Volume 20, Issue 1 (6-2021)                   JIRSS 2021, 20(1): 289-306 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Niekerk J V, Bekker A, Arashi M. Matrix-Variate Beta Generator - Developments and Application. JIRSS. 2021; 20 (1) :289-306
URL: http://jirss.irstat.ir/article-1-786-en.html
University of Pretoria, Department of Statistics, Pretoria, South Africa , Andriette.Bekker@up.ac.za
Abstract:   (615 Views)

Matrix-variate beta distributions are applied in different fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, extensions and developments are presented. Special members are then used in a univariate and multivariate Bayesian analysis setting. These models are fitted to simulated and real datasets, and their fitting and performance are compared to well-established competitors.

Full-Text [PDF 888 kb]   (318 Downloads)    
Type of Study: Special Issue, Original Paper | Subject: 62Exx: Distribution theory
Received: 2020/11/24 | Accepted: 2021/02/7 | Published: 2021/06/20

References
1. Bekker, A., Roux, J. J. J., Ehlers, R., and Arashi, M. (2012), Distribution of the product of determinants of noncentral bimatrix beta variates. Journal of Multivariate Analysis, 109, 73-87. [DOI:10.1016/j.jmva.2012.02.016]
2. Bekker, A., Van Niekerk, J., and Arashi, M. (2017), Wishart distributions: Advances in theory with Bayesian application. Journal of Multivariate Analysis, 155, 272-283. [DOI:10.1016/j.jmva.2016.12.002]
3. Chikuse, Y. (1980), Invariant polynomials with matrix arguments and their applications. Multivariate Statistical Analysis, 1, 54-68.
4. Davis, A. W. (1979), Invariant polynomials with two matrix arguments extending the zonal polynomials: Applications to multivariate distribution theory. Annals of the Institute of Statistical Mathematics, 31(A), 465-485. [DOI:10.1007/BF02480302]
5. Ehlers, R. (2011), Bimatrix Variate Distributions of Wishart Ratios With Application. Unpublished PhD Dissertation, University of Pretoria, South Africa.
6. Gupta, A.K. and Nagar, D.K. (2000), Matrix-variate beta distribution. International Journal of Mathematical Sciences, 24(7), 449-459. [DOI:10.1155/S0161171200002398]
7. Gupta, A. K., and Nagar, D. K. (2006), A generalized matrix-variate beta distribution. International Journal of Applied Mathematical Sciences, 31(1), 21-36.
8. Gupta, A. K., and Nagar, D. K. (2009), Properties of matrix-variate beta type 3 distribution. International Journal of Mathematical Sciences, http://dx.doi.org/10.1155/2009/308518. [DOI:10.1155/2009/308518]
9. Muirhead, R. J. (2005), Aspects of Multivariate Statistical Theory. New York: Wiley.
10. Nadarajah, S., and Kotz, S. (2006), Some beta distributions. Bulletin of the Brazilian Mathematical Society, 31(1), 103-125. [DOI:10.1007/s00574-006-0006-1]
11. Nagar, D. K., and Gupta, A. K. (2002), Matrix-variate Kummer-beta distribution. Journal of the Australian Mathematical Society, 73(1), 11-26. [DOI:10.1017/S1446788700008442]
12. Nagar, D. K., Rold'a-Correa, A., and Gupta, A. K. (2013), Extended matrix-variate gamma and beta functions. Journal of Multivariate Analysis, 122, 53-69. [DOI:10.1016/j.jmva.2013.07.001]
13. Nagar, D. K., Arashi, M., and Nadarajah, S. (2017), Bimatrix variate gamma-beta distributions. Communications in Statistics - Theory and Methods, 46(9), 4464-4483. [DOI:10.1080/03610926.2015.1085562]
14. Ng, K. W., and Kotz, S. (1995), Kummer-gamma and Kummer-beta univariate and multivariate distributions. Research report, The University of Hong Kong, Hong Kong.
15. Pham-Gia, T., Phong, D. T., and Thanh, D. N. (2020), Distributions of powers of the central beta matrix variates and applications. Statistical Methods and Applications, 29(3), 651-668. [DOI:10.1007/s10260-019-00497-3]
16. Tounsi, M. (2019), The Extended Matrix-Variate Beta Probability Distribution on Symmetric Matrices. Methodology and Computing in Applied Probability,1-30.
17. Zine, R. (2012), On the matrix-variate beta distribution. Communications in Statistics- Theory and Methodology, 41(9), 1569-1582. [DOI:10.1080/03610926.2010.546545]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Journal of The Iranian Statistical Society