.56(-4) 2.93(-4) 2.80(-4)

The posterior probability of Hy for the parameters w = 0.5, a9 =
bp = a1 = by = ay = by = 11is w* = 8.94(—3). With this prior
distribution, for which P(p; < p2) = 0.25, there is a small posterior
probability, 4.59(-4), that p; < po. When using a Bayesian approach
it often makes sense to use information based on previous experi-
ence. Suppose that we started with ag = by = a1 = by = 5 and
as = 2,by = 18. T chose these numbers without any real background
experience, and without reference to Mr. Speckin who may have some
relevant suggestions, merely to represent a possibility. The Be(5,5)
and Be(2,18) distributions have means 0.5 and 0.1, and standard
deviations 0.151 and 0.065. With these parameters to represent the
prior distribution, we obtain the posterior probabilty of H; to be
w* = 5.76(—5).

7 The reverse side

Up to now, we have concentrated almost exclusively on the observed
skippings on one side of the page. We have additional data from the
reverse side where X| = 0 and X/,=126. These additional data could
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be used to test Hy vs. Ky with the same methods used to test H;
vs. Ki. Corresponding P-values are listed in Table 4.

Table 4. P-values for testing Hs vs. Ks.
Pearson Yates Fisher LR

P 8.35(-5) 2.28(-4) 4.15(-5)

Py 1.34(-5) 1.34(-5) 1.22(-5) 1.21(-5)
Py 229(-2) 1.21(-3) 1.67(-5) 1.42(-5)
P;  3.64(-5) 3.64(-5) 1.44(-5) 1.42(-5)
Py 7.28(-5) 7.28(-5) 1.47(-5) 1.42(-5)

The posterior probability of Hs for the parameters w = 0.5, a9 =
bp = a1 = by = az = by = 1 is w* = 6.65(—5). The posterior
probability that p} > p is 2.13(-5).

7.1 Combining P-values

One standard approach for combining the results of testing the two
hypotheses Hi and Hs uses the fact that under the hypothesis to be
tested the P-value has a uniform distribution and its negative loga-
rithm has an exponential distribution, which may also be regarded
as the gamma distribution with scale parameter 1 and shape param-
eter 1, s.e. T'(1,1). Then the sum of two such independent random
variables has the I'(1,2) distribution, the tail probabilities of which
can be used to provide a combined P-value. For example if the two
P-values are 2.80(-4) and 1.42(-5) the sum of the two negative loga-
rithms is 19.343 for which the tail probability is P = 8.09(—8).

There are been three implicit assumptions in the analysis above.
These are that the P-values are independent, that they have contin-
uous distributions, and that the hypothesis being tested is simple,
i.e. not composite. These assumptions are not satisfied here, but
that probably has little influence here. The data are discrete and
the P-values are not quite continuously distributed. The observed
skippings, at an intersection on both sides of the page are probably
not quite independent for all the candidate intersections. I believe
that for a given value of p, P(p) is reasonably well approximated by
the combining anlaysis in spite of the failure of the assumptions. On
the other hand this may not hold so well if we try to combine the
maxima in this way.
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7.2 Likelihood-ratio

An alternative to combining the P-values of the two tests is to test
Hj3 vs. Kj. Such a test introduces an interesting variation on our
problem. It made little sense to get P-values for testing Ky vs. H;
or Ky vs. Hy. As long as the observed proportions favored K; and
Ky, such P-values could not be very small. One could not show that
both H; and K; were inconsistent with the data. That is no longer
the case for testing H3 vs. K3. Both of these alternative hypotheses
are specific enough that each can be tested to see how consistent they
are with the data. Is it the case that the skipping counts are not only
inconsistent with Hs, but also inconsistent with the assumptions that
(i) the first paragraph and the reverse of the second paragraph show
similar probabilities of observed skippings, (ii) the same can be said
for the second paragraph and the reverse of the first, and (iii) the
probability for the first pair above exceeds that of the second pair?

The likelihood-ratio and Bayesian approaches are applicable for
testing H3 vs. K3. These methods may be applied in a routine fagshion
and do not require the use of deep insight to develop a clever test
statistic. On the other hand the resulting method does not directly
confront assumptions (i) and (ii). To do so requires a modified test.

