1. Berson, E. L., Rosner, B., and Simonoff, E. (1980), An outpatient population of retinitis pigmentosa and their normal relatives: risk factors for genetic typing and detection derived from their ocular examination. American Journal of Ophthalmology, 89, 763-775. [
DOI:10.1016/0002-9394(80)90163-4]
2. Chen, J. J., and Kodell, R. L. (1989), Quantitative risk assessment for teratological effects. Journal of the American Statistical Association, 84, 966-971. [
DOI:10.1080/01621459.1989.10478860]
3. Gomez-Deniz, E., Sordo, M. A., and Calderin-Ojeda, E. (2014), The log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insurance: Mathematics and Economics, 54, 49-57. [
DOI:10.1016/j.insmatheco.2013.10.017]
4. Grassia, A. (1977). On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions. Australian Journal of Statistics, 19, 108-114. [
DOI:10.1111/j.1467-842X.1977.tb01277.x]
5. Jorda, P., and Jimenez-Gamero, M. D. (2016). A note on the log-Lindley distribution. Insurance: Mathematics and Economics, 71, 189-194.
6. Lindley, D. V. (1958). Fiducial distribution and Bayes' theorem. Journal of the Royal Statristical Society, Series B, 20, 102-107. [
DOI:10.1111/j.2517-6161.1958.tb00278.x]
7. Lindley, D. V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint, Part II: Inference. Cambridge University Press, New York.
8. Nocedal, J., and Wright, S. J (1999). Numerical Optimization. Springer, New York. [
DOI:10.1007/b98874]
9. R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
10. Razzaghi, M. (2020). Statistical Models in Toxicology. CRC Press, Boca Raton, FL. [
DOI:10.1201/9780429155185]
11. Rosner, B. (1982). Statistical methods in ophthalmology: an adjustment for the intra-class correlation between eyes. Biometrics, 38, 105-114. [
DOI:10.2307/2530293]
12. Smith, D. M. (1983). Maximum likelihood estimation of the parameters of the beta-binomial distribution. Applied Statistics, 32, 192-204. [
DOI:10.2307/2347299]
13. Statistical Analysis System SAS (2014). Version 9.4. Cary, NC: SAS Institute Inc.
14. Wilcox, R. E. (1981), A review of the beta-binomial model and its extensions. Journal of Educational Statistics, 6, 3-32. [
DOI:10.3102/10769986006001003]
15. Williams, D. A. (1975), The analysis of binary responses from teratological experiments involving reproduction and teratogenicity. Biometrics, 31, 949-952. [
DOI:10.2307/2529820]
16. Zakerzadeh, H., and Dolati, A. (2009), Generalized Lindley distribution. Journal of mathematical Extension, 3, 13-25.