On Multivariate Likelihood Ratio Ordering among Generalized Order Statistics and their Spacings

Maryam Sharafi, Baha-Eldin Khaledi, Nasrin Hami

Department of Statistics, Razi University, Kermanshah, Iran.

Abstract. The most of the results obtained about stochastic properties of generalized order statistics and their spacings in the literature are based on equal model parameters. In this paper, with less restrictive conditions on the model parameters, we prove some new multivariate likelihood ratio ordering results between two sub-vectors of GOS’s as well as two sub-vectors of p-spacings based on two continuous distribution functions. In particular, we apply the new results to obtain some computable bounds on the mean residual life of some unobserved progressive type II censored order statistics.

Keywords. Hazard rate order, log-convex density, MTP_2 and TP_2 functions, progressive Type-II censored order statistics, residual lifetime and univariate likelihood ratio order.

MSC: 60E15, 62G30, 62N01, 62N05.
1 Introduction

Let $X(1, n, ˜m, k), \ldots, X(n, n, ˜m, k)$ be n generalized order statistics (GOS’s) based on distribution function F with joint density function

$$f(x_1, \ldots, x_n) = k \left(\prod_{j=1}^{n-1} \gamma_j \right) \prod_{j=1}^{n-1} (1 - F(x_j)^{m_j}) (1 - F(x_n))^{k-1} \prod_{j=1}^{n} f(x_j),$$

(1.1)

where $n \in \mathbb{N}$, $k > 0$, $m_1, \ldots, m_{n-1} \in \mathbb{R}$, $M_r = \sum_{j=r}^{n-1} m_j$, $1 \leq r \leq n - 1$, $\gamma_r = k + n - r + M_r > 0$ for all $r \in \{1, \ldots, n - 1\}$, and let $\bar{m} = (m_1, \ldots, m_{n-1})$ if $n \geq 2$ ($\bar{m} \in \mathbb{R}$ arbitrary, if $n = 1$) (see Kamps, 1995a,b). It is known that the distribution of GOS’s from F is the same as that of

$$(F^{-1}(U(1, n, ˜m, k)), F^{-1}(U(2, n, ˜m, k)), \ldots, F^{-1}(U(n, n, ˜m, k))),$$

(1.2)

where $(U(1, n, ˜m, k), U(2, n, ˜m, k), \ldots, U(n, n, ˜m, k))$, is the vector of GOS’s from a uniform distribution over $(0, 1)$ with density function

$$h(u_1, u_2, \ldots, u_n) = k \left(\prod_{j=1}^{n-1} \gamma_j \right) \prod_{j=1}^{n-1} (1 - u_j)^{m_j} (1 - u_n)^{k-1}, \; u_1 \leq \ldots \leq u_n.$$

(1.3)

From Eq. (1.3), upon integrating out appropriate variables, we obtain the joint density function of $(U(1, n, ˜m, k), U(2, n, ˜m, k), \ldots, U(i, n, ˜m, k))$, for $1 \leq i \leq n$, as

$$h(u_1, u_2, \ldots, u_i) = c_{i-1} \left(\prod_{j=1}^{i-1} (1 - u_j)^{m_j} \right) (1 - u_i)^{\gamma_{i-1}-1}, \; 0 \leq u_1 \leq \ldots \leq u_i < 1,$$

where the constant c_{i-1} is defined by $c_{i-1} = \prod_{j=1}^{i} \gamma_j$, $i = 1, \ldots, n - 1$, $c_0 = 0$, and $\gamma_n = k$.

Using specific set of parameters m_i’s and k, various ordered statistical data like usual order statistics, record values, progressive censoring, sequential order statistics among others are special cases of GOS’s. For more details the reader is referred to Kamps (1995a) and Khaledi (2005).

As defined in Xie and Hu (2009), for a given positive integer $p \leq n$, let denote the vector of p-spacings of $X(i, n, ˜m, k)$’s by

$$D_X^{(p)} = (D^{(p)}_{X,1,n}, D^{(p)}_{X,2,n}, \ldots, D^{(p)}_{X,n-p,n}),$$
On Multivariate Likelihood Ratio Ordering among ...

where $D^{(p)}_{X,r,n} = X_{(r+p,n,\tilde{m},k)} - X_{(r,n,\tilde{m},k)}$, $r = 0, 1, \cdots, n-p$ and $X_{(0,n,\tilde{m},k)} = 0$.

Stochastic comparisons of GOS’s as well as spacings of GOS’s in one sample as well as two sample problems were discussed in Belzunce et al. (2005), Khaledi (2005), Khaledi and Kochar (2005), Hu and Zhuang (2005), Hu and Zhuang (2006), Fang et al. (2006), Hu et al. (2007), Zhuang and Hu (2007), Xie and Hu (2009) and Torrado et al. (2012). Recently, Balakrishnan et al. (2010) established some new stochastic ordering results among GOS’s according to univariate as well as multivariate likelihood ratio orders, from which they obtained some interesting new results about stochastic comparisons of conditional GOS’s which cover many results for usual order statistics obtained by Khaledi and Shaked (2007), Li and Zhao (2008), Zhao and Balakrishnan (2009) and many results for record values obtained by Khaledi and Shojaei (2007) and Khaledi et al. (2009).

The most of the results obtained about stochastic properties of GOS’s and their spacings in the above mentioned references are based on the condition that the parameters m_i’s in (1.1) are all equal. In this paper with less restrictive conditions on the m_i’s, we prove some new multivariate likelihood ratio ordering results between two sub-vectors of GOS’s as well as two sub-vectors of p-spacings based on two distribution functions F and G.

The notion of multivariate likelihood ratio order and univariate likelihood ratio order is defined next.

Definition 1.1. Let X and Y be two n-dimensional random vectors with density functions f_X and f_Y, respectively. We say that X is less than Y in the multivariate likelihood ratio order, denoted by $X \leq_{lr} Y$, if

\begin{align*}
 f_X(x_1, x_2, \cdots, x_n) f_Y(y_1, y_2, \cdots, y_n) \\
 \leq f_X(x_1 \land y_1, x_2 \land y_2, \cdots, x_n \land y_n) f_Y(x_1 \lor y_1, x_2 \lor y_2, \cdots, x_n \lor y_n)
\end{align*}

for all (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) in \mathbb{R}^n, where \land and \lor denote the minimum and maximum operations, respectively.

Given a random vector X with density function f_X, we say that X or f_X is MTP$_2$ (multivariate totally positive of order 2) if $X \leq_{lr} X$. It is known that the multivariate likelihood ratio order as well as MTP$_2$ property of a random vector is closed under the marginal operator.

In the univariate case, given two random variables X and Y with density functions f and g, respectively, we say that X is less than Y in
the likelihood ratio order, denoted by \(X \leq_{lr} Y \), if \(f(t)g(s) \leq f(s)g(t) \) for all \(s < t \in \mathbb{R} \). For more details about these orderings the reader is referred to Shaked and Shanthikumar (2007, chapters 1 and 6).

Balakrishnan et al. (2010) considered the problem of stochastic comparisons of GOS’s and proved the following result.

Theorem 1.2. (Balakrishnan et al. (2010)) Let \(X \) and \(Y \) be two absolutely continuous random variables with distribution functions \(F \) and \(G \), densities \(f \) and \(g \), and hazard rates \(r_F \) and \(r_G \), respectively. Let \(X = (X(1,n,m,k), \ldots, X(n,n,m,k)) \) and \(Y = (Y(1,n',m,k), \ldots, Y(n',n',m,k)) \) be random vectors of \(m \)-GOS’s based on distributions \(F \) and \(G \), respectively.

For \(r_1 \leq r_2 < \cdots < r_i \leq n, \ r_1' \leq r_2' \leq \cdots \leq r_i' \leq n', \ r_1' - r_1 = r_2' - r_2 = \cdots = r_i' - r_i \geq \max\{0, n' - n\} \) if either

(i) \(X \leq_{lr} Y \) and \(m \geq 0 \), or

(ii) \(X \preceq_{hr} Y \), \(r_G(x)/r_F(x) \) is increasing in \(x \), and \(-1 \leq m < 0 \),

then

\[
(X(r_1,n,m,k); X(r_2,n,m,k); \ldots; X(r_i,n,m,k)) \preceq_{lr} (Y(r_1',n',m,k); Y(r_2',n',m,k); \ldots; Y(r_i',n',m,k)).
\]

Let \(F \) denote an absolutely distribution function of a non-negative random variable \(X \) and assume that the vector of parameters \(m_X = (m_1, m_2, \ldots, m_{n-1}) \) in (1.1) for \(r_1 < r_2 < \cdots < r_i \), \(\{r_1, r_2, \ldots, r_i\} \subset \{1, 2, 3, \ldots, n\} \), satisfy that

\[
\begin{align*}
m_1 & = m_2 = \cdots = m_{r_1-1} = \mu_1, \ m_{r_1} = \mu^{(r_1)}, \\
m_{r_1+1} = m_{r_1+2} = \cdots = m_{r_2-1} = \mu_2, \ m_{r_2} = \mu^{(r_2)}, \\
m_{r_2+1} = m_{r_2+2} = \cdots = m_{r_3-1} = \mu_3, \ m_{r_3} = \mu^{(r_3)}, \ldots, \\
m_{r_i-1+1} = m_{r_i-1+2} = \cdots = m_{r_{i-1}} = \mu_i, \ m_{r_i} = \mu^{(r_i)},
\end{align*}
\]

and \(m_{r_i+l} = \mu_{r_i+l}, \ l = 1, \ldots, n - 1 - r_i \). That is

\[
m_X = (\mu_1, \mu_1^{(r_1)}, \mu_2, \mu_2^{(r_2)}, \mu_3, \ldots, \mu_i, \mu_i^{(r_i)}), \mu_{r_i+1}, \mu_{r_i+2}, \ldots, \mu_{n-1}).
\]