In this subsection we shall describe the likelihood-ratio method.
We introduce the variables Ryy = (X1 + X3)/n, R3a = (X + X3)/n,
Ry, = (X1+Xé)/n,R23 = (XQ-FX{)/TL,RO = (X1+X2+X1+Xé)/2n,
and X = (X1, X2, X1, X3). Under Hs, the maximum of the logarithm
of the likelihood is given by

l(X|H3) = —n[H(RIQ) + H(R34)] if Rig9 < R34
= —2’rLH(R0) if Rio > R34

Similarly, the logarithm of the likelihood under K3 attains its maxi-
mum of

Z(X|K3) = —n[H(R23) + H(R14)] if Ros < Ry4
= —ZHH(R()) if Roz > R4

and we may use
Zr = (X|K3) — I(X|H3) (12)

as our test statistic.
The P-value for testing H3 is Py = pg(Zr) where

pr(2) = supy, <y, P(Zr > 2|Hs, p1, ) (13)
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Similarly, the P-value for testing K3 is Px = px(Zr) where
pK(Z) = 8upp1>p'1P(ZT < Z|K37p17p,1) (14)

Table 5 presents the results for testing Hs and K3 in analogy with
the notation of Table 3.

Table 5. P-values for testing H3 vs. K3 and K3 vs. Hj

Py Py
P

P, 3.33(-8) 6.02(-1)
P, 5.05(-8) 1.00(-0)
Py 3.49(-8) 9.73(-1)
Py 5.91(-5) 9.73(-1)

7.3 Bayesian approach

If we assign prior probabilities w3 and 1 —ws3 to H3 and K3, a natural
version of the prior distribution of (p1,p}) may be written as

L(p1,p}) =
wzBe(a1,by) * Be(ag, by) + (1 — ws) Be(ag, by) * Be(ay, b)(15)

Letting X represent the complete data, we have

E(X|H37p17pll) =

PN (L= ) R () (L) N (1)

and

L(X|K3,p1,p)) =
P )T () (D (1 1)

It follows that the posterior distribution is given by

w3 B * By + (1 — w3)Bs % By (18)

where B; = Be(af,b) for 1 < i < 4, a} = a1 + X1 + Xo, b] =

)

b1 +n — X1 — Xo, a§:a2+X{+Xé, b;ZbQ-I-TL—Xi—Xé, a’§:
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a2+X1+Xé, b§ :b2+n—X1—X§, aj:al—l-X{—i-XQ, bZ:
b1+n—Xi—X2, and

w3 w3  B31B3»

1 —’LU§ - 1—’LU3 333334

where Bs; = B(a},b}) for 1 <i <4.

Applying the prior distribution with w = 0.5,a1 = by = a9 = by =
1, we obtain the posterior probability of H3 to be w* = 5.38(—7).

8 Historical Remarks

Much of this work was done under the pressure of responding to a
request to provide a document for a legal case. It should not be
surprising that a subsequent search of the literature reveals that for
this topic which has been studied extensively, much of what has been
written above has been presented elsewhere. In particular, papers by
G. Barnard (1947) and E.S. Pearson (1947) have anticipated many
of the ideas presented here. Barnard introduced the idea that we
can select the test statistic so as to minimize the maximum of the
P-values over the range (0,1) of p. This led to the CSM test, which
he subsequently renounced in favor of the conditionality of the Fisher
Exact test. The CSM test was developed in the context of relatively
small sample sizes at a time when computers were rather limited.
For small sample sizes, the possibility that the maximum is attained
for unlikely values of p does not seem very pressing as it is in our
case. Pearson was interested in good asymptotic approximations, and
incidentally indicated that one should expect our method of using Pr,
the P-value of the Fisher Exact test, as the test statistic should yield
Pr(p) to be almost independent of p. Tt is slightly inappropriate to
use an abbreviation of Pearson to describe one of the standard tests
because of the contributions of Karl Pearson and an abbreviation
of Fisher to describe the test statistic pioneered by Karl’s son Egon
Pearson. Tocher (1950) demonstrated that the test which uses Pp as
the test statistic is optimal among similar tests of the hypothesis of
equality. This implies that the Fisher Exact test is optimal, but does
not endorse Pr as the proper P-value to use in interpreting the data.

As computing power grew, various investigators, including Berk-
son (1978a) criticized the use of the Fisher Exact Test and Pp, sug-
gesting that Pr was too conservative, that the test was not as pow-
erful as it should be, and that a major justification for the use of
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conditioning on the margins, the ancillarity of the margins, was not
justified Berkson (1978b). Yates (1984) responded, defending the
application of conditioning on the margins, which he regarded as
implicit in the Yates continuity correction as well as the Fisher Ex-
act Test, and claimed that it was obvious to both Fisher and him
that there was very little, if any, relevant information in the mar-
gins. Yates claimed that the application of Neyman-Pearson theory
and power considerations has served to confuse the real underlying
issues.

The paper by Yates and the discussion indicates some lack of
consensus about the inferential role and definition of the P-value.
While the composite nature of our hypothesis H; complicates matters
a bit and led me to introduce the four measures Pi, P>, P53, and Py,
the issue applies even in the case of a simple hypothesis. The formal
definition of a P-value involves the concept of a test and the use of a
test statistic 7. Presumably, some decision, terminal or temporary,
is to be made depending on whether or not 7' exceeds some value
and the P-value is less than a corresponding value «, in which case
the data are regarded as significant. That corresponding value is so
often taken to be 0.05 or 0.01, for the sake of discussion or to use
known tables, that these numbers have assumed undue importance
among users of statistical methods. In principle, the appropriate
critical P-value should depend in part on the alternative hypotheses
and the costs of wrong decisions, and possibly on some background
information.

