Volume 20, Issue 1 (6-2021)                   JIRSS 2021, 20(1): 307-331 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Panahbehagh B, Bruggemann R, Salehi M. Sampling of Multiple Variables Based on Partially Ordered Set Theory. JIRSS. 2021; 20 (1) :307-331
URL: http://jirss.irstat.ir/article-1-787-en.html
Department of Mathematics, Statistics and Physics, Qatar University, P. O. Box 2713, Doha, Qatar , salehi@qu.edu.qa
Abstract:   (645 Views)

We introduce a new method for ranked set sampling with multiple criteria. The method relaxes the restriction of selecting just one individual variable from each ranked set. Under the new method for ranking, units are ranked in sets based on linear extensions in partially order set theory with considering all variables simultaneously. Results willbe evaluated by a relatively extensive simulation studies on Bivariate normal distribution and two real case studies on commercial and medicinal use of flowers, and the pollution of herb-layer by Lead, Cadmium, Zinc and Sulfur in some regions of the southwest of Germany.

Full-Text [PDF 162 kb]   (346 Downloads)    
Type of Study: Special Issue, Original Paper | Subject: 62Dxx: Sampling theory, sample surveys
Received: 2020/12/2 | Accepted: 2021/02/15 | Published: 2021/06/20

References
1. Al-Saleh, M., and Zheng, G. (2002), Estimation of bivariate characterstics using ranked set sampling. Australian & New Zealand Jurnal of Statistics, 44, 221-232. [DOI:10.1111/1467-842X.00224]
2. Bruggemann, R., and Carlsen, L. (2011), An Improved Estimation of Averaged Ranks of Partial Orders. MATCH Comm. Math. Comput. Chem. 65, 383-414.
3. Brüggemann, R., Kaune, A., and Voigt. K. (1996), Vergleichende ökologische Bewertung von Regionen in Baden- Württemberg. Pages 455-467 in Landesanstalt für Umweltschutz Baden-Württemberg, ed. 4.Statuskolloquium, Projekt "Angewandte Ökologie" Nr. 16. Präzis-Druck Karlsruhe, Karlsruhe.
4. Bruggemann, R., Mucha, H. J., and Bartel, H. G. (2013), Ranking of Polluted Regions in South West Germany Based on a Multi-indicator System. MATCH Commun. Math. Comput. Chem., 69,433-462.
5. Bruggemann, R., and Patil, G. P. (2011), Ranking and Prioritization with Multi- Indicator Systems, Introduction to Partial Order and Its Applications, Springer, New York.
6. Bruggemann, R., Pudenz S., Voigt K., Kaune A., and Kreimes K. (1999), An algebraic/graphical tool to compare ecosystems with respect to their pollution. IV: Comparative regional analysis by Boolean arithmetic. Chemosphere, 38, 2263-2279. [DOI:10.1016/S0045-6535(98)00445-7]
7. Bruggemann, R., Sorensen, P. B., Lerche, D., and Carlsen, L. (2004), Estimation of Averaged Ranks by a Local Partial Order Model. J. Chem. Inf. Comp. Sc. 44, 618-625.
8. Bruggemann, R., Voigt, K., Kaune, A., Pudenz, S., Komossa, D., and Friedrich, J. (1998), Vergleichende ökologische Bewertung von Regionen in Baden- Württemberg GSF-Bericht 20/98. GSF, Neuherberg.
9. Bruggemann, R., Welzl, G., and Voigt, K. (2003), Order Theoretical Tools for the Evaluation of Complex Regional Pollution Patterns. J. Chem. Inf. Comp. Sc., 43, 1771-1779.
10. Bubley, R., and Dyer, M. (1999), Faster random generation of linear extensions. Discr. Math., 201, 81-88.
11. Chen, Z., Bai, Z., and Sinha, B. (2004), Ranked set sampling: theory and applications. Lecture Notes in Statistics, Springer, New York.
12. Chen, Z., and Shen, L. (2003), Two-layer ranked set sampling with concomitant variables. Journal of Statistical Planning and Inference, 115, 45-57. [DOI:10.1016/S0378-3758(02)00145-3]
13. David, H. A., and Nagaraja, H. N. (2003), Order Statistic, third ed. Wiley, New York.
14. De Loof, K., De Baets, B., and De Meyer, H. (2011), Approximation of Average Ranks in Posets. MATCH Commun. Math. Comput. Chem., 66, 219-229.
15. Environmental Protection Agency Baden-Wurttemberg, (1994), Signale aus der Natur 10 Jahre Okologisches Wirkungskataster Baden-Wurttemberg. Kraft Druck GmbH, Ettlingen.
16. McIntyre, G. A. (1952), A method of unbiased selective sampling. using ranked sets. Australian Journal of Agricultural Research, 3, 385-390. [DOI:10.1071/AR9520385]
17. Norris, R. C., Patil, G. P., and Sinha, A. K. (1995), Estimation of multiple characteristics by ranked set sampling methods. Coenoses, 10, 95-111.
18. Panahbehagh, B., Bruggemann R., Parvardeh, A., Salehi, M., and Sabzalian, M. R. (2018), An unbalanced ranked set sampling to get more than one sample from each set. Journal of Survey Statistics and Methodology, 6(3), 285-305. [DOI:10.1093/jssam/smx026]
19. Patil, G. P., Sinha, A. K., and Taillie, C. (1994), Ranked set sampling for multiple characteristics. International Journal of Ecology and Environmental Sciences, 20, 94-109.
20. Patil, G. P., Sinha, A. K., and Taillie, C. (1999), Ranked set sampling: A bibliography. Environmental and Ecological Statistics, 6, 91-98. [DOI:10.1023/A:1009647718555]
21. Patil, G. P., Sinha, A. K., and Taillie, C. (1994), Ranked set sampling, in Handbook of Statistics, Environmental Statistics, Vol. 12, G.P. Patil and C.R. Rao, eds, NorthHolland, Amsterdam.
22. Ridout, M. S. (2003), On ranked set sampling for multiple characterestics. Environmental and Ecological Statistics, 10, 225-262. [DOI:10.1023/A:1023694729011]
23. Samawi, H. M. (1996), Stratified ranked set sample. Pakistan Journal of Statistics, 12, 9-16.
24. Sarndal, C. E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, New York, Springer.
25. Yang, S. S. (1977), General distribution theory of the concomitants of order statistics. The Annals of Statistics, 5, 996-1002. [DOI:10.1214/aos/1176343954]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Journal of The Iranian Statistical Society