Volume 19, Issue 2 (12-2020)                   JIRSS 2020, 19(2): 145-173 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasirzadeh R, Zamani A. Poisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods. JIRSS. 2020; 19 (2) :145-173
URL: http://jirss.irstat.ir/article-1-654-en.html
department of statistics, Faculty of science, Fasa University , nasirzadeh_roya@yahoo.com
Abstract:   (324 Views)

This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predicted value for h-step ahead of the series is obtained. Some simulations and a real data analysis are applied to compare the presented estimations and the prediction methods.

Full-Text [PDF 189 kb]   (85 Downloads)    
Type of Study: Original Paper | Subject: 60Hxx: Stochastic analysis
Received: 2020/02/19 | Accepted: 2020/12/3 | Published: 2020/12/11

1. Al-Osh, M. A., and Alzaid, A. A. (1987), First-order integer-valued autoregressive (INAR (1)) process. Journal of Time Series Analysis, 8(3), 261-275. [DOI:10.1111/j.1467-9892.1987.tb00438.x]
2. Awale, M., Ramanathan, T. V., and Kale, M. (2017), Coherent forecasting in integer-valued AR (1) models with geometric marginals. Journal of Data Science, 15(1), 95-114. [DOI:10.6339/JDS.201701_15(1).0006]
3. Bakouch, H. S., and Ristic, M. M. (2010), Zero truncated Poisson integer-valued AR (1) model. Metrika, 72(2), 265-280. [DOI:10.1007/s00184-009-0252-5]
4. Bhansali, R. (1974), Asymptotic mean-square error of predicting more than one-step ahead using the regression method. Journal of the Royal Statistical Society: Series C, 23, 35-42. [DOI:10.2307/2347051]
5. Brannas, K., and Shahiduzzaman Quoreshi, A. M. M. (2010), Integer-valued moving average modelling of the number of transactions in stocks. Applied Financial Economics, 20(18), 1429-1440. [DOI:10.1080/09603107.2010.498343]
6. B"{uhlmann, P. (1997), Sieve bootstrap for time series. Bernoulli, 3(2), 123-148. [DOI:10.2307/3318584]
7. Cardinal, M., Roy, R., and Lambert, J. (1999), On the application of integer-valued time series models for the analysis of disease incidence. Statistics in Medicine, 18(15), 2025-2039. https://doi.org/10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.0.CO;2-D [DOI:10.1002/(SICI)1097-0258(19990815)18:153.0.CO;2-D]
8. Chuang, C. S., and Chan, N. H. (2002), Empirical likelihood for autoregressive models, with applications to unstable time series. Statistica Sinica, 387-407.
9. Fokianos, K., and Kedem, B. (2003), Regression theory for categorical time series. Statistical science, 18(3), 357-376. [DOI:10.1214/ss/1076102425]
10. Fox, R., and Taqqu, M. S. (1986), Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. The Annals of Statistics, 517-532. [DOI:10.1214/aos/1176349936]
11. Freeland, R. K., and McCabe, B. P. (2004), Forecasting discrete valued low count time series. International Journal of Forecasting, 20(3), 427-434. [DOI:10.1016/S0169-2070(03)00014-1]
12. Ghitany, M. E., and Al-Mutairi, D. K. (2009), Estimation methods for the discrete Poisson-Lindley distribution. Journal of Statistical Computation and Simulation, 79(1), 1-9. [DOI:10.1080/00949650701550259]
13. Hannan, E. J. (1973), The asymptotic theory of linear time-series models. Journal of Applied Probability, 10(1), 130-145. [DOI:10.2307/3212501]
14. Kim, H. Y., and Park, Y. (2008), A non-stationary integer-valued autoregressive model. Statistical papers, 49(3), 485. [DOI:10.1007/s00362-006-0028-1]
15. Livsey, J., Lund, R., Kechagias, S., and Pipiras, V. (2018), Multivariate integer-valued time series with flexible autocovariances and their application to major hurricane counts. The Annals of Applied Statistics, 12(1), 408-431. [DOI:10.1214/17-AOAS1098]
16. Maiti, R., and Biswas, A. (2015), Coherent forecasting for over-dispersed time series of count data. Brazilian Journal of Probability and Statistics, 29(4), 747-766. [DOI:10.1214/14-BJPS244]
17. Maiti, R., Biswas, A., and Das, S. (2016), Coherent forecasting for count time series using Box-Jenkins's AR (p) model. Statistica Neerlandica, 70(2), 123-145. [DOI:10.1111/stan.12083]
18. McCabe, B. P., Martin, G. M., and Harris, D. (2011), Efficient probabilistic forecasts for counts. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 253-272. [DOI:10.1111/j.1467-9868.2010.00762.x]
19. McKenzie, E. (2003), Discrete variate time series. In C. Rap. and D. Shanbhag, editors, Stochastic Processes: Modelling and Simulation, Handbook of Statistics, volume 21, pages 573-606. Elsevier Science B.V., North-Holland, Amsterdam. [DOI:10.1016/S0169-7161(03)21018-X]
20. Mohammadpour, M., Bakouch, H. S., and Shirozhan, M. (2018), Poisson-Lindley INAR (1) model with applications. Brazilian Journal of Probability and Statistics, 32(2), 262-280. [DOI:10.1214/16-BJPS341]
