1. Aarset, M. V. (1987), How to identify a bathtub hazard rate. IEEE Transactions on Reliability , 36(1), 106-108. [
DOI:10.1109/TR.1987.5222310]
2. Akinsete, A., Famoye, F., and Lee, C. (2014), The Kumaraswamy-geometric distribution. Journal of Statistical Distributions and Applications, 1, 1-21. [
DOI:10.1186/s40488-014-0017-1]
3. Alizadeh, M. Tahir, M. H., Cordeiro, G. M., Zubair, M., and Hamedani, G. G. (2015), The Kumaraswamy Marshall-Olkin family of distributions. Journal of the Egyptian Mathematical Society , 23(3), 546-557. [
DOI:10.1016/j.joems.2014.12.002]
4. Alzaatreh, A., Lee, C., and Famoye, F. (2012), On the discrete analogues of continuous distributions. Statistical Methods , 9(6), 589-603. [
DOI:10.1016/j.stamet.2012.03.003]
5. Amigo, J. M., Balogh, S. G., and Hernandez, S. (2018), A brief review of generalized entropies. Entropy , 20, 813. [
DOI:10.3390/e20110813]
6. Chakraborty, S. (2015), A new discrete distribution related to generalized gamma distribution and its properties. Communication in Statistics-Theory and Methods , 44(8), 1691-1705. [
DOI:10.1080/03610926.2013.781635]
7. Chakraborty, S., and Chakravarty, D. (2016), A new discrete probability distribution with integer support on (-∞,∞). Communication in Statistics-Theory and Method , 45(2), 492-505. [
DOI:10.1080/03610926.2013.830743]
8. Cordeiro, G. M., and de Castro, M. (2011), A new family of generalized distributions. Journal of Statistics Computation and Simulation , 81(7), 883-893. [
DOI:10.1080/00949650903530745]
9. Cox, D. R., and Hinkley, D. V. (1974), Theoretical Statistics, London: Chapman & Hall. [
DOI:10.1007/978-1-4899-2887-0]
10. Gomez-Deniz, E. (2010), Another generalization of the geometric distribution. Test , 19(2), 399-415. [
DOI:10.1007/s11749-009-0169-3]
11. Gupta, R. C., and Gupta, R. D. (2007), Proportional reversed hazard rate model and its applications. Journal of Statistics and Planning Inference , 137(11), 3525-3536. [
DOI:10.1016/j.jspi.2007.03.029]
12. Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998), Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory Methods , 27(4), 887-904. [
DOI:10.1080/03610929808832134]
13. Jayakumar, K., and Thomas, M. (2008), On a generalization of Marshall-Olkin scheme and its application to Burr type XII distribution. Statistical Papers , 49(3), 421-439. [
DOI:10.1007/s00362-006-0024-5]
14. Jayakumar, K., and Sankaran, K. K. (2017a), A discrete generalization of Marshall-Olkin scheme and its application to geometric distribution. Journal of the Kerala Statistical Association , 28, 1-21.
15. Jayakumar, K., and Sankaran, K. K. (2017b), A generalization of discrete Weibull distribution. Communications in Statistics-Simulation and Computation , 47(24), 6064-6078. [
DOI:10.1080/03610926.2017.1406115]
16. Krishna, H., and Pundir, P. S. (2009), Discrete Burr and discrete Pareto distributions. Statistical Methodology , 6(2), 177-188. [
DOI:10.1016/j.stamet.2008.07.001]
17. Lisman, J. H. C., and van Zuylen, M. C. A. (1972), Note on the generation of the most probable frequency distribution. Statistica Neerlandica , 26(1), 19-23. [
DOI:10.1111/j.1467-9574.1972.tb00152.x]
18. Marshall, A. W., and Olkin, I. (1997), A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrica , 84(3), 641-652. [
DOI:10.1093/biomet/84.3.641]
19. Murthy, D. N. P., Xie, M., and Jiang, R. (2004), Weibull models. New Jersey: John Wiley and Sons.
20. Nakagawa, T., and Osaki, S. (1975), The discrete Weibull distribution. IEEE Transactions on Reliability , 24(5), 300-301. [
DOI:10.1109/TR.1975.5214915]
21. Sato, H., Ikota, M., Aritoshi, S., and Masuda, H. (1999), A new defect distribution meteorology with a consistent discrete exponential formula and its applications. IEEE Transactions on Semiconductor Manufacturing , 12(4), 409-418. [
DOI:10.1109/66.806118]
22. Stein, W. E., and Dattero, R. (1984), A new discrete Weibull distribution. IEEE Transactions on Reliability , 33(2), 196-197. [
DOI:10.1109/TR.1984.5221777]
23. Steutel, F. W., and van Harn, K. (2004), Infinite Divisibility of Probability Distributions on the Real Line. New York: Marcel Dekker. [
DOI:10.1201/9780203014127]
24. Supanekar, S. R., and Shirke, D. T. (2015), A new discrete family of distributions. ProbStat Forum , 8, 83-94.
25. Tahir, M. H., and Nadarajah, S. (2015), Parameter induction in continuous univariate distributions: Well established G families. Annals of the Brazilian Academy of Sciences , 87(2), 539-568. [
DOI:10.1590/0001-3765201520140299]
26. Xie, M., and Goh, T. N. (1993), Improvement detection by control charts for high yield processes. International Journal of Quality & Reliability Management , 10(7), 24-31. [
DOI:10.1108/02656719310043779]