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Abstract. In this paper, borrowing the intuition in Rao et al. (2004), we introduce a
cumulative version of the inaccuracy measure (CIM). Also we obtain interesting and
applicable properties of CIM for different cases based on the residual, past and inter-
val lifetime random variables. Relying on various applications of stochastic classes in
reliability and information theory fields, we study new classes of the lifetime in terms
of the CIM along with their relations with other famous aging classes. Furthermore,
some characterization results are obtained under the proportional reversed hazard rate
model. Finally, considering that the time t changes in the range (t1, t2), an extension
of the CIM, called the interval cumulative residual (past) inaccuracy (ICR(P)I), is de-
rived. We investigate the ICRI’s relation with its analogous version based on Shannon
entropy.
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1 Introduction and Preliminary Results

In the literature, the reliability and information theory are used to study the behaviour
of a component or a system. For this reason, several information measures have been
defined as practical tools. Let X be a continuous random variable representing the
lifetime of a device or a system. Two dual random variables are known as the residual
lifetime Xt = (X−t|X ≥ t) and the past lifetime X∗t = (t−X|X ≤ t). These two fundamental
concepts have been under attention simultaneously in different areas of statistics.

A prominent measure of uncertainty in terms of the continuous random variable X
is the Shannon entropy (Shannon, 1948). This measure is called the differential entropy
as well and is defined by

H(X) = −
∫ ∞

0
f (x) log f (x)dx. (1.1)

Note that, for a discrete random variable with occurrence probabilities P = (p1, . . . , pn),
this entropy is given by H(P) = −∑n

i=1 pi log pi.
Afterwards, numerous efforts have been made to enrich and extend the uncertainty

measure in terms of underlying continuous density functions. An important attempt
in this regard is the inaccuracy measure, Kerridge (1961), defined by

H(P,Q) = −
n∑

i=1

pi log qi, (1.2)

where P = (p1, . . . , pn) refers to true probabilities and Q = (q1, . . . , qn) refers to proposed
experimenter probabilities.

Nath (1968) took one step further and extended this measure to the case when the
lifetime random variable is continuous. Suppose that X and Y are two non-negative
continuous random variables with probability density functions (PDFs) f (t) and g(t),
respectively. Let f (t) be the actual PDF corresponding to the observations and g(t)
be the estimated PDF applying by the experimenter. Then, as a generalization of the
differential entropy, a useful tool for measuring the error in experimental outcomes is
given by

H(X,Y) = −
∫ ∞

0
f (x) log g(x)dx

= −
∫ ∞

0
f (x) log f (x)dx +

∫ ∞

0
f (x) log

f (x)
g(x)

dx. (1.3)
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Noting here that the first item in (1.3) stands with Shannon entropy, H(X) and the
second term is the Kullback-Leibler measure of discrimination (see Kullback, 1959).
Particularly, if f (x) = g(x), then H(X,Y) achieves its minimum value, i.e. Shannons
entropy H(X). The inaccuracy measure has applications in the statistical inference,
estimation and coding theory. For more properties and applications of H(X,Y), one can
see Smitha (2010) and the references therein.

Under the application perspective, as long as the current age of a system is also
taken into account, the two measures H(X) and H(X,Y) are not suitable to measure
uncertainty. Therefore, in this sort of implementations, the researcher comes across
with the residual measure. However, depending on whether before or after a certain
age of the lifetime random variable is concerned, one may define the residual or past
uncertainties (entropies). So, Ebrahimi and Pellerey (1995) and Ebrahimi (1996) defined
the residual entropy (RE) based on the random variable Xt = (X − t|X > t) by

RE(X; t) = −
∫ ∞

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dx,

= 1 − 1
F̄(t)

∫ ∞

t
f (x) logλ(x)dx

= 1 − E(logλ(X)|X ≥ t),

where λ(x) = f (x)
F̄(x) is the hazard rate function and RE(X; 0) = H(X).

Accordingly, Nair and Gupta (2007) and Taneja et al. (2009) have extended the idea
into the dynamic version as

H(X,Y; t) = −
∫ ∞

t

f (x)
F̄(t)

log
g(x)
Ḡ(t)

dx, (1.4)

where H(X,Y; t) tends to H(X,Y) when t → 0. It can be easily seen that the relation
between hazard rates of X and Y and H(X,Y; t) is established by

λX(t) =
∂H(X,Y;t)
∂t + λY(t)

H(X,Y; t) + logλY(t)
.