Similarly, we assume that \(G \) denote an absolutely distribution function of a non-negative random variable \(Y \). Let, the vector of parameters \(m_Y = (m_1, m_2, \ldots, m_{n-1}) \) in (1.1) for \(r_1 < r_2 < \cdots < r_i \), \(\{r_1, r_2, \ldots, r_i\} \subset \{1, 2, 3, \ldots, n\} \), satisfy that

\[
\begin{align*}
m_1 & = m_2 = \cdots = m_{r_1-1} = \gamma_1, \ m_{r_1} = \gamma^{(r_1)}, \\
m_{r_1+1} = m_{r_1+2} = \cdots = m_{r_2-1} = \gamma_2, \ m_{r_2} = \gamma^{(r_2)}, \\
m_{r_2+1} = m_{r_2+2} = \cdots = m_{r_3-1} = \gamma_3, \ m_{r_3} = \gamma^{(r_3)}, \ldots,
\end{align*}
\]
On Multivariate Likelihood Ratio Ordering among GOS’s

\[m_{r_{i-1}+1} = m_{r_{i-1}+2} = \cdots = m_{r_i-1} = \gamma_i, \quad m_{r_i} = \gamma(r_i), \]

and \[m_{r_i+l} = \gamma_{r_i+l}, \quad l = 1, \cdots, n - 1 - r_i. \] That is

\[
\mathbf{m_Y} = (\gamma_1, \ldots, \gamma_1, \gamma_1^{(r_1)}, \gamma_2, \ldots, \gamma_2^{(r_2)}, \ldots, \gamma_i, \ldots, \gamma_i^{(r_i)}, \gamma_{r_{i+1}}, \gamma_{r_{i+2}}, \ldots, \gamma_{n-1}).
\]

(1.5)

In Section 2, we generalize Theorem 1.2 to the cases when the set of parameters of GOS’s based on distribution function \(F \) is \(\mathbf{m_X} \) and that of GOS’s based on \(G \) is \(\mathbf{m_Y} \) (Theorem 2.6). In particular, we applied this result to obtain some computable bounds on the mean residual of some unobserved progressive type II censored order statistics.

Hu and Zhuang (2006) considered the problem of stochastic comparisons of \(p \)-spacings of GOS’s when \(m_1 = m_2 = \cdots = m_{n-1} = m \) and proved that if \(X \leq_{lr} Y \) and either \(X \) or \(Y \) has log-convex density, then \(D_{X,r,n}^{(p)} \leq_{lr} D_{Y,r,n}^{(p)} \), \(r = 0, \ldots, n - p \). Xie and Hu (2009) further studied this problem and in one sample problem proved that if \(m_1 \geq m_2 \geq \cdots \geq m_{n-1} \geq 0 \) and \(F \) has log-convex density, then \(D_{X,r,n}^{(p)} \leq_{lr} D_{X,r+1,n}^{(p)} \) and \(D_{X,r,n+1}^{(p)} \leq_{lr} D_{X,r,n}^{(p)} \). Fang et al. (2006) obtained a multivariate likelihood ratio order result between two vectors of \(1 \)-spacings of GOS’s in one sample problem. They showed that if \(F \) has log-convex density and \(m_j \geq 0, \quad j = 1, \ldots, n \), then

\[
(D_{X,1,n+1}^{(1)}, D_{X,2,n+1}^{(1)}, \ldots, D_{X,n,n+1}^{(1)}) \leq_{lr} (D_{Y,1,n}^{(1)}, D_{Y,2,n}^{(1)}, \ldots, D_{Y,n,n}^{(1)}).
\]

In Section 3, we prove that if \(X \leq_{lr} Y \) and either \(X \) or \(Y \) has log-convex density, then

\[
(D_{X,r_{j+1},n}^{(p)}, D_{X,r_{j+2},n}^{(p)}, \ldots, D_{X,r_{n-p},n}^{(p)}) \leq_{lr} (D_{Y,r_{j+1},n}^{(p)}, D_{Y,r_{j+2},n}^{(p)}, \ldots, D_{Y,r_{n-p},n}^{(p)}),
\]

where \(D_{X,r_{j},n}^{(p)} \) is the \(j \)th \(p \)-spacing of GOS’s based on distribution function \(F \) with parameter \(\mathbf{m_X} \) given in (1.4) and \(D_{Y,r_{j}'}^{(p)} \) is the \(j \)th \(p \)-spacing of GOS’s based on distribution function \(G \) with parameter \(\mathbf{m_Y} \) given in (1.5).

2 Multivariate \(lr \) Ordering among GOS’s

We shall be using the notion of totally positive of order 2 in this paper. We say that a function \(h(x,y) \) is totally positive of order 2 (\(TP_2 \)) if \(h(x,y) \geq 0 \) and

\[
\begin{vmatrix}
 h(x_1,y_1) & h(x_1,y_2) \\
 h(x_2,y_1) & h(x_2,y_2)
\end{vmatrix} \geq 0,
\]

(2.1)
whenever $x_1 < x_2, y_1 < y_2$. We use the following lemma of Karlin (1968 p. 99).

Lemma 2.3. Let A, B and C be subsets of the real line and let $L(x,z)$ be TP_2 in (x,z) and $M(x,y,z)$ be TP_2 in each pairs of (z,x), (z,y) and (x,y) for $x \in A$, $z \in B$ and $y \in C$. Then $K(x,y) = \int L(x,z)M(x,y,z)\,d\mu(z)$ is TP_2 in (x,y) for $x \in A$, $y \in C$. Here μ is a sigma-finite measure.

To prove the main results in this section we also need the following lemma which is a modified version of Lemma 2.5 in Balakrishnan et al. (2010).

Lemma 2.4. Given random variables X and Y with distribution functions F and G, if $\mu \geq \gamma$ and

(i) $X \leq r_Y Y$, $\gamma \geq 0$ or

(ii) $X \leq h_Y Y$, $r_G(x)/r_F(x)$ is increasing in x, $-1 \leq \gamma < 0$,

then

(a) $h_\gamma(G(x))/h_\mu(F(x))$ is increasing in $x \in \mathbb{R}$, and

(b) for $\mu \geq \gamma$, the function

$$l(x,y) = \frac{h_\gamma(G(y)) - h_\gamma(G(x))}{h_\mu(F(y)) - h_\mu(F(x))}$$

is increasing in $(x,y) \in \mathbb{R}$, where

$$h_m(x) = \begin{cases} \frac{1}{m+1}(1 - (1 - x)^{m+1}), & m \neq -1 \\ -\log(1 - x), & m = -1. \end{cases} \quad (2.2)$$

Proof. Let for $\mu \neq -1, \gamma \neq -1$, $h_1^\gamma(x)$ and $h_2^\gamma(x)$ be derivatives of $h_\mu(F(x))$ and $h_\gamma(G(x))$ with respect to x, respectively. That is $h_1^\gamma(x) = f(x)(\bar{F}(x))^\mu$, $h_2^\gamma(x) = g(x)(\bar{G}(x))^{\gamma}$.

Let (i) holds, we give the proofs of parts (a) and (b).

(a) For $x \geq 0$ and $i = 1, 2$ denote

$$\varphi_i(x) = \int_0^\infty h_i^\gamma(w)I_{(0<w<x)}(w)\,dw.$$

Since the likelihood ratio order implies the hazard rate order and $\mu \geq \gamma$, it follows that

$$\frac{h_2^\gamma(x)}{h_1^\gamma(x)} = \frac{g(x)}{f(x)} \left[\frac{\bar{G}(x)}{\bar{F}(x)} \right]^{\gamma} \left[\frac{1}{\bar{F}(x)} \right]^{\mu-\gamma}.$$
is increasing in \(x \in \mathbb{R}_+ \). That is, the function \(h_i^*(w) \) is \(TP_2 \) in \((i, w) \in \{1, 2\} \times \mathbb{R}_+ \). On the other hand, the function \(I_{(0 \leq w \leq x)}(w) \) is \(TP_2 \) in \((w, x) \in (0, x) \times \mathbb{R}_+ \). Combining these observations, it follows from Lemma 2.3 that \(\varphi_i(x) \) is \(TP_2 \) in \((i, x) \in \{1, 2\} \times \mathbb{R}_+ \) which is the required result.

(b) For \(y \geq x \) and \(i = 1, 2 \), let

\[
\psi_i(x, y) = \int_0^\infty h_i^*(w)I_{(x \leq w \leq y)}(w)dw.
\]

From part (a), the function \(h_i^*(w) \) is \(TP_2 \) in \((i, w) \in \{1, 2\} \times \mathbb{R}_+ \). It is easy to show that the indicator function \(I_{(x \leq w \leq y)} \) is \(TP_2 \) in \((w, x) \in \mathbb{R}_+ \times (0, y) \) for each fixed \(y \in \mathbb{R}_+ \), and is \(TP_2 \) in \((w, y) \in \mathbb{R}_+ \times (x, \infty) \) for each fixed \(x \in \mathbb{R}_+ \). Therefore, by Lemma 2.3, the function \(\psi_i(x, y) \) is \(TP_2 \) in \((i, x) \in \{1, 2\} \times (0, y) \) for each fixed \(y \in \mathbb{R}_+ \) and is \(TP_2 \) in \((i, y) \in \{1, 2\} \times (x, \infty) \) for each fixed \(x \in \mathbb{R}_+ \) which are equivalent to that

\[
l(x, y) = \frac{\psi_2(x, y)}{\psi_1(x, y)}
\]

is increasing in \((x, y) \in \mathbb{R}_+^2, y \geq x \).