In those cases where the data are not supposed to lead to a ter-
minal decision, the P-value is regarded as a measure of the inferential
impact of the data in support of the hypothesis. As such a measure
it is incomplete. It says little about the alternative and about the
model. In fact the example Fisher presented Barnard, discussed by
Barnard in Yates (1984), which led Barnard to accept the condition-
ing argument and reject CSM, demonstrated exactly this weakness of
the inferential interpretation of the P-value. While the conditioning
argument is relevant enough so that both E.S. Pearson and Tocher
argue in favor of Pr as the appropriate test statistic, one must be
careful not to give Pr undue influence as a measure of belief. The
fact, that Pr is conditional and technically not the P-value corre-
sponding to a test statistic, is relevant for those who depend on the
formal definition of a P-value, but is not ordinarily a major factor in
deciding how to interpret it.
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Rubin and Stern (1994) present a Bayesian appproach altenative
to our measures Py and Py. Assuming Hy and a prior distribution on
the unknown common value of p, they calculate a posterior distrbu-
tion using the data (X7, X2). This yields a corresponding marginal
predictive distribution of future values (X7, X3) of the data, in terms
of which they calculate P* = P(T(X7, X5) > T(X1, X2)|T (X1, X2))
to serve as a posterior predictive P-value.

At a late date, I was informed of a paper by Berger and Boos
(1994) which introduces the idea of using as a P-value the following
relative of P3 and Py, P = supyepp(T;6) + (1 — ) where I is a
confidence region of confidence v for a large value of v, e.g. 0.999.

9 Conclusions

The standard Yates and Pearson methods for testing for the equality
of two probabilities do not provide reliable estimates for P-values
when one or both sample sizes are moderate, the evidence is strong,
and conservative claims are desired. The sources of difficulty are poor
asymptotic approximations in the tails of the distributions and the
composite nature of the hypothesis to be tested.

One way to deal with this situation is to use exact calculations and
to maximize the P-value over a suitable range of values of the nuisance
parameter. In this special problem, the nuisance parameter is the
supposedly common value of the two probabilities being compared.
The appropriate range would be a confidence interval with confidence
matched to the P-value attained.

While the Fisher Exact Test yields a conditional P-value, and
not a true P-value, using this conditional P-value as a test statistic
provides excellent results, since the resulting P-values are almost con-
stant over a wide range of values of the nuisance parameter, and the
maximum is relatively small and it is attained at a reasonable value
of p.

For more general problems, the use of the likelihood-ratio as a
test statistic relieves the statistician of the need to find clever test
statistics. This approach works about as well as using the Fisher
P-values for the test statistic in our special problem. It applies easily
to the problem of testing Hs.

Because the P-value pays insufficient attention to the alternative
hypothesis, and the composite nature of the hypothesis to be tested,
it is good policy to supplement calculations of the P-value with alter-
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native considerations. Although, the conditional Pr is not a formal
P-value, it recommends itself for two reasons. In my case it provides a
value which can be presented to a judge as a conservative value. Also
it has the advantage of not being influenced by the margins which
carry little relevant information.

On the other hand, neither the true P-value nor the conditional
value is adequate withut considering, formally or informally, the de-
cision theoretic background of the problem, involving the costs of
decisions and prior information from past experience or supplemen-
tary data.

Perhaps the result that I found, and probably should not have
found, most surprising is the difference between the conventional P-
value for the Fisher Exact Test and the one obtained by using it as
the test statistic.

Suppose that in my legal problem I had to present one number
to reflect the information in the case of the limited data on the first
side. In that case I would choose the conditional P-value to present
to the judge. Suppose that I had to make a terminal decision in some
research effort based on those data. Then I would not depend on the
P-value, but would use a decision theoretic approach, based mainly
on the likelihood-ratio, and considering costs and some informal prior
knowledge. Using a Bayesian approach might be sensible. If T were
involved in an ongoing research project where I was required to pro-
vide one number as a P-value, I would insist on supplementing one
of the Py values with the likelihood-ratio, exp(—Zr), which in this
case is 2.51(-3). Finally, if I were not constrained to present a single
number, I like Pr(p), supplemented by p}.(Zr), which is 5.11(-1) in
our case, where ph(2) = P(Zr > z|p1 = p1,p2 = p2). A similar
analysis could be done with the likelihood-ratio, yieldng 5.09(-1).

In short, there is no simple solution to the problem of inference,
and there is no one number that is adequate to describe the inferential
content of the data.
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