Recently, Di Crescenzo and Longobardi (2002) introduced an updated form of the
uncertainty measure in terms of the past lifetime, X∗t = (t − X|X ≤ t), named the past
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entropy (PE), given by

PE(X; t) = −
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx

= 1 − 1
F(t)

∫ t

0
f (x) logλ∗(x)dx

= 1 − E(logλ∗(X)|X ≤ t),

where λ∗(t) = f (x)
F(x) is the reversed hazard rate function and PE(X;∞) = H(X).

Furthermore, Nair and Gupta (2007) and Kumar et al. (2011), have studied a dynamic
measure of the inaccuracy based on X∗t as

H∗(X,Y; t) = −
∫ t

0

f (x)
F(t)

log
g(x)
G(t)

dx, (1.5)

where H∗(X,Y;∞) = H(X,Y).
Rao et al. (2004) defined an alternative measure of uncertainty, called "cumulative

residual entropy" (CRE), through

CRE(X) = −
∫ ∞

0
F̄(x) log F̄(x)dx.

CRE has many good properties. First, its definition is valid in the continuous and
discrete cases which is more general than the Shannon entropy; second, it has more
general mathematical properties than the Shannon entropy; and at last, it can be easily
estimated from sample data and the estimator asymptotically converges to the true
values. One can see many properties and applications of CRE in Rao (2005), Liu (2007)
and Di Crescenzo and Longobardi (2009).

Many other extensions of Shannon entropy are redefined by the idea in Rao et al.
(2004) via replacing f (x) by 1 − F(x); see, for example, the works done by Drissi et al.
(2008), Sunoj and Linu (2012), Psarrakos and Navarro (2013), Sati and Gupta (2015),
Rajesh and Sunoj (2016) and Kundu et al. (2016).

Asadi and Zohrevand (2007) defined the dynamic version of the cumulative residual
entropy (DCRE), which is the CRE of the residual random variable Xt, and it is given
by

DCRE(X; t) = −
∫ ∞

t

F̄(x)
F̄(t)

log
F̄(x)
F̄(t)

dx

= − 1
F̄(t)

∫ ∞

t
F̄(x) log F̄(x)dx + µ(t) log F̄(t),
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where µ(t) = E(X − t|X ≥ t) =
∫ ∞

t F̄(x)dx
F̄(t) is the mean residual life (MRL) function and

DCRE(X; 0) = CRE(X).
As a generalization of the CRE and DCRE, Taneja and Kumar (2012), Kumar and

Taneja (2015) and Kumar (2016) have defined the cumulative residual inaccuracy (CRI)
and the dynamic version of it by

CRI(X,Y) = −
∫ ∞

0
F̄(x) log Ḡ(x)dx

= −
∫ ∞

0
F̄(x) log F̄(x)dx +

∫ ∞

0
F̄(x) log

F̄(x)
Ḡ(x)

dx,

and

DCRI(X,Y; t) = −
∫ ∞

t

F̄(x)
F̄(t)

log
Ḡ(x)
Ḡ(t)

dx.

The cumulative past entropy (CPE) has also introduced and studied by Di Crescenzo
and Longobardi (2009) as

CPE(X) = −
∫ ∞

0
F(x) log F(x)dx. (1.6)

Furthermore, Navarro et al. (2010) studied many properties of DCRE and defined
the dynamic version of the cumulative past entropy (DCPE) by

DCPE(X; t) = −
∫ t

0

F(x)
F(t)

log
F(x)
F(t)

dx

= µ∗(t) log F(t) − 1
F(t)

∫ t

0
F(x) log F(x)dx, (1.7)

where µ∗(t) = E(t − X|X ≤ t) =
∫ t

0 F(x)dx
F(t) is the mean past life (MPL) function and

DCPE(X;∞) = CPE(X).
Kumar and Taneja (2015) and Kundu et al. (2016) have introduced the cumulative

past inaccuracy (CPI) and its dynamic version as a generalization of CPE (1.6) and
DCPE (1.7), respectively, by