Now, let (ii) holds. It is seen that

\[\text{▲ For } -1 < \gamma < 0,\]

\[
\frac{h_2^*(x)}{h_1^*(x)} = \frac{g(x)}{f(x)} \left[\frac{G(x)}{g(x)} \right]^{\gamma} \left[\frac{g(x)}{f(x)} \right]^\gamma \\
= \left[\frac{g(x)}{f(x)} \right]^{\gamma+1} \times \left[\frac{r_F(x)}{r_G(x)} \right]^{\gamma} \times \left[\frac{1}{F(x)} \right]^\mu \gamma
\]

(2.3)

is increasing in \(x \in \mathbb{R}_+ \), since if \(r_G(x)/r_F(x) \) is increasing in \(x \) and \(X \stackrel{h_r}{\leq} Y \) then \(X \stackrel{l_r}{\leq} Y \) (cf. Belzunce et al., (2001), Lemma 3.5).

\[\text{▲ For } \gamma = -1 \text{ and } \mu = -1, \text{ if } r_G(x)/r_F(x) \text{ is increasing in } x, \text{ then}\]

\[
\frac{h_{-1}(G(x))}{h_{-1}(F(x))} = -\log \frac{G(x)}{F(x)} = \int_0^x \frac{r_G(u)}{r_F(u)}du
\]

(2.4)

is increasing in \(x \in \mathbb{R}_+ \).

Now, the required results follows by the same arguments used to prove the results under the assumptions given in (i).
For $\gamma = -1$ and $\mu > -1$, define derivative of $h^{-1}(G(x))$ by $h^*_3(x) = \frac{g(x)}{\bar{G}(x)}$, and

$$\varsigma_i(x) = \int_0^\infty h^*_i(w)I_{(0<w\leq x)}(w)dw,$$

where $x \geq 0$ and $i = 1, 3$. Since the hazard rate order satisfies and $\mu + 1 > 0$, thus

$$\frac{h^*_3(x)}{h^*_1(x)} = \frac{r_G(x)}{r_F(x)} \left[\frac{1}{F(x)} \right]^\mu + 1$$

is increasing in $x \in \mathbb{R}_+$. That is, the function $h^*_i(w)$ is TP_2 in $(i, w) \in \{1, 3\} \times \mathbb{R}_+$. On the other hand, the function $I_{(0<w\leq x)}(w)$ is TP_2 in $(w, x) \in (0, x) \times \mathbb{R}_+$. With using these observations and again applying Lemma 2.3, we conclude that $\varsigma_i(x)$ is TP_2 in $(i, x) \in \{1, 3\} \times \mathbb{R}_+$. This completes the proof of the Lemma.

Let $X^{(i)}_{mx} = (X_{(r_1,n,m_{X,k})}, X_{(r_2,n,m_{X,k})}, \ldots, X_{(r_i,n,m_{X,k})})$ be a sub-vector of GOS’s based on absolutely continuous distribution function F, where m_x is the same as that in (1.4). To prove the main results we need to derive an expression for the density function of $X^{(i)}_{mx}$, denoted by f_{r_1,r_2,\ldots,r_i}, which is of independent interest, includes the m-GOS’s as an special case, covers the results of Lemma 2.6 in Balakrishnan et al. (2010) and generalizes the result of Lemma 3.1.7. in Kamps (1995a).

Lemma 2.5. Given a random vector $(X_{(1,n,m_{X,k})}, \ldots, X_{(n,n,m_{X,k})})$ of GOS’s from an absolutely continuous distribution function F and density function f, the joint density of $X^{(i)}_{mx}$ for $r_1 < r_2 < \cdots < r_i$, $i \leq n$ and $x_{r_1} < x_{r_2} < \cdots < x_{r_i}$ is given by

$$f_{r_1,r_2,\ldots,r_i}(x_{r_1}, x_{r_2}, \ldots, x_{r_i})$$

$$= \frac{c_{r_1-1}}{(r_1 - 1)! \prod_{j=1}^{i-1}(r_j+1 - r_j - 1)!} \left(F(x_{r_1}) \right)^{k+n-r_i+M_{r_i}-1} f(x_{r_i}) h^{r_1-1}_{r_i}(F(x_{r_1}))$$

$$\times \prod_{j=1}^{i-1} \left(F(x_{r_j}) \right)^{\mu(r_j)} h^{r_{j+1}-1}_{r_{j+1}}(F(x_{r_{j+1}})) - h^{r_{j+1}-1}_{r_{j+1}}(F(x_{r_{j+1}})) [r_{j+1}-r_j-1] f(x_{r_j}),$$

where $c_{r_1-1} = \prod_{i=1}^{r_1} \gamma_i$ and h_m and m_x are as given in (2.2) and (1.4), respectively.

Proof. It follows from (1.2) that the distribution of

$$(X_{(r_1,n,m_{X,k})}, X_{(r_2,n,m_{X,k})}, \ldots, X_{(r_i,n,m_{X,k})})$$
can be derived as follows:

$$
\begin{align*}
\frac{(F^{-1}(U(r_1, n, \mathbf{m}_k, k)), F^{-1}(U(r_2, n, \mathbf{m}_k, k)), \ldots, F^{-1}(U(r_i, n, \mathbf{m}_k, k)))}{(F^{-1}(U(r_1, n, \mathbf{m}_k, k)), F^{-1}(U(r_2, n, \mathbf{m}_k, k)), \ldots, F^{-1}(U(r_i, n, \mathbf{m}_k, k)))}
\end{align*}
$$

(2.6)

The joint density function of

$$(U(r_1, n, \mathbf{m}_k, k), U(r_2, n, \mathbf{m}_k, k), \ldots, U(r_i, n, \mathbf{m}_k, k))$$

can be derived as follows:

$$
\begin{align*}
h_{r_1, r_2, \ldots, r_i}(u_{r_1}, u_{r_2}, \ldots, u_{r_i}) &= \int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_2}}^{u_{r_2}} \cdots \int_{u_{r_i}}^{u_{r_i}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} h(u_1, u_2, \ldots, u_{r_1}) \\
&= \int_{u_{r_2}}^{u_{r_2}} \cdots \int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} c_{r_i-1}(1 - u_{r_1})^{k+n-r_i+M_{r_i}-1} \prod_{j=1}^{r_i-1} h'_{j, j+1}(u_j)(1 - u_{r_1})^{m_{r_1}} \\
&\times \prod_{j=r_i+1}^{r_{i-1}} h'_2(u_j)(1 - u_{r_2})^{m_{r_2}} \prod_{j=r_i+2}^{r_{i-2}} h'_3(u_j) \cdots \\
&\times (1 - u_{r_{i-1}})^{m_{r_{i-1}}} \prod_{j=r_{i-1}+1}^{r_{i-2}} h'_{i}(u_j) \\
du_{r_1} \cdot du_{r_1} \cdot \cdots \cdot du_{r_{i-1}} \cdots \cdot du_{r_2} \\
&= c_{r_i-1}(1 - u_{r_1})^{k+n-r_i+M_{r_i}-1} \\
&\times \int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} \prod_{j=1}^{r_i-1} h'_{j, j+1}(u_j)(1 - u_{r_1})^{m_{r_1}} \\
&\int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} \prod_{j=r_i+1}^{r_{i-1}} h'_2(u_j)(1 - u_{r_2})^{m_{r_2}} \cdots \\
&\int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} \prod_{j=r_i+2}^{r_{i-2}} h'_3(u_j) \cdots \\
&\int_{u_{r_1}}^{u_{r_1}} \int_{u_{r_{i-1}}}^{u_{r_{i-1}}} \int_{u_{r_{i-2}}}^{u_{r_{i-2}}} \cdots \int_{u_{r_1}}^{u_{r_1}} \prod_{j=r_{i-1}+1}^{r_{i-2}} h'_{i}(u_j) \\
&= c_{r_i-1}(1 - u_{r_1})^{k+n-r_i+M_{r_i}-1}
\end{align*}
$$
\[\begin{align*}
&\frac{du_{r_1-1}du_{r_1-2} \cdots du_{r_1-1+1} du_{r_1-1} \cdots du_{r_2-1} \cdots}{du_{r_1+2}du_{r_1+1}du_{r_1-1} \cdots du_{2}du_{1}} \\
&= \frac{c_{r_1-1}}{(r_1 - r_{i-1} - 1)!(r_{i-1} - r_{i-2} - 1)! \cdots (r_2 - r_1 - 1)!(r_1 - 1)!}
\times (1 - u_{r_1})^{k+n-r_i+M_{r_1}-1} (1 - u_{r_{i-1}})^{m_{r_i-1}} \cdots (1 - u_{r_1})^{m_{r_1}} \\
&\times [h_{\mu_i}(u_{r_i}) - h_{\mu_{i}-1}(u_{r_{i-1}})]^{r_{i-1}-r_i-1} - 1 \\
&\times [h_{\mu_i}(u_{r_i}) - h_{\mu_{i}-1}(u_{r_{i-2}})]^{r_{i-2}-r_i-1} \cdots \\
&\times [h_{\mu_2}(u_{r_2}) - h_{\mu_1}(u_{r_1})]^{r_2-r_1-1} h_{\mu_1}^{r_1-1}(u_{r_1}) \\
&= \frac{c_{r_1-1}}{(r_1 - 1)! \prod_{j=1}^{i-1}(r_{j+1} - r_{j} - 1)!}
\times \prod_{j=1}^{i-1} (1 - u_{r_j})^{m_{r_j}} [h_{\mu_{r_{j+1}}}(u_{r_{j+1}}) - h_{\mu_{j+1}}(u_{r_j})]^{r_{j+1}-r_{j}-1}.
\end{align*} \]

The result in (2.5) follows by using (2.6) in (2.7).

It is well known that for specific sets of parameters, \(n, k \) and \(m_i, \)
\(i = 1, \ldots, n-1, \) the GOS’s are reduced to the well known ordered random variables. Below we discuss the ordinary order statistics, \(k \) record values
and Pfeifer’s record values.