21. Mori~{na, D., Puig, P., Ríos, J., Vilella, A., and Trilla, A. (2011), A statistical model for hospital admissions caused by seasonal diseases. Statistics in medicine, 30(26), 3125-3136. [DOI:10.1002/sim.4336]
22. Mykland, P. A. (1995), Dual likelihood. The Annals of Statistics, 396-421. [DOI:10.1214/aos/1176324527]
23. Nasti'{c, A. S., Laketa, P. N., and Ristic, M. M. (2016), Random environment integer-valued autoregressive process. Journal of Time Series Analysis, 37(2), 267-287. [DOI:10.1111/jtsa.12161]
24. Owen, A. B. (1988), Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75(2), 237-249. [DOI:10.1093/biomet/75.2.237]
25. Owen, A. (1990), Empirical likelihood ratio confidence regions. The Annals of Statistics, 18(1), 90-120. [DOI:10.1214/aos/1176347494]
26. Pascual, L., Romo, J., and Ruiz, E. (2004), Bootstrap predictive inference for ARIMA processes. Journal of Time Series Analysis, 25(4), 449-465. [DOI:10.1111/j.1467-9892.2004.01713.x]
27. Rice, J. (1979), On the estimation of the parameters of a power spectrum. Journal of Multivariate Analysis, 9(3), 378-392. [DOI:10.1016/0047-259X(79)90095-2]
28. Risti'{c, M. M., Bakouch, H. S., and Nastic, A. S. (2009), A new geometric first-order integer-valued autoregressive (NGINAR (1)) process. Journal of Statistical Planning and Inference, 139(7), 2218-2226. [DOI:10.1016/j.jspi.2008.10.007]
29. Sesay, S. A. O., and Rao, T. S. (1992), Frequency-domain estimation of bilinear time series models. Journal of Time Series Analysis, 13(6), 521-545. [DOI:10.1111/j.1467-9892.1992.tb00124.x]
30. Silva, M. E., and Oliveira, V. L. (2005), Difference equations for the higher order moments and cumulants of the INAR (p) model. Journal of Time Series Analysis, 26(1), 17-36. [DOI:10.1111/j.1467-9892.2005.00388.x]
31. Scotto, M. G., Weiss, C. H., and Gouveia, S. (2015), Thinning-based models in the analysis of integer-valued time series: a review. Statistical Modelling, 15(6), 590-618. [DOI:10.1177/1471082X15584701]
32. Silva, N., Pereira, I. and Eduarda Silva, E. (2009), Forecasting in INAR(1) model. Statistical journal. 7(1), 119-134.
33. Simarmata, D. M., Novkaniza, F. and Widyaningsih, Y. (2017), A time series model: First-order integer-valued autoregressive (INAR(1)). AIP Conference Proceedings 1862, 030157 (2017); doi: 10.1063/1.4991261. [DOI:10.1063/1.4991261]
34. Steutel, F. W., and Van Harn, K. (1979), Discrete analogues of self-decomposability and stability. The Annals of Probability, 893-899. [DOI:10.1214/aop/1176994950]
35. Rao, T. S., and Chandler, R. E. (1996), A frequency domain approach for estimating parameters in point process models. In Athens Conference on Applied Probability and Time Series Analysis (pp. 392-405). Springer, New York, NY. [DOI:10.1007/978-1-4612-2412-9_29]
36. Walker, A. M. (1964), Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series. Journal of the Australian Mathematical Society, 4(3), 363-384. [DOI:10.1017/S1446788700024137]
37. Wang, Y., and Zhang, H. (2018), Some estimation and forecasting procedures in Possion-Lindley INAR (1) process. Communications in Statistics-Simulation and Computation, 1-14. [DOI:10.1080/03610918.2018.1547402]
38. Wei{ss, C. H. (2008), Thinning operations for modeling time series of counts- a survey. AStA Advances in Statistical Analysis, 92(3), 319. [DOI:10.1007/s10182-008-0072-3]
39. Whittle, P. (1953), The analysis of multiple stationary time series. Journal of the Royal Statistical Society: Series B (Methodological), 15(1), 125-139. [DOI:10.1111/j.2517-6161.1953.tb00131.x]
40. Zhang, H., Wang, D., and Zhu, F. (2010), Inference for INAR (p) processes with signed generalized power series thinning operator. Journal of Statistical Planning and Inference, 140(3), 667-683. [DOI:10.1016/j.jspi.2009.08.012]
41. Zhang, H., Wang, D., and Zhu, F. (2011), The empirical likelihood for first-order random coefficient integer-valued autoregressive processes. Communications in Statistics-Theory and Methods, 40(3), 492-509. [DOI:10.1080/03610920903443997]
42. Zheng, H., Basawa, I. V., and Datta, S. (2006), Inference for pth-order random coefficient integer-valued autoregressive processes. Journal of Time Series Analysis, 27(3), 411-440. [DOI:10.1111/j.1467-9892.2006.00472.x]
43. Zheng, H., Basawa, I. V., and Datta, S. (2007), First-order random coefficient integer-valued autoregressive processes. Journal of Statistical Planning and Inference, 137(1), 212-229. [DOI:10.1016/j.jspi.2005.12.003]

Send email to the article author

© 2015 All Rights Reserved | Journal of The Iranian Statistical Society