CPI(X,Y) = −
∫ ∞

0
F(x) log G(x)dx

= −
∫ ∞

0
F(x) log F(x)dx +

∫ ∞

0
F(x) log

F(x)
G(x)

dx, (1.8)
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and

DCPI(X,Y; t) = −
∫ t

0
Ft(x) log Gt(x)dx

= µ∗(t) log G(t) − 1
F(t)

∫ t

0
F(x) log G(x)dx, (1.9)

where Ft(x) = F(x)
F(t) and Gt(x) = G(x)

G(t) are the distribution functions of the past lifetime
random variables X∗t = (t − X|X < t) and Y∗t = (t − Y|Y < t), respectively. They have
studied some basic properties and applications of these measures. In this paper, we
obtain some new results on these functions including the necessary and sufficient con-
ditions for their monotonicity properties and some new characterization results. Also,
some new properties based on double truncated (interval) lifetime random variables
are obtained.

It should be noted that

CPI(X,Y) = CPE(X) + CKL(X,Y) + [E(Y) − E(X)],

where CKL(X,Y) =
∫ ∞

0 F(t) log F(t)
G(t) dt+ [E(X)− E(Y)] is the cumulative Kullback-Leibler

information introduced by Park et al. (2012) and Di Crescenzo and Longobardi (2015).
Moreover, we have

DCPI(X,Y; t) = DCPE(X,Y; t) +DCKL(X,Y; t) + [µ∗X(t) − µ∗Y(t)],

where

DCKL(X,Y; t) =
∫ t

0

F(x)
F(t)

log
(

F(x)G(t)
F(t)G(x)

)
dx + [µ∗Y(t) − µ∗X(t)]

is the dynamic cumulative Kullback-Leibler information (Di Crescenzo and Longob-
ardi, 2015).

Another reliability measure that has an important role in modeling and extracting
the dependence structure between two distributions are proportional hazard model
(Cox, 1959) and proportional reversed hazard model (Gupta et al., 1998). If the random
variables X and Y satisfy the proportional (reversed) hazard model denoted by PHM
(PRHM), then we have Ḡ(x) = [F̄(x)]β for PHM, and G(x) = [F(x)]β for PRHM, where
β > 0 is a constant.

Examples 1.1. Let a non-negative random variable X be uniformly distributed over
(a; b), a < b, with density and distribution functions, respectively, given by

f (x) =
1

b − a
and F(x) =

x − a
b − a

; a < x < b.



More results on dynamic cumulative inaccuracy measure 95

Thus, by substitution, we obtain the CPI and DCPI under PHM, and CRI and DCRI
under PRHM as follows.

CPI(X,Y) = βCPE(X) = −
∫ b

a
β(

u − a
b − a

) log(
u − a
b − a

)du =
β(b − a)

4
,

DCPI(X,Y; t) = βDCPE(X; t) = −
∫ t

a
β

( u−a
b−a )

( t−a
b−a )

log
( u−a

b−a )

( t−a
b−a )

du =
β(t − a)

4
,

CRI(X,Y) = βCRE(X) =
β(b − a)

4
,

DCRI(X,Y; t) = βDCRE(X; t) =
β(b − t)

4
.

In addition, it is easy to see that the cumulative inaccuracy measures are not sym-
metric by changing the X and Y; for instance, CPI(X,Y) , CPI(Y,X) or DCRI(X,Y; t) ,
DCRI(X,Y; t). Since the properties of the CRI (or DCRI) and the CPI (or DCPI) are
radically different (for example, we will show that there is no life distribution with
decreasing DCPI), there is some scope for a separate study of the CPI and DCPI.

By using log-sum inequality, the following bounds for the CRI and CPI, which are
related to CRE and CPE, can be easily obtained as

CRI(X,Y) ≥ CRE(X) + C,
CPI(X,Y) ≥ CPE(X) + C,

where C = E(X) ln E(X)
E(Y) . The following theorem shows that the DCPI has a direct relation

with the mean past lifetime.