(A) Order Statistics corresponding to a random sample from an absolutely continuous distribution function \(F \) denoted by \(X_{1:n} \leq \ldots \leq X_{n:n} \)
are special cases of GOS’s with \(m_1 = \ldots = m_{n-1} = 0, \) \(k = 1. \)
In this case \(\gamma_e = n-r+1, r = 1, \ldots, n-1. \) With these settings the joint density function given in (2.5) is reduced to the joint density function
of \(X_{r_1:n}, \ldots, X_{r_{i}:n} \) and it is given by

\[f_{X_{r_1:n},\ldots,X_{r_{i}:n}}(x_{r_1},\ldots,x_{r_{i}}) \\
= \frac{n(n-1)\cdots(n-r_{i}+1)}{(r_1 - 1)! \prod_{j=1}^{i-1}(r_{j+1} - r_{j} - 1)!}
\times \prod_{j=1}^{i-1}(F(x_{r_{j+1}}) - F(x_{r_{j}}))^{r_{j+1}-r_{j}-1} \\
\times f(x_{r_{j}})f(x_{r_{i}}) \prod_{j=1}^{m-r_{i}}(x_{r_{i}}). \]

(B) \(k \)-Records. Let \(\{ X_i, i \geq 1 \} \) be a sequence of i.i.d random variables
from an absolutely continuous distribution \(F \) and let \(k \) be a posi-
tive integer. The random variables $L(k)(n)$ given by $L(k)(1) = 1,$
$L(k)(n+1) = \min\{j \in \mathbb{N}; X_{j:j+k-1} > X_{L(k)(n):L(k)((n)+k-1)}\},$ $n \geq 1,$
are called the nth k-th record times and the quantities
$X_{L(k)(n):L(k)((n)+k-1)}$ which we denote by R^k_n are termed the nth k-records (cf. Kamps, 1995a, p.34).

In the case $m_1 = \ldots = m_{n-1} = -1$ and $k \in \mathbb{N}$, the first n GOS’s
based on the distribution F are reduced to the first n k-records
corresponding to a sequence of independent random variables from F. In this case $\gamma_r = k, r = 1, \ldots, n - 1$. With these settings the
joint density function given in (2.5) is reduced to the joint density
function of R^k_1, \ldots, R^k_i and is given by

$$f_{R^k_1, \ldots, R^k_i}(x_{r_1}, \ldots, x_{r_i}) = \frac{k^{r_i}}{(r_1 - 1)! \prod_{j=1}^{r_i-1} (r_{j+1} - r_j - 1)!}
\times \left(\prod_{j=1}^{r_i-1} \left(\log(F(x_{r_j+1})) - \log(F(x_{r_j})) \right) \right)
\times \frac{f(x_{r_i})}{F(x_{r_i})}.$$ (2.9)

According to the best of our knowledge the above result is only
available in the literature for the case when $i = 2$ (cf. Kampsa,

(C) **Pfeifer Model** For $k = 1$ the k-records model reduces to the
well know classic record model and for this model it is known that
successive record values follows the conditional distribution given
by

$$P(R_n > x | R_{n-1} = x) = \frac{1 - F(y)}{1 - F(x)}, \text{ for } y > x. \quad (2.10)$$

Pfeifer (1982a) generalized the above model and consider a model
in which the successive (upper) records values constitute a Markov
chain with nonstationary transition distribution given by

$$P(R^*_r > x | R^*_{r-1} = x) = \frac{1 - F_r(y)}{1 - F_r(x)}, \text{ for } y > x.$$

Such a dependence structure for the record value sequence can
be produced as follows. Suppose we have a double array of indepen-
dent random variables $\{X_{l,j}; l, j \geq 1\}$ such that $X_{l,j}$ dis-
tribution function $F_l, l \geq 1$. Now take $R^*_1 = X_{1,1}$ and define
\(\delta_{l+1} = \min\{j : X_{l+1,j} > R^*_l\} \) and \(R^*_l = X_{l,\delta_l} \) for \(l \geq 1 \), such that \(\delta_1 = 1 \). This setting is called \textit{Pfeifer record model} (cf. Arnold, Balakrishnan and Nagaraja, 1998, p.198 and Kamps, 1995, p. 36).

Pfeifer (1982b) showed that the sequence of jump-time generated by a pure birth process is identically distributed with records from Pfeifer models. Therefore the new results obtained here can be applied to this kind of Process.

For given positive real numbers \(\beta_1, \ldots, \beta_n \), the model of GOS’s based on distribution \(F \) with parameters \(m_i = \beta_i - \beta_{i+1} - 1, \) \(i = 1, \ldots, n - 1, k = \beta_n \) and therefore \(\gamma_i = \beta_i, i = 1, \ldots, n - 1, \) is reduced to the Pfeifer’s record model based on distribution

\[
F_r(t) = 1 - (1 - F(t))^{\beta_r}, \tag{2.11}
\]

where \(F_r \) is the underlying distribution function until the \(r \)th record occurs.

Now, let for \(r_1 < r_2 < r_3 < n, \beta_1 = \ldots = \beta_{r_1}, \beta_{r_1+1} = \ldots = \beta_{r_2}, \beta_{r_2+1} = \ldots = \beta_{r_3} \) and \(\beta_l > 0, l = r_3 + 1, \ldots, n. \) That is \(m_X \) in (1.4) is

\[
(-1, \ldots, -1, \beta_{r_1} - \beta_{r_1+1} - 1, -1, \ldots, -1, \beta_{r_2} - \beta_{r_2+1} - 1, \tag{2.12}
\]

\[-1, \ldots, -1, \beta_{r_3} - \beta_{r_3+1} - 1, \beta_l - \beta_{l+1} - 1, l = r_3 + 1, \ldots n - 1).\]

Therefore, \(\mu_1 = \mu_2 = \mu_3 = -1, \mu_{1}^{(r_1)} = \beta_{r_1} - \beta_{r_1+1} - 1, \mu_{2}^{(r_2)} = \beta_{r_2} - \beta_{r_2+1} - 1 \) and \(\mu_{3}^{(r_3)} = \beta_{r_3} - \beta_{r_3+1} - 1. \) Using these observations, then the joint density function of \(R^*_{r_1}, R^*_{r_2} \) and \(R^*_{r_3} \) is

\[
f_{R^*_{r_1}, R^*_{r_2}, R^*_{r_3}}(x_{r_1}, x_{r_2}, x_{r_3}) = \frac{\beta_{r_1}^{r_1} \beta_{r_2}^{r_2} \beta_{r_3}^{r_3}}{(r_1 - 1)!(r_2 - r_1 - 1)!(r_3 - r_2 - 1)!} \times \frac{(F(x_{r_1}))^{\beta_{r_1} - 1} f(x_{r_1})}{(- \log(F(x_{r_1})))^{r_1 - 1}} \times \frac{(F(x_{r_2}))^{\beta_{r_2} - 1} f(x_{r_2})}{(- \log(F(x_{r_2})))^{r_2 - 1}} \times \frac{(F(x_{r_3}))^{\beta_{r_3} - 1} f(x_{r_3})}{(- \log(F(x_{r_3})))^{r_3 - 1}}.
\tag{2.13}
\]

In this section we use this new expression to compare the above vector of Pfeifer records with that of classic records values according to the multivariate likelihood ratio ordering.

As discussed in Kamps (1995a,b), there are many other models like sequential order statistics, order statistics with non-integral sample size etc which can also be expressed as special cases of GOS’s.
Next result generalizes the results of Theorem 3.19 in Balakrishnan et al. (2010).

Theorem 2.6. Let X and Y be two absolutely continuous random variables with distribution F and G, densities f and g, and hazard rates r_F and r_g, respectively. Let $(X_{(1,n,m_X,k)}, \ldots, X_{(n,n,m_X,k)})$ and $(Y_{(1,n,m_Y,k')}, \ldots, Y_{(n,n,m_Y,k')})$ be random vectors of GOS’s based on distributions F and G, respectively, where m_X and m_Y are as given in (1.4) and (1.5). Let also $r_1 \leq r_2 < \cdots < r_i \leq n$, $r'_1 < r'_2 < \cdots < r'_i \leq n'$ and $r'_1 - r_1 = r'_2 - r_2 = \cdots = r'_i - r_i \geq \max\{0, n' - n\}$. For $j = 1, \ldots, i$, \(\gamma_j \leq \mu_j\), \(\gamma^{(r'_j)} \leq \mu^{(r_j)}\), \(k \geq k'\) and \((n - n') + (r'_i - r_i) + (M_{r_i} - M_{r'_i}) \geq 0\) if

\[\gamma_j \leq 0, \gamma^{(r'_j)} \geq 0 \] or

\[-1 \leq \gamma^{(r'_j)} \leq 0, \]

then

\[(X_{(r_1,n,m_X,k)}, \ldots, X_{(r_i,n,m_X,k)}) \leq_{lr} (Y_{(r'_1,n',m_Y,k')}, \ldots, Y_{(r'_i,n',m_Y,k')}). \tag{2.14} \]

Proof. (i). It is known that the vector of GOS’s is MTP\(_2\) (cf. Belzunce et al. (2005)). It is also known that any sub-vector of a MTP\(_2\) vector is MTP\(_2\). That is MTP\(_2\) property is preserved under marginalization. Combining these observations, it follows that both vectors
\((X_{(r_1,n,m_X,k)}, \ldots, X_{(r_i,n,m_X,k)}) \) and
\((Y_{(r'_1,n',m_Y,k')}, \ldots, Y_{(r'_i,n',m_Y,k')}) \) are MTP\(_2\). Using this observation, to prove the required result, we only need to show that

\[\frac{g_{r'_1,r'_2,\ldots,r'_i}(x_1, x_2, \ldots, x_i)}{f_{r_1,r_2,\ldots,r_i}(x_1, x_2, \ldots, x_i)} \] is increasing in \(x_1 < x_2 < \cdots < x_i \in \mathbb{R}^i\),

\tag{2.15}

where \(f_{r_1,r_2,\ldots,r_i}\) and \(g_{r'_1,r'_2,\ldots,r'_i}\) denote the joint densities of \((X_{(r_1,n,m_X,k)}, \ldots, X_{(r_i,n,m_X,k)})\) and
\((Y_{(r'_1,n',m_Y,k')}, \ldots, Y_{(r'_i,n',m_Y,k')}) \), respectively (cf. Hu, Khaledi and Shaked (2003), Remark 3.1).

