1. Akaike, H. (1973), Information theory and an extension of maximum likelihood principle. Second International Symposium on Information Theory, Akademia Kiado, 267-281.
2. Atkinson, A.C. (1970), A method for discriminating between models. Journal of the Royal Statistical Society B, 32, 323-344. [
DOI:10.1111/j.2517-6161.1970.tb00845.x]
3. Barmalzan, G. and Sayyareh, A. (2011), The choice of an admissible sete of rival models. Journal of Statistical Sciences, 4(2), 149-165.
4. Clarke, K., A. and Signorino, C. S. (2010), Discriminating methods: Tests for non-nested discrete choice models. Political Studies, 58, 368-388. [
DOI:10.1111/j.1467-9248.2009.00813.x]
5. Commenges, D., Sayyareh, A., Letenneur, L., Guedj, J. and Bar-Hen, A. (2008), Estimating a difference of Kullback-Leibler risks Using a normalized difference of AIC. The Annals of Applied Statistics, 2(3), 1123-1142. [
DOI:10.1214/08-AOAS176]
6. Cox, D.R. (1961), Test of separate families of hypothesis. proceeding of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 105-123.
7. Katayama, N. (2008), Portmanteau likelihood ratio tests for model selection, (http://
8. www.economics.smu.edu.sg/femes/2008/169.pdf).
9. Kullback, S., Leibler, R. (1951), On information and sufficiency. Annals of Mathematical Statistics, 22, 79-86. [
DOI:10.1214/aoms/1177729694]
10. bibitem[Al-qaness et al. (2020)]{Al-qaness Lorestan, H. and Sayyareh, A. (2017), Model selection using :union:-intersection principle for non nested models. Communications in Statistics-Theory and Methods, 46(4), 1636-1649. [
DOI:10.1080/03610926.2015.1024863]
11. Pesaran, M. H. (1974), On the general test of model selection. Review of Economic Studies, 41, 153-171. [
DOI:10.2307/2296710]
12. Pesaran, M. H., and Deaton, A.S. (1978), Testing non-nested nonlinear regression models. Econometrica, 46, 667-694. [
DOI:10.2307/1914240]
13. Pho, K. H., Ly, S. Ly, S., and Lukusa, T. M. (2019), Comparison among Akaike information criterion, Bayesian information criterion and Vuong's test in model selection: A case study of violated speed regulation in Taiwan. Journal of Advanced Engineering and Computation, 3(1), 293-303. [
DOI:10.25073/jaec.201931.220]
14. Sayyareh, A. Obeidi, R., and Bar-Hen, A. (2011), Empirical comparison of some model selection criteria. Communication in Statistics-Simulation and Computation, 40, 72-86. [
DOI:10.1080/03610918.2010.530367]
15. Sayyareh, A. (2012), Inference after separated hypotheses testing: An investigation for linear models. Journal of Statistical Computation and Simulation. 82(9), 1275-1286. [
DOI:10.1080/00949655.2011.575783]
16. Sayyareh, A. (2017), Non parametric multiple comparisons of non nested rival models. Communications in Statistics-Theory and Methods, 46(17), 8369-8386. [
DOI:10.1080/03610926.2016.1179759]
17. Shimodiara, H. (1998), An application of multiple comparison techniques to model selection. Annals of Institute Statistical Mathematics, 50(1), 1-13. [
DOI:10.1023/A:1003483128844]
18. Shimodaira, H. (2001), Multiple comparisons of log-likelihoods and combining non-nested models with application to phylogenetic tree selection. Communication in Statistics-Theory and methods, 30, 1751-1772. [
DOI:10.1081/STA-100105696]
19. Vuong, Q. H. (1989), Likelihood ratio tests for model selection and non-nested hHypotheses. Econometrica, 57(2), 307-333. [
DOI:10.2307/1912557]
20. Yanagihara, H., and Ohomoto, C. (2005), On distribution of AIC in linear regression models. Journal of Statistical Planning and Inference, 133, 417-433. [
DOI:10.1016/j.jspi.2004.03.016]
21. White, H. (1982a). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-26. [
DOI:10.2307/1912526]
22. White, H. (1982b), Regularity conditions for Cox's test of non-nested hypotheses. Journal of Econometrics, 19, 301-318. [
DOI:10.1016/0304-4076(82)90007-0]
23. Zucchini, W. (2000), An introduction to model selection. Journal of Mathematical Psychology, 44, 41-61. [
DOI:10.1006/jmps.1999.1276]