Theorem 1.1. Let X and Y be two non-negative continuous random variables satisfying the
PRHM, such that DCPI(X,Y; t) < ∞ for all t > 0. Then,

DCPI(X,Y; t) = βE(µ∗(X)|X ≤ t). (1.10)

Proof. To prove the result, note that, under PRHM, we have

DCPI(X,Y; t) = βDCPE(X; t).
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On the other hand,

E(µ∗(X)|X ≤ t) =
∫ t

0
µ∗(x)

f (x)
F(t)

dx

=

∫ t

0

f (x)
F(t)F(x)

(∫ x

0
F(u)du

)
dx

=

∫ t

0

F(u)
F(t)

(∫ t

u

f (x)
F(x)

dx
)

du

= −
∫ t

0

F(u)
F(t)

log
F(u)
F(t)

du

= DCPE(X; t).

Hence the proof is completed. □

Corollary 1.1. In analogy of Theorem 1.1 for dynamic cumulative residual inaccuracy,
we can prove that DCRI(X,Y; t) = βE(µ(X)|X ≥ t).

For some recent results on the CPI and empirical CPI based on suitable stochastic
orderings and also applications in failure of nanocomponents and image analysis, see
Di Crescenzo and Longobardi (2013, 2015).

The rest of the paper is as follows. In Section 2, we define new class of life distri-
butions based on the DCPI and DCRI, and their relation with other aging classes are
implied. Also, the necessary and sufficient conditions for those classes are obtained.
Furthermore an upper bound for DCPI(X,Y; t) based on the mean past lifetime func-
tion under the PRHM is presented. We also study some characterization problems in
Section 3. We show that the DCPI measure can uniquely determine the distribution
function. We also characterize various distributions in terms of the relation between
DCPI(X,Y; t) and µ∗(t). Finally, in Section 4, some properties of the interval cumulative
residual (past) inaccuracy measure is studied.

2 New Class of Life Distributions

In this section, we define a new class of life distributions based on DCPI(X,Y; t). Similar
definitions and results can be obtained for dynamic CRI.

Definition 2.1. The two distribution functions F and G are said to be increasing (de-
creasing) DCPI, denoted by IDCPI(DDCPI), if DCPI(X,Y; t) is an increasing (decreasing)
function of t.
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The following theorem gives the necessary and sufficient condition for DCPI(X,Y; t)
to be increasing (decreasing).

Theorem 2.1. The dynamic cumulative past inaccuracy is increasing (decreasing) with respect
to t if and only if

DCPI(X,Y; t) ≤ (≥)µ∗X(t)
λ∗Y(t)
λ∗X(t)

. (2.1)

Proof. Differentiating (1.9) with respect to t, we easly get

∂
∂t

DCPI(X,Y; t) = λ∗Y(t)µ∗X(t) − λ∗X(t)DCPI(X,Y; t), (2.2)

which proves the inequality (2.1). □

Examples 2.1. Let X and Y be two nonnegative random variables having density
functions, respectively, as

f (x) =


x 0 < x < 1
x
3

1 ≤ x < 2

0 o.w.

and g(x) =


2x + 1

4
0 < x < 1

1
2

1 ≤ x < 2

0 o.w.

Then, we have

DCPI(X,Y; t) =



1
3t

(1 − ln(t + 1)1/t) +
2t
9
− 1

6
0 < t < 1

2t3 − 24 ln(t) − 18 ln(2) + 36t − 17
18t2 + 36

1 ≤ t < 2
71
108
− 7

18
ln(2) t ≥ 2

λ∗X(t) =


2
t

0 < t < 1
2t

t2 + 2
1 ≤ t < 2

0 o.w.
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λ∗Y(t) =


2t + 1
t2 + t

0 < t < 1
1
t

1 ≤ t < 2

0 o.w.

µ∗X(t) =



t
3

0 < t < 1

t3 + 6t − 4
3t2 + 6

1 ≤ t < 2
8
9

t ≥ 2.