Let \(\delta_1 = \mu^{(r_j)} - \gamma^{(r'_j)}\) and \(\delta_2 = (k - k') + (n - n') + (r'_i - r_i) + (M_{r_i} - M_{r'_i})\).
Now, using (2.5), for \(x_1 < x_2 < \ldots < x_i\),
\[
\frac{g_{r_1,r_2,\ldots,r_i}(x_1,x_2,\ldots,x_i)}{f_{r_1,r_2,\ldots,r_i}(x_1,x_2,\ldots,x_i)} \propto \frac{g(x_i)}{f(x_i)} \left(\frac{G(x_j)}{F(x_j)} \right)^{k' + n' - r'_i + M'_i} \times \left(\frac{1}{F(x_i)} \right)^{\delta_2} \prod_{j=1}^{i-1} \left(\frac{G(x_j)}{F(x_j)} \right)^{\gamma(r'_j)} \times \left(\frac{1}{F(x_j)} \right)^{\delta_1} \frac{g(x_j)}{f(x_j)} \times \prod_{j=1}^{i-1} \left(\frac{h_{\gamma_{j+1}}(G(x_{j+1})) - h_{\gamma_{j+1}}(G(x_j)))}{h_{\mu_{j+1}}(F(x_{j+1})) - h_{\mu_{j+1}}(F(x_j)))^{r_{i+1} - r_j} - 1} \right).
\]

Under the assumptions given in (i),
\[
\frac{g(x_i)}{f(x_i)} \propto \frac{g(x_j)}{f(x_j)} \propto \frac{G(x_j)}{F(x_j)}^{k' + n' - r'_i + M'_i},
\]
are increasing in \(x_i \in \mathbb{R}\). On the other hand, for \(\gamma_1 \leq \mu_1\), it follows from Lemma 2.4 (a) that \((h_{\gamma_1}(G(x_1)))^{r'_1 - 1}\) is increasing in \(x_1 \in \mathbb{R}\) and for \(\gamma_j \leq \mu_j\), it follows from Lemma 2.4 (b) that
\[
(h_{\gamma_{j+1}}(G(x_{j+1})) - h_{\gamma_{j+1}}(G(x_j)))^{r_{j+1} - r_j} - 1
\]
is increasing function in \(x_j\) as well as \(x_{j+1}\).

Combining these observations, (2.15) is proved.

The proof of part (ii) is similar to that of part (i) and is omitted. \(\Box\)

Example 2.7. Let \(\{R^k_n, n \geq 1\}\) be the sequence of \(k\) record values introduced in \((B)\) based on an absolutely continuous distribution function \(G\) and \(\{R^*_n, n \geq 1\}\) be the sequence of Pfeifer’s record values introduced in \((C)\). If \(\beta_i \geq \beta_{i+1}, i = 1, \ldots, n - 1, k \geq \beta_n\). That is \(m_X^r\) and \(m_Y^r\) in the statement of Theorem 2.6 are respectively given by (2.12) and \((-1, -1, \ldots, -1, k)\). With these setting if \(F \leq h_r G\) and \(r_G(x)/r_F(x)\) is increasing in \(x\), then it follows from Theorem 2.6 (ii) that for \(r_1 < r_2 < r_3\),
\[
(R^r_{r_1}, R^r_{r_2}, R^r_{r_3}) \leq (R^k_{r_1}, R^k_{r_2}, R^k_{r_3})
\]
Theorem 2.8. Under the assumptions of Theorem 2.6

\[[X_{(r_1,n,m_x,k)}, X_{(r_2,n,m_x,k)}, \ldots, X_{(r_i,n,m_x,k)}| X_{(r_j,n,m_x,k)}, X_{(r_{j+1},n,m_x,k)}, \ldots, X_{(r_i,n,m_x,k)}] \subseteq \mathbb{R}^n \]

for all sublattices \(L \subseteq \mathbb{R}^n \).

Proof. Using (2.14), the required result follows from Theorem 6.E.2 of Shaked and Shanthikumar (2007).

The reader is referred to Balakrishnan et al. (2010) for various examples of this result, given the different interesting sublattices. An example is given next.

Example 2.9. Let \((X_{(r_1,n,m_x,k)}, X_{(r_2,n,m_x,k)}, \ldots, X_{(r_i,n,m_x,k)})\) and \((Y_{(r_1,n',m_y,k')}, Y_{(r_2,n',m_y,k')}, \ldots, Y_{(r_i,n',m_y,k')})\) be two sub-vectors of GOS’s defined under the setup of Theorem 2.6. Let also that \((x_1, \ldots, x_n)\) denote a non-decreasing arrangement of the components of a vector \((x_1, \ldots, x_n) \in \mathbb{R}^n\). Now, consider the sublattice \(L_1 = [(x_1, \ldots, x(n)) \in \mathbb{R}^n | x(1) > t_1, x(3) < t_2] \). Then, from Theorem 2.8 for \(t_1, t_2 \in \mathbb{R} \) and \(t_1 \leq t_2 \), we have that

\[[X_{(r_2,n,m_x,k)} - t_1|X_{(r_1,n,m_x,k)} > t_1, X_{(r_3,n,m_x,k)} < t_2] \]

\[\leq_L [Y_{(r'_2,n',m_y,k')} - t_1|Y_{(r'_1,n',m_y,k')} > t_1, Y_{(r'_3,n',m_y,k')} < t_2]. \]

In particular, let \(r'_1 = 4, r'_2 = 6, r'_3 = 8, r_1 = 2, r_2 = 4, r_3 = 6 \)

\[[X_{(4,n,m_x,k)} - t_1|X_{(2,n,m_x,k)} > t_1, X_{(6,n,m_x,k)} < t_2] \]

\[\leq_L [Y_{(6,n',m_y,k')} - t_1|Y_{(4,n',m_y,k')} > t_1, Y_{(8,n',m_y,k')} < t_2]. \]

Note that this comparison does not follow from the results obtained in Balakrishnan et al. (2010).

3 Multivariate \(\mathbf{lr} \) Ordering among Spacings of GOS’s

A random variable \(X \) with density function \(f \) is decreasing likelihood ratio (DLR) if \(f \) is log-convex and is increasing likelihood ratio (ILR) if \(f \) is log-concave. It is known that if \(f \) is DLR, then \(F \) is log-convex and

\[\frac{f(x + \delta)}{f(x)} \text{ is increasing in } x \geq 0; \]
and if f is ILR, then F is log-concave and

$$\frac{f(x + \delta)}{f(x)} \quad \text{is decreasing in } x \geq 0.$$

For more details of DLR and ILR, the reader is referred to Barlow and Proschan (1981), Shaked and Shanthikumar (1987) and Righter and Shanthikumar (1992).

We need the following lemma to prove the main result in this section.

Lemma 3.10. Let X be a DLR (ILR) nonnegative random variable with distribution function F and $\lambda \geq 1$. Then,

(a) for, $x > 0$ and $u_2 > u_1 > 0$,

$$\phi(x, u) = \frac{F^\lambda(x + u_2) - F^\lambda(u_2)}{F^\lambda(x + u_1) - F^\lambda(u_1)}$$

is increasing [decreasing] in x.

(b) The function

$$\psi_\delta(x, u) = \frac{F^\lambda(x + u + \delta) - F^\lambda(u + \delta)}{F^\lambda(x + u) - F^\lambda(u)}$$

is increasing [decreasing] in $(x, u) \in \mathbb{R}^2_+$ for each $\delta > 0$.

(c) For $u > 0$ and $x_2 > x_1 > 0$, the function

$$\psi_\delta(x, u) = \frac{F^\lambda(x_2 + u + \delta) - F^\lambda(u + \delta)}{F^\lambda(x_1 + u) - F^\lambda(u)}$$

is increasing [decreasing] in u.

Proof. Let Y be a random variable with survival function $\bar{G}(x) = [\bar{F}(x)]^\lambda$ ($\lambda \geq 1$) and density function $g(x) = (\lambda)f(x)\bar{F}^{\lambda-1}(x)$. Now, for any $\delta > 0$,

$$\frac{g(x + \delta)}{g(x)} = \lambda \frac{f(x + \delta)}{f(x)}\left(\frac{\bar{F}(x + \delta)}{\bar{F}(x)}\right)^{\lambda-1}$$

is increasing in x. That is the random variable Y is DLR. Now, part (a) follows from Lemma 2.2 in Xu and Li (2006) and parts (b) and (c) follow from Lemma 2.3 in Yao et al. (2008).

Let $(X_{(r_1,n,m_X,k)}, X_{(r_2,n,m_X,k)}, \ldots, X_{(r_i,n,m_X,k)})$ be an i-dimensional sub-vectors of GOS’s as given in Lemma 2.5. With $r_j - r_{j-1} = p,$
On Multivariate Likelihood Ratio Ordering among ...

\[D^{(p)}_X = (D^{(p)}_{X,r_1,n}, D^{(p)}_{X,r_2,n}, \ldots, D^{(p)}_{X,r_{i-p},n}) \]

is given by

\[f_{D^{(p)}_X}(y_1, y_2, \ldots, y_i) = C_r \left[\bar{F} \left(\sum_{l=1}^i y_l \right) \right]^{k+n-r_1+M_{r_1}-1} \prod_{j=1}^i \left[\bar{F} \left(\sum_{l=1}^j y_l \right) \right]^{\mu_j(r_j)} \]

(3.5)

\[\prod_{j=1}^i \left[h_{\mu_j} \left(F \left(\sum_{l=1}^j y_l \right) \right) \right] - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} y_l \right) \right) \]

(3.6)

where \(C_r = \frac{c_{r_1-1}}{(r_1-1)(p-1)} \cdot D^{(p)}_{X,r_j,n} = X_{(r_j+p,n,m_X,k)} - X_{(r_j,n,m_X,k)}, j = 1, \ldots, i - 1, X_{(0,n,m_X,k)} = 0 \) and \(h_{\mu_j} \left(\bar{F} \left(\sum_{l=1}^0 y_l \right) \right) = 0 \).

