1. Eliot, M. N., Ferguson, J. , Reilly, M. P., and Foulkes A. S. (2011), Ridge regression for longitudinal biomarker data. Int. J. Biostat, 7 , 1-11. [
DOI:10.2202/1557-4679.1353]
2. Farebrother, R. W. (1976), Further results on the mean square error of ridge Regression. J. Roy. Stat. Soc. B, 38 , 248-250. [
DOI:10.1111/j.2517-6161.1976.tb01588.x]
3. Fung, W. K., Zhong, X. P., and Wei, B. C. (2003), On estimation and influence diagnostics in linear mixed measurement error models. American Journal of Mathematical and Management Sciences, 23 (1-2), 37-59. [
DOI:10.1080/01966324.2003.10737603]
4. Ghapani, F., and Babadi, B. (2020), Two parameter weighted mixed estimator in linear easurement error models. Communications in Statistics-Simulation and Computation ,
https://doi.org/10.1080/03610918.2020.1825736 [
DOI:10.1080/03610918 .2020.1825736]
5. Ghapani, F. (2019), Stochastic restricted Liu estimator in linear mixed measurement error models. Communications in Statistics - Simulation and Computation , https://doi.org\/10.1080/03610918 .2019.1664581. [
DOI:10.1080/03610918.2019.1664581]
6. Gilmour, A. R., Cullis, B. R., Welham, S. J., Gogel, B. J., and Thompson, R. (2004), An efficient computing strategy for predicting in mixed linear models, Comput. Statist. Data Anal., 44 , 571-586. [
DOI:10.1016/S0167-9473(02)00258-X]
7. Guler, H., and Kac{c ıranlar, S. (2009), A comparison of mixed and ridge estimators of linear models. Communications in Statistics - Simulation and Computation, 38 (2),368-401. [
DOI:10.1080/03610910802506630]
8. Harrison, D., and Rubinfeld, D. L. (1978), Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5 (1), 81-102. [
DOI:10.1016/0095-0696(78)90006-2]
9. Hoerl, A. E., and Kennard, R. W. (1970), Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 12 , 55-67. [
DOI:10.1080/00401706.1970.10488634]
10. Jiang, J. (2007),Linear and Generalized Linear Mixed Models and Their Applications . Springer, New York.
11. Kibria, B. M. G. (2003), Performance of some new ridge regression estimators. Commun. Statist. Simul. Computat., 32 , 419-435. [
DOI:10.1081/SAC-120017499]
12. Kuran, O., and Ozkale, M. R. (2016), Gilmour's approach to mixed and stochastic restricted ridge predictions in linear mixed models. Linear Algebra and Its Applications, 508 , 22-47. [
DOI:10.1016/j.laa.2016.06.040]
13. Liu, K. (1993). A new class of biased estimate in linear regression. Commun. Statist. Theor. Meth., 22 (2), 393-402. [
DOI:10.1080/03610929308831027]
14. Liu, X. Q., and Hu, P. (2013), General ridge predictors in a mixed linear model. J. Theor. Appl. Stat., 47 , 363-378. [
DOI:10.1080/02331888.2011.592190]
15. McDonald, G. C., and Galarneau, D. I. (1975), A monte carlo evaluation of some ridge -type estimators. J. Amer. Statist. Assoc., 70 , 407-416. [
DOI:10.1080/01621459.1975.10479882]
16. Nakamura, T. (1990), Corrected score function for errors-in-variables models: Metho dology and application to generalized linear models. Biometrika, 77 (1), 127-37. [
DOI:10.1093/biomet/77.1.127]
17. Rao, C. R., Toutenburg, H. (1995), Linear Models: Least Squares and Alternatives . New York: Springer-Verlag. [
DOI:10.1007/978-1-4899-0024-1]
18. Rao, C. R., Toutenburg, H., and Heumann, C. (2008), Linear models and generslizations . Berlin: Springer.
19. Ozkale, M. R., and Can, F. (2017), An evaluation of ridge estimator in linear mixed models: an example from kidney failure data. J. Appl. Statist., 44 (12), 2251-2269. [
DOI:10.1080/02664763.2016.1252732]
20. Ozkale, M. R., and Kuran, O. (2018), A further prediction method in linear mixed models: Liu prediction. Communications in Statistics - Simulation and Computation, 49 (12), 3171-3195 [
DOI:10.1080/03610918.2018.1535071]
21. Ozkale, M. R., and Kacc iranlar, S. (2007), The restricted and unrestricted two-parameter estimators. Commun. Statist. Theor. Meth., 36 , 2707-2725. [
DOI:10.1080/03610920701386877]
22. Searle, S. R., Casella, G., and McCulloch, C. E. (1992), Variance Components . John Wiley and Sons, New York. [
DOI:10.1002/9780470316856]
23. Theil, H. (1963), On the use of incomplete prior information in regression analysis. J. Amer. Statist. Assoc., 58 , 401-414. [
DOI:10.1080/01621459.1963.10500854]
24. Theil, H., and Goldberger, A. S. (1961), On pure and mixed statistical estimation in economics. Int. Econ. Rev., 2 , 65-78 [
DOI:10.2307/2525589]
25. Trenkler, G., and Toutenburg, H. (1990), Mean squared error matrix comparisons between biased estimators-An overview of recent results. Statistical Papers, 31 (1), 165-79. [
DOI:10.1007/BF02924687]
26. Yang, H., and Chang, X. (2010), A New Two-Parameter Estimator in Linear Regression, Commun. Statist. Theor. Meth., 39 , 923-934. [
DOI:10.1080/03610920902807911]
27. Yavarizadeh, B., Rasekh, A., Ahmed, S. E., and Babadi, B. (2019), Ridge estimation in linear mixed measurement error models with stochastic linear mixed restrictions. Communications in Statistics - Simulation and Computation , [
DOI:10.1080/03610918.2019.1705974]
28. Zare, K., Rasekh, A., and Rasekhi, A. A. (2012), Estimation of variance components in linear mixed measurement error models. Statistical Papers, 53 (4), 849-63. [
DOI:10.1007/s00362-011-0387-0]
29. Zhong, X. P., Fung, W. K., and Wei, B. C. (2002), Estimation in linear models with random effects and errors-in-variables. Annals of the Institute of Statistical Mathematics, 54 (3), 595-606 [
DOI:10.1023/A:1022467212133]