It is easy to see that the DCPI(X,Y; t) is an increasing function in t. Figure 1 illustrates
the results of Theorem 2.1.
Corollary 2.1. Under the satisfaction of the proportional reversed hazard model (PRHM)
for X and Y, DCPI(X,Y; t) is an increasing function of t, if and only if the inequality

DCPI(X,Y; t) ≤ βµ∗X(t). (2.3)

holds for all t.
Proof. Under the PRHM, we have

∂
∂t

DCPI(X,Y; t) = λ∗X(t)(βµ∗X(t) −DCPI(X,Y; t)), (2.4)

which concludes the proof. □
Corollary 2.2. In Corollary 2.1, equality holds in (2.3) if and only if X has a distribution
function of the form F1(x) in Theorem 3.2, part (i).

The following theorem shows that no non-negative random variable exists with
decreasing DCPI (DDCPI) over the domain [0,∞).

Theorem 2.2. If X and Y are non-negative and non-degenerate random variables, then
DCPI(X,Y; t) cannot be a decreasing function of t for all values of t.

Proof. On the contrary, we assume that DCPI(X,Y; t) is a decreasing function of t.
Then, for all t > 0, we should have 0 ≤ DCPI(X,Y; t) ≤ DCPI(X,Y; 0) and, since
limt→0 DCPI(X,Y; t) = 0, the last inequality implies the contradiction DCPI(X,Y; t) = 0,
for all t. □

Corollary 2.3. Navarro et al. (2010) have shown that the class of decreasing DCPE is also
empty, and hence in PRHM the class of DDCPI is empty too, that is, under PRHM,
there exists no non-degenerate random variable with decreasing dynamic cumulative
past inaccuracy.
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Figure 1: Dynamic cumulative past inaccuracy measure (continuous line) andµ∗X(t)
λ∗Y(t)
λ∗X(t)

(dashed line) in Theorem 2.1 for Example 2.1.

Using the results of Nanda et al. (2003) and Navarro et al. (2010), we have the
following relationships.

Remark 1. Under the assumption of the PRHM, we have

DRHR =⇒ IMPL =⇒ IDCPE⇐⇒ IDCPI,

where DRHR denotes for the decreasing reversed hazard rate, IMPL denotes for the in-
creasing mean past lifetime and IDCPE denotes for the increasing dynamic cumulative
past entropy. Similarly, under PHM,

DFR (IFR) =⇒ IMRL (DMRL) =⇒ IDCRE (DDCRE)⇐⇒ IDCRI (DDCRI).
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3 Characterization Results

In this section, we study the characterization problem for the dynamic cumulative past
inaccuracy measure (1.9). First, in the next theorem, we show that the DCPI is unique
for any two distribution functions F and G.

Theorem 3.1. If X and Y are two non-negative random variables and DCPI is an increasing
function of t, then DCPI(X,Y; t) is unique for the distribution functions F and G.

Proof. Let X1, Y1 and X2, Y2 be two sets of random variables with distribution functions
F1, G1 and F2, G2, respectively. To prove the theorem, we will show that if, for all t ≥ 0,

DCPI(X1,Y1; t) = DCPI(X2,Y2; t), (3.1)

then we should have λ∗X1
(t) = λ∗X2

(t) and λ∗Y1
(t) = λ∗Y2

(t) which leads to FX1(t) = FX2(t)
and GY1(t) = GY2(t). So, let

A1 = {t : t ≥ 0 and λ∗X1
(t) , λ∗X2

(t)},

A2 = {t : t ≥ 0 and λ∗Y1
(t) , λ∗Y2

(t)}.
If, for some t ≥ 0, just one of A1 or A2 is empty (i.e λ∗X1

(t) = λ∗X2
(t) or λ∗Y1

(t) = λ∗Y2
(t)),

it is easy to see that we have a contradiction. So, assume that, for some t ≥ 0, the
sets A1 and A2 are not empty, hence, without loss of generality, suppose that, for some
t0 ∈ A1 ∩ A2,

λ∗X1
(t0) > λ∗X2

(t0), (3.2)

and

λ∗Y1
(t0) < λ∗Y2

(t0) or λ∗Y1
(t0) > λ∗Y2

(t0). (3.3)

On the other hand, using (2.2), the Eq. (3.1) gives

λ∗Y1
(t)µ∗X1

(t) − λ∗X1
(t)DCPI(X1,Y1; t) = λ∗Y2

(t)µ∗X2
(t) − λ∗X2

(t)DCPI(X2,Y2; t),

which, after using the relations (3.2), (3.3) and (2.1) and some calculations, it leads to

µ∗X1
(t0) > µ∗X2

(t0).