Next we prove the MTP2 property of \(D^{(p)}_X \) given in (3.4).

Theorem 3.11. Let \((X_{(1,n,m_X,k)}, \ldots, X_{(n,n,m_X,k)}) \) be random vector of GOS’s based on distribution \(F \) with \(m_X \) given in (1.4) for which \(\mu_j \geq 0 \) and \(\mu_j(r_j) \geq 0, j = 1, \ldots, i \). If \(F \) is DLR, then \(D^{(p)}_X \) is MTP2.

Proof. The assumption that \(f \) is log-convex implies that \(\bar{F} \) is log-convex which in turn is equivalent to that \(\bar{F}(u + v) \) is TLP in \(u \) and \(v \). Using this observation, the function \(\left[\bar{F} \left(\sum_{l=1}^i y_l \right) \right]^{k+n-r_1+M_{r_1}-1} \) is TLP in every pair of variables when the remaining variables are held fixed. On the other hand, the support of the spacings is lattice. Now, it follows from Karlin and Rinott (1980, p.469) that \(\left[\bar{F} \left(\sum_{l=1}^j y_l \right) \right]^{k+n-r_1+M_{r_1}-1} \) is MTP2. Using the same kind of arguments, we find that the functions \(\prod_{j=1}^i \left[\bar{F} \left(\sum_{l=1}^j y_l \right) \right]^{\mu_j(r_j)} \) in (3.5) and \(f \left(\sum_{l=1}^j y_l \right) \) in (3.6) are MTP2.

To prove the required result we show that

\[\frac{h_{\mu_j} \left(F \left(\sum_{l=1}^j (x_l \lor y_l) \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} x_l \lor y_l \right) \right)}{h_{\mu_j} \left(F \left(\sum_{l=1}^j x_l \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} x_l \right) \right)} \]

\[\geq \frac{h_{\mu_j} \left(F \left(\sum_{l=1}^j y_l \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} y_l \right) \right)}{h_{\mu_j} \left(F \left(\sum_{l=1}^j x_l \lor y_l \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} x_l \lor y_l \right) \right)}. \]
Now, for \((x_1, \ldots, x_j)\) and \((y_1, \ldots, y_j)\), let
\[
\delta = \sum_{l=1}^{j-1} (x_l \lor y_l) - \sum_{l=1}^{j-1} x_l \land y_l.
\]
Since
\[
\sum_{l=1}^{j-1} (x_l \lor y_l) + \sum_{l=1}^{j-1} (x_l \land y_l) = \sum_{l=1}^{j-1} x_l + \sum_{l=1}^{j-1} y_l,
\]
then
\[
\delta = \sum_{l=1}^{j-1} y_l - \sum_{l=1}^{j-1} (x_l \land y_l). \tag{3.7}
\]

First, assume that \(x_j \geq y_j\), then
\[
\frac{h_{\mu_j}(F(\sum_{l=1}^{j-1} (x_l \lor y_l))) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l \lor y_l))}{h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l))} = \frac{F^{\mu_{j+1}}(x_j + \sum_{l=1}^{j-1} x_l + \delta) - F^{\mu_{j+1}}(\sum_{l=1}^{j-1} x_l + \delta)}{F^{\mu_{j+1}}(x_j + \sum_{l=1}^{j-1} x_l) - F^{\mu_{j+1}}(\sum_{l=1}^{j-1} x_l)}
\]
\[
\geq \frac{F^{\mu_{j+1}}(x_j + \sum_{l=1}^{j-1} x_l \land y_l + \delta) - F^{\mu_{j+1}}(\sum_{l=1}^{j-1} x_l \land y_l + \delta)}{F^{\mu_{j+1}}(x_j + \sum_{l=1}^{j-1} x_l \land y_l) - F^{\mu_{j+1}}(\sum_{l=1}^{j-1} x_l \land y_l)} \tag{3.8}
\]
\[
= \frac{F^{\mu_{j+1}}(\sum_{l=1}^{j-1} y_l) - F^{\mu_{j+1}}(\sum_{l=1}^{j-1} y_l)}{h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l \land y_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l \land y_l))} \tag{3.9}
\]

The first inequality follows from Lemma 3.10 (b), since \(\sum_{l=1}^{j-1} x_l \geq \sum_{l=1}^{j-1} x_l \land y_l\). The equality in (3.8) follows from (3.7). The second inequality follows from Lemma 3.10 (a), since \(x_j \geq y_j\).
Now, let \(x_j \leq y_j \),

\[
\begin{align*}
&\frac{h_{\mu_j}(F(\sum_{l=1}^{j} (x_l \vee y_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l \vee y_l)))}{h_{\mu_j}(F(\sum_{l=1}^{j} x_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l)))} \\
&= \frac{h_{\mu_j}(F(y_j + \sum_{l=1}^{j-1} x_l + \delta)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l + \delta)))}{h_{\mu_j}(F(x_j + \sum_{l=1}^{j-1} x_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} x_l)))} \\
&= \frac{\bar{F}^{\mu_j+1}(y_j + \sum_{l=1}^{j-1} x_l \land y_l + \delta) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} x_l \land y_l + \delta)}{\bar{F}^{\mu_j+1}(x_j + \sum_{l=1}^{j-1} x_l \land y_l) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} x_l \land y_l)} \\
&\geq \frac{\bar{F}^{\mu_j+1}(y_j + \sum_{l=1}^{j-1} x_l \land y_l) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} x_l \land y_l)}{\bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} x_l \land y_l) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} x_l \land y_l)} \\
&= \frac{\bar{F}^{\mu_j+1}(\sum_{l=1}^{j} y_l) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} y_l)}{\bar{F}^{\mu_j+1}(\sum_{l=1}^{j} y_l) - \bar{F}^{\mu_j+1}(\sum_{l=1}^{j-1} y_l)} \\
&= \left[h_{\mu_j}(F(\sum_{l=1}^{j} y_l)) - h_{\mu_j}(F(\sum_{l=1}^{j-1} y_l)) \right]
\end{align*}
\]

The inequality (3.10) follows from part (c) of Lemma 3.10, since \(x_j < y_j \) and \(\sum_{l=1}^{j} x_l \geq \sum_{l=1}^{j-1} (x_l \land y_l) \). The equality (3.11) follows from (3.7).

Therefore, the density function of \(D^p_X \) given in (3.4) is a product of four non-negative \(MTP_2 \) functions which in turn is \(MTP_2 \). This completes the proof of the required result.

Remark 3.12. Theorem 3.11 generalized the result of Theorem 3.1 in Yao et al. (2008) from the particular case of usual order statistics to GOS’s.

Let \((Y_{r'_j, n', m_Y, k}, Y_{r'_j, n', m_Y, k}, \ldots, Y_{r'_j, n', m_Y, k})\) be another \(i \)-dimensional vector of GOS’s based on distribution \(G \) as given in the statement of Theorem 2.6. With \(r'_j - r'_{j-1} = p, j = 2, \ldots, i, p \geq 1 \), the corresponding vector of \(p \)-spacings is denoted by

\[
D^p_Y = (D^p_{Y,r'_j,n'},D^p_{Y,r'_j,n'},\ldots,D^p_{Y,r'_j-1,n'}).
\]

where \(D^p_{Y,r'_j,n'} = Y_{r'_j+p,n,m_Y,k} - Y_{r'_j,n,m_Y,k}, j = 1, \ldots, i-1 \) and \(Y_{0,n,m_Y,k} = 0 \).
Theorem 3.13. Let \(D_X^{(p)} \) and \(D_Y^{(p)} \) be as defined by (3.4) and (3.13). If either \(X \) or \(Y \) is DLR then under the assumptions of Theorem 2.6,

\[
D_X^{(p)} \leq_{lr} D_Y^{(p)}. \tag{3.14}
\]

Proof. If we show that the ratio

\[
\frac{f_{D_Y^{(p)}}(y_1, y_2, \cdots, y_i)}{f_{D_X^{(p)}}(y_1, y_2, \cdots, y_i)} \tag{3.15}
\]

is increasing in \(y_j, j = 1, \cdots, i \), then the required result follows from Remark 3.1 in Hu et al. (2003), since by Theorem 3.11 the vector \(D_X^{(p)} \) is MTP. That is we have to show that the ratio

\[
\frac{f_{D_Y^{(p)}}(y_1, y_2, \cdots, y_i)}{f_{D_X^{(p)}}(y_1, y_2, \cdots, y_i)}
\]

\[
\times \left[\frac{G(\sum_{l=1}^{i} y_l)}{F(\sum_{l=1}^{i} y_l)} \right]^{n'-r'+M'_i} \left(\frac{1}{F(\sum_{l=1}^{i} y_l)} \right)^{\delta_2} \prod_{j=1}^{i-1} \frac{G(\sum_{l=1}^{j} y_l)}{F(\sum_{l=1}^{j} y_l)} \tag{3.16}
\]

\[
\times \left[\frac{g(\sum_{l=1}^{j} y_l)}{f(\sum_{l=1}^{j} y_l)} \right]^{\delta_1} \prod_{j=1}^{i} \left[\frac{h_{\gamma_j} \left(G \left(\sum_{l=1}^{j} y_l \right) \right) - h_{\mu_j} \left(G \left(\sum_{l=1}^{j-1} y_l \right) \right)}{h_{\gamma_j} \left(F \left(\sum_{l=1}^{j} y_l \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} y_l \right) \right)} \right]^{p-1} \tag{3.17}
\]