Nanda et al. (2003) have shown that the reversed hazard rate ordering is stronger
than the reversed mean residual life ordering, so the last inequality implies a contra-
diction to (3.2) and hence the sets A1 and A2 should be empty and then the proof is
completed. □
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Remark 2. Results similar to that of Theorem 3.1 can be proved for the dynamic cumu-
lative residual inaccuracy (DCRI).

Next, we consider the characterization of three distributions based on the DCPI.

Theorem 3.2. Let X and Y be two absolutely continuous random variables and let µ = E(X)
be finite and the support of them be (a, b) where a = inf{t : F(t) > 0} and b = sup{t : F(t) < 1}.
If a is taken to be zero, the random variables X and Y may be thought of as the random lifetime
of a system or of a component. Further, suppose that X and Y are satisfying the PRHM. Then,
the identity

DCPI(X,Y; t) = cµ∗(t), , (3.4)

for every t ≥ 0 and constant c, characterizes

(i) the distribution

F1(x) = e
x−b
b−µ ; x ∈ (−∞, b] for c = β,

(ii) the distribution

F2(x) =
[
bc − βµ + x(β − c)

β(b − µ)

] c
β−c

; x ∈ [
βµ − bc
β − c

, b] for c < β,

which is a finite range distribution,

(iii) the distribution

F3(x) =
[
bc − βµ + x(β − c)

β(b − µ)

] c
β−c

; x ∈ (−∞, b] for c > β,

where µ is the mean of distribution and is finite.

Proof. Suppose that (3.4) holds. Then we have

βµ∗(t) log F(t) −
β

F(t)

∫ t

0
F(x) log F(x)dx = cµ∗(t).

Differentiating both sides with respect to t, we obtain

c
β
µ∗
′
(t) = µ∗

′
(t) log F(t) + µ∗(t)λ∗(t) − log F(t) + λ∗(t)

1
F(t)

∫ t

0
F(x) log F(x)dx

= µ∗
′
(t) log F(t) + µ∗(t)λ∗(t) − log F(t) + λ∗(t)[µ∗(t) log F(t) − c

β
µ∗(t)].
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Using the relation µ∗
′
(t) = 1 − µ∗(t)λ∗(t) and simplifying,

µ∗(t)λ∗(t) =
c
β
. (3.5)

Chandra and Roy (2001) have characterized the distributions F1(x),F2(x) and F3(x)
using the identity (3.5). □

As a special case of Theorem 3.2, the following corollary gives a characterization of
the power distribution. This distribution is a special case of F2(x) for µ = b c

β .

Corollary 3.1. Let X and Y be two random variables with absolutely continuous dis-
tribution functions and the support (0, b). If X and Y satisfy the PRHM, then X has a

power distribution with F(x) =
(

x
b

) c
β−c , for 0 < x < b and 0 < c < β, if and only if

DCPI(X,Y; t) = cµ∗(t),

for 0 < t < b.

Remark 3. Under the assumption of proportional hazard model (PHM), Kumar and
Taneja (2015) have presented similar results to that of Theorem 3.2 based on the DCRI
via the identity DCRI(X,Y; t) = cµ(t) for exponential distributions (c = β), Pareto distri-
butions (c > β) and finite range distributions (c < β).

4 Interval Cumulative Inaccuracy

Another extension of information measures can be expressed via the doubly truncated
random variables. If X denotes the lifetime of a unit, then the random variables
Xt1,t2 = (X − t1|t1 ≤ X ≤ t2) and X∗t1,t2

= (t2 − X|t1 ≤ X ≤ t2) are called doubly truncated
(interval) residual lifetime and doubly truncated (interval) past lifetime, respectively. Sunoj
et al. (2009) and Misagh and Yari (2011, 2012) have introduced the interval Shannon
entropy by

IH(X; t1, t2) = −
∫ t2

t1

f (x)
F(t2) − F(t1)

log
f (x)