is increasing \(y_j, j = 1, \cdots, i \). Using the assumption that \(X \leq_{lr} Y \) and \(X \leq_{hr} Y \), we get that the functions \(\frac{g(\sum_{l=1}^{j} y_l)}{f(\sum_{l=1}^{j} y_l)} \) and \(\frac{G(\sum_{l=1}^{j} y_l)}{F(\sum_{l=1}^{j} y_l)} \) are increasing in \(y_j, j = 1, \cdots, i \). On the other hand, using the facts that the function \(I_{x+y_k, x+y_k+y_j}(w) \) is TP2 in \(x \) and \(w \), \(X \leq_{lr} Y \) and the similar arguments used to prove Lemma 2.4, we observe that for \(j = 1, \cdots, i \) and \(x = \sum_{l=1}^{j-1} y_l \), the function

\[
\frac{h_{\gamma_j} \left(G \left(\sum_{l=1}^{j} y_l \right) \right) - h_{\gamma_j} \left(G \left(\sum_{l=1}^{j-1} y_l \right) \right)}{h_{\mu_j} \left(F \left(\sum_{l=1}^{j} y_l \right) \right) - h_{\mu_j} \left(F \left(\sum_{l=1}^{j-1} y_l \right) \right)}
\]

\[
= \frac{h_{\gamma_j} \left(G(x+y_k+y_j) \right) - h_{\gamma_j} \left(G(x+y_k) \right)}{h_{\mu_j} \left(F(x+y_k+y_j) \right) - h_{\mu_j} \left(F(x+y_k) \right)},
\]

is increasing in \(y_k, k = 1, \cdots, j-1 \) and \(y_j \). Combining these observations, it follows that the ratio given in (3.15) is increasing in each \(y_k, k =
4 An Application

In this section we introduce an important particular case of GOS's called progressive type II censored order statistics and applied some of the new results to obtain some computable bounds on the mean residual life of unobserved progressive type II censored order statistics.

Let \(X_1, \ldots, X_N \) be independent lifetimes of \(N \) identical units, with \(X_i \) having absolutely continuous distribution function \(F \). These units are placed on test at time \(t = 0 \). At the time of the \(i \)th failure, \(R_i \), \(1 \leq i \leq n \), number of surviving units are randomly withdrawn from the experiment. Thus, if \(n \) failures are observed then \(R_1 + \cdots + R_n \) number of units are progressively censored; hence \(N = n + R_1 + \cdots + R_n \). The censoring scheme is denoted by the vector \(\tilde{R} = (R_1, \ldots, R_n) \) and \(X_{\tilde{R}:n:N} \), \(i = 1, \ldots, n \), the \(i \)th failure time, is called the \(i \)th progressive type II censored order statistic. The progressive type II censored order statistic are special cases of GOS's with \(m_i = R_i \), \(i = 1, \ldots, n-1 \) and \(k = R_n + 1 \). For a detailed description of other special cases the readers is referred to Kamps (1995a, b), Balakrishnan and Aggarwala (2000), Belzunce et al. (2005), Balakrishnan (2007) and Balakrishnan et al. (2010).

Let \(n \geq 2 \) (and hence \(N \geq 2 \)),

\[
c_{r_1-1,n} = \prod_{j=1}^{r_1} \gamma_{j,n}, \quad 1 \leq r_i \leq n \quad \text{and} \quad a_{l,r_i,n} = \prod_{j=1, j \neq l}^{r_1} \frac{1}{\gamma_{j,n} - \gamma_{l,n}}, \quad 1 \leq l \leq r_i \leq n, \quad (4.1)
\]

where \(\gamma_{j,n} = n - j + 1 + \sum_{k=j}^{n} R_k \), for \(j = 1, \ldots, n \) and the empty product \(\prod_{\emptyset} \) is defined to be 1. From the definition of the \(\gamma \)'s it can be easily derived that \(N = \gamma_{1,n} > \cdots > \gamma_{n,n} \geq 1 \) such that \(\gamma_{j,n} \neq \gamma_{l,n} \) for \(l \neq j \).

The marginal survival function of \(X_{\tilde{R}:n:N} \) based on \(F \) is given by

\[
F_{X_{\tilde{R}:n:N}}(x) = c_{r_1-1,n} \sum_{l=1}^{r_1} a_{l,r_i,n} \left(\bar{F}(x) \right)^{\gamma_{l,n}}, \quad r_i = 1, \ldots, n \quad (4.2)
\]

(cf. Kamps and Cramer, 2001, Lemma 1). If \(F \) is absolutely continuous
with density function f, then we obtain density function of $X_{r_1:n}^{\tilde{R}}$ as

$$f_{X_{r_1:n}^{\tilde{R}}}(x) = c_{r_1-1,n} \sum_{i=1}^{r_1} a_{i,r_1,n} \left[F(x) \right]^{\gamma_i,n-1} f(x), \quad r_i = 1, \ldots, n. \quad (4.3)$$

Under some restrictions on the hazard rate function $r_F(x)$ we obtain some computable bounds on the expected conditional residual life of the unobserved censored order statistics.

First, we state a proposition that is used later in this section.

Proposition 4.14. Let $E^{\lambda,\tilde{R}} = \left(E^{\lambda,\tilde{R}}_{1:n}, \ldots, E^{\lambda,\tilde{R}}_{n:n}\right)$ be n progressively Type II censored order statistics corresponding to an exponential distribution with hazard rate λ. Then, for $1 \leq r_1 < r_2 < r_3 \leq n$, we have

$$E \left[E^{\lambda,\tilde{R}}_{r_3:n} - t_2 \mid E^{\lambda,\tilde{R}}_{r_1:n} > t_1, E^{\lambda,\tilde{R}}_{r_2:n} > t_2 \right] =$$

$$\sum_{k=1}^{r_3-r_2} \frac{1 \left(r_3-r_1 \right)}{\lambda \gamma_{k,n} - r_2} + \sum_{k=1}^{r_2-r_1} \frac{1}{\lambda \gamma_k,n - r_1} + t_1 + \frac{\sum_{i=1}^{r_1} a_{i,r_1,n} \gamma_i,n^{-2} \lambda^{-1} e^{-\lambda \gamma_i,n t_1}}{\sum_{i=1}^{r_1} a_{i,r_1,n} \gamma_i,n^{-1} e^{-\lambda \gamma_i,n t_1}}$$

$$\times e^{\lambda \gamma_{r_2,n} \gamma_{r_3,n}^{-1} e^{-\lambda \gamma_{r_2,n} t_1}}$$

$$c_{r_2-r_1,n-r_1} \sum_{i=1}^{r_1} \sum_{j=1}^{r_2-r_1} a_{i,r_1,n} a_{j,r_2-r_1,n-r_1} e^{-\lambda (\gamma_i,n - \gamma_j,n - r_1)}$$

$$\gamma_j,n - r_1 (\gamma_i,n - \gamma_j,n - r_1)$$

$$\quad (4.4)$$

Proof. The left hand side of (4.4), after some manipulations, can be simplified as

$$E \left[E^{\lambda,\tilde{R}}_{r_3:n} - t_2 \mid E^{\lambda,\tilde{R}}_{r_1:n} > t_1, E^{\lambda,\tilde{R}}_{r_2:n} > t_2 \right]$$

$$= \int_0^\infty \mathbb{P} \left[E^{\lambda,\tilde{R}}_{r_3:n} - t_2 > x \mid E^{\lambda,\tilde{R}}_{r_1:n} > t_1, E^{\lambda,\tilde{R}}_{r_2:n} > t_2 \right] dx$$

$$= \int_0^\infty \int_0^\infty \int_0^\infty \mathbb{P} \left[E^{\lambda,\tilde{R}}_{r_3:n} - t_2 > x \mid E^{\lambda,\tilde{R}}_{r_1:n} = u, E^{\lambda,\tilde{R}}_{r_2:n} = v \right]$$

$$\times f_{E^{\lambda,\tilde{R}}_{r_1:n}, E^{\lambda,\tilde{R}}_{r_2:n}}(u,v) dv du dx$$
On Multivariate Likelihood Ratio Ordering among ...

\[
= \int_0^\infty \int_1^t \int_{t_2}^\infty \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - t_2 > x | E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} = v \right] F_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(t_1) \, du \, dx \]
\times f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}} \left(u, v \right) dv du dx

\[
= \int_0^\infty \int_1^t \int_{t_2}^\infty \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - v + v - t_2 > x | E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} = v \right] F_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(t_1) \, du \, dx \]
\times f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}} \left(u, v \right) dv du dx

\[
= \int_0^\infty \int_1^t \int_{t_2}^\infty \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - v + v - t_2 > x \right] F_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(t_1) \, du \, dx \]
\times f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}} \left(u, v \right) dv du dx
\]

\[
(4.5)
\]

\[
= \int_1^t \int_{t_2}^\infty \left\{ E \left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - v + v - t_2 \right] + v - t_2 \right\}
\times f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}} \left(u, v \right) dv du
\]
\[
= E \left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - v + v - t_2 \right] + E \left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - v + v - t_2 \right]
\]
\[
= E \left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - t_2 \right] + E \left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} - t_2 \right]
\]
\[
(4.6)
\]

The second expression of the bracket in (4.6) can be simplified as follows:

\[
= \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} > t_1 \right] \frac{f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(u)}{F_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(t_1)} \, du \, dx
\]
\times \int_0^\infty \int_1^t \int_{t_2}^\infty \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} > t_2 + x | E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} = u \right] \, du \, dx
\]
= \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} > t_1 \right] \frac{f_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(u)}{F_{E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}}}(t_1)} \, du \, dx
\]
\times \int_0^\infty \int_1^t \int_{t_2}^\infty \mathbb{P}\left[E_{\lambda,\tilde{R}}^{\lambda,\tilde{R}} > t_2 + x \right] \, du \, dx
\]
On the other hand, and \(E_{Z} \) and the second terms in (4.5) and (4.7), respectively, can be written as \(\text{Hu and Zhuang, 2005a, Lemma 2.1) Using these observations, the first and the second terms in (4.5) and (4.7), respectively, can be written as}

\[
E_{\tilde{R}_{j-i:n-i:N-\sum_{l=1}^{j-i} R_l-i}} = \sum_{k=1}^{j-i} Z'_k, \quad \text{where } Z'_k \text{ are the corresponding normalized spacings } Z'_1 = NE_{\lambda; r_1:N} \text{ and } Z'_k = (n - k + 1 - R_1 - \ldots - R_{k-1})(E_{\lambda; r_k:n} - E_{\lambda; r_{k-1}:n}), \quad \text{for } k = 2, \ldots, n. \]

It is known that \(Z'_k \) are independent exponential random variables with hazard rate \(\lambda\gamma_{k,n-i} \) (cf. Cramer and Kamps, 2003, Theorem 3.1; Hu and Zhuang, 2005a, Lemma 2.1). Using these observations, the first and the second terms in (4.5) and (4.7), respectively, can be written as

\[
E_{\tilde{R}_{r_1-r_2:n-r_2:N-\sum_{l=1}^{r_2} R_l-r_2}} = \sum_{k=1}^{r_2-r_1} \frac{1}{\lambda\gamma_{k,n-r_2}}, \quad (4.8)
\]

and

\[
E_{\tilde{R}_{r_1-r_2:n-r_1:N-\sum_{l=1}^{r_1} R_l-r_1}} = \sum_{k=1}^{r_2-r_1} \frac{1}{\lambda\gamma_{k,n-r_1}}, \quad (4.9)
\]

On the other hand,

\[
\int_{t_1}^{\infty} \frac{uf_{E_{\lambda; r_1:n}}(u)}{F_{E_{\lambda; r_1:n}}(t_1)} du = E_{E_{r_1:n}} E_{\tilde{R}_{r_1:n}} > t_1
\]

\[
= t_1 + E_{E_{r_1:n}} E_{\tilde{R}_{r_1:n}} > t_1
\]

\[
= t_1 + \int_{0}^{\infty} \frac{uf_{E_{r_1:n}}(u)}{F_{E_{r_1:n}}(t_1)} du
\]

\[
= t_1 + \int_{0}^{\infty} \sum_{i=1}^{r_1} a_{i,r_1,n} \gamma_{i,n}^{-1} e^{-\lambda\gamma_{i,n}(x+t_1)} dx
\]

\[
= t_1 + \sum_{i=1}^{r_1} a_{i,r_1,n} \gamma_{i,n}^{-2} \lambda^{-1} e^{-\lambda\gamma_{i,n}t_1}, \quad (4.10)
\]
\[\mathbb{P}\left[E_{r_{1:n}} > t_1, E_{r_{2:n}} > t_2 \right] \]

\[= \int_{t_1}^{\infty} \int_{t_2}^{\infty} f_{E_{r_{1:n}}(u), E_{r_{2:n}}(v)} (u, v) \, dv \, du \]

\[= \int_{t_1}^{\infty} \int_{t_2}^{\infty} f_{E_{r_{1:n}}(v), E_{r_{2:n}}(u)} (v|u) f_{E_{r_{1:n}}(u)} (u) \, dv \, du \]

\[= \int_{t_1}^{\infty} \int_{t_2}^{\infty} c_{r_{2:1:n} - 1, n - r_1} \sum_{j=1}^{r_1} a_{j, r_{2:1:n} - 1, n - r_1} \]

\[\times \left[\frac{\bar{F}(v)}{F(u)} \right]^{\gamma_{j,n-1} - 1} f(v) \left(\frac{1}{\bar{F}(u)} \right) \sum_{i=1}^{r_1} a_{i, r_{1:1:n} - 1, n - r_1} \left[\bar{F}(u) \right]^{\gamma_{i,n-1} - 1} f(u) \, dv \, du \]

\[= c_{r_{2:1:n} - 1, n} c_{r_{1:1:n} - 1, n} \sum_{i=1}^{r_1} \sum_{j=1}^{r_2 - r_1} a_{i, r_{1:1:n} - 1, n - r_1} a_{j, r_{2:1:n} - 1, n - r_1} \]

\[\times \int_{t_1}^{\infty} \int_{t_2}^{\infty} e^{-\lambda (v-u)(\gamma_{j,n-1} - 1) - \lambda u} e^{-\lambda u(\gamma_{i,n-1} - 1) - \lambda u} \, dv \, du \]

\[= c_{r_{2:1:n} - 1, n} c_{r_{1:1:n} - 1, n} \sum_{i=1}^{r_1} \sum_{j=1}^{r_2 - r_1} a_{i, r_{1:1:n} - 1, n - r_1} a_{j, r_{2:1:n} - 1, n - r_1} \]

\[\times \int_{t_1}^{\infty} \int_{t_2}^{\infty} \lambda^2 e^{-\lambda \gamma_{j,n-1} - \lambda (\gamma_{i,n} - \gamma_{j,n-1}) u} \, dv \, du \]

\[= c_{r_{2:1:n} - 1, n} c_{r_{1:1:n} - 1, n} e^{-\lambda \gamma_{j,n-1} - \lambda (\gamma_{i,n} - \gamma_{j,n-1}) t_1} \]

\[\times \frac{e^{-\lambda \gamma_{j,n-1} - \lambda (\gamma_{i,n} - \gamma_{j,n-1}) t_1}}{\gamma_{j,n-1} - \gamma_{j,n-1}} \] \quad (4.11)

and

\[\mathbb{P}\left[E_{r_{1:n}} > t_1 \right] = c_{r_{1:1:n} - 1, n} \sum_{i=1}^{r_1} \frac{a_{i, r_{1:1:n} - 1, n}}{\gamma_{i,n} - \lambda (\gamma_{i,n} - \gamma_{j,n-1})} \] \quad (4.12)

Now, substituting (4.8), (4.9), (4.10), (4.11) into (4.5), the required result follows.

Theorem 4.15. Let \(\{X_{i:n}: i = 1, \ldots, n \} \) be \(n \) progressively type II censored order statistics based on distribution function \(F \) with non-increasing hazard rate function \(r_F \) such that for a positive constant \(\lambda \)
and each \(x > 0 \), \(r_F(x) \geq \lambda \). Let also

\[
\tilde{R} = (R_1, R_1, \cdots, R_1, R_1, R_2, R_2, \cdots, R_2, R_1, \cdots, R_{i-1}, R_{i-1}, \cdots, R_{i-1}, R_{i+1}, \cdots, R_n),
\]

Then, for \(t_1 \leq t_2 \),

\[
E \left[X_{r_3:n:N}^\tilde{R} - t_2 | X_{r_1:n:N}^\tilde{R} > t_1, X_{r_2:n:N}^\tilde{R} > t_2 \right] \leq \\
\sum_{k=1}^{r_2-r_1} \frac{1}{\lambda \gamma_{k,n-r_2}} + \sum_{k=1}^{r_2-r_1} \frac{1}{\lambda \gamma_{k,n-r_1}} + t_1 + \frac{\sum_{i=1}^{r_2} a_{i,r_1,n} \gamma_{i,n}^{-2} \lambda^{-1} e^{-\lambda \gamma_{i,n} t_1}}{\sum_{i=1}^{r_1} a_{i,r_1,n} \gamma_{i,n}^{-1} e^{-\lambda \gamma_{i,n} t_1}} \\
\times \left\{ e^{\lambda t_2} \sum_{i=1}^{r_1} a_{i,r_1,n} a_{j,r_2-r_1,n-r_1} e^{-\lambda (\gamma_{i,n} - \gamma_{j,n-r_1}) t_1} \sum_{j=1}^{r_2-r_1} \gamma_{j,n-r_1} (\gamma_{i,n} - \gamma_{j,n-r_1}) \right\}
\]

(4.13)

Proof. Let \(\{E_{r:n:N}^{\lambda,\tilde{R}}\} \) be \(n \) progressive type II censored order statistics based on an exponential distribution with the hazard rate \(\lambda \). The assumptions that \(r_F(x) \) is non-increasing in \(x \) and \(r_F(x) \geq \lambda \) implies that \(X \leq_{\text{st}} E^\lambda \) (cf. Lemma 3.5 in Belzunce et al., (2001)). Using this and the sublattice \(L = [(x(1), \ldots, x(n)) \in \mathbb{R}^n | x(i) > t_1, x(j) > t_2] \) in Theorem 2.8, where \(x(1) \leq \ldots \leq x(n) \), \(t_1, t_2 \in \mathbb{R} \) and \(t_1 \leq t_2 \), we obtain that

\[
E \left[X_{r_3:n:N}^\tilde{R} - t_2 | X_{r_1:n:N}^\tilde{R} > t_1, X_{r_2:n:N}^\tilde{R} > t_2 \right] \leq \\
E \left[E_{r_3:n:N}^{\lambda,\tilde{R}} - t_2 | E_{r_1:n:N}^{\lambda,\tilde{R}} > t_1, E_{r_2:n:N}^{\lambda,\tilde{R}} > t_2 \right].
\]

Now the required results follows from Proposition 4.14.

Moreover, the joint density function of every subset from \(X_{r:n:N}^{\lambda,\tilde{R}} \)’s can be derived from Lemma (2.5).

Remark 4.16. In particular, the result of Theorem 4.15 can also be applied to the case when

\[
\tilde{R} = (R_1, R_1, \cdots, R_1, R_2, R_2, \cdots, R_2, R_1, \cdots, R_{i-1}, R_{i-1}, \cdots, R_{i-1}, R_{i+1}, \cdots, R_n),
\]

which is of practical importance.
Acknowledgments

We are grateful to the referees and the Editor for their helpful and valuable comments that improved the presentation of this paper. The research of Baha-Eldin Khaledi is partially supported by Ordered and Spatial Data Center of Excellence of Ferdowsi University of Mashhad.

References