F(t2) − F(t1)
dx, (4.1)

where (t1, t2) ∈ D = {(t1, t2) : F(t1) < F(t2)}. It is clear that IH(X; 0, t) = PE(X; t) and
IH(X; t,∞) = RE(X; t). Similarly, the interval cumulative residual (past) entropy has
been introduced by Khorashadizadeh et al. (2013). Moreover, Kundu and Nanda
(2015) defined and studied the interval inaccuracy measure. For more motivation
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and applications of the doubly truncated information measure, see the recent works
such as Yasaei Sekeh et al. (2015), Kundu et al. (2016), Kundu (2017) and Jalayeri and
Khorashadizadeh (2017). The interval cumulative residual inaccuracy (ICRI) can be
defined by

ICRI(X,Y; t1, t2) = −
∫ t2

t1

F̄(x)
F̄(t1) − F̄(t2)

log
Ḡ(x)

Ḡ(t1) − Ḡ(t2)
dx, (4.2)

and, for the interval cumulative past inaccuracy (ICPI), we have

ICPI(X,Y; t1, t2) = −
∫ t2

t1

F(x)
F(t2) − F(t1)

log
G(x)

G(t2) − G(t1)
dx, (4.3)

where (t1, t2) ∈ D. In the special case of t1 → 0, ICRI(X,Y; 0, t2) reduces to the DCPI and,
when t2 → ∞, ICPI(X,Y; t1,∞) reduces to the DCRI. Kundu et al. (2016) have obtained
some properties for ICRI and ICPI.

The next theorem shows the relationship between the ICPI and the interval Shannon
entropy. Similar results for the ICRI can be obtained.

Theorem 4.1. Let X and Y be two non-negative random variables, then

ICPI(X,Y; t1, t2) ≥ C. exp {IH(X; t1, t2) + IH(Y; t1, t2)} , (4.4)

where C = exp
{∫ q2

q1
log

(
x log G(F−1(x[F(t2)−F(t1)]))

G(t2)−G(t1)

)}
dx and qi =

F(ti)
F(t2)−F(t1) for i = 1, 2.

Proof. If we let P(x, y) = f (x)
F(t2)−F(t1) .

g(y)
G(t2)−G(t1) and Q(x, y) = F(x)

F(t2)−F(t1) log G(x)
G(t2)−G(t1) , then,

using log-sum inequality as∫ ∫
P(x, y) log

P(x, y)
Q(x, y)

dxdy ≥
(∫ ∫

P(x, y)dxdy
)

log

∫ ∫
P(x, y)dxdy∫ ∫
Q(x, y)dxdy

,

the required results would be obtained. □

Remark 4. In Theorem 4.1, by putting t1 → 0 or t2 →∞, similar relationships would be
obtained for the DCPI and DCRI, respectively.

In the following, based on the ICRI function, an upper bound for the difference of
two independent random variables is obtained. Analogous results based on the ICPI
can be obtained in a similar way.



104 M. Khorashadizadeh

Theorem 4.2. Let X and Y be two independent non-negative continuous random variables.
Then,

E(|X − E(X)| | X ∈ I) ≤ E(|X − Y| | (X,Y) ∈ I2)
≤ ICRI(X,Y; t1, t2) + ICRI(Y,X; t1, t2),

where I = (t1, t2) ∈ D.

Proof. For two independent random variables,

P(max(X,Y) > z | (X,Y) ∈ I2) − P(min(X,Y) > z | (X,Y) ∈ I2)

=
F̄(z)

F̄(t1) − F̄(t2)
+

Ḡ(z)
Ḡ(t1) − Ḡ(t2)

− 2
F̄(z)Ḡ(z)

[F̄(t1) − F̄(t2)][Ḡ(t1) − Ḡ(t2)]
.

So, by integrating both sides from t1 to t2, we can write

E(|X − Y| | (X,Y) ∈ I2) =
∫ t2

t1

F̄(z)
F̄(t1) − F̄(t2)

(
1 − Ḡ(z)

Ḡ(t1) − Ḡ(t2)

)
dz

+

∫ t2

t1

Ḡ(z)
Ḡ(t1) − Ḡ(t2)

(
1 − F̄(z)

F̄(t1) − F̄(t2)

)
dz.

On the other hand, using the inequality 1 − x ≤ | log x| for all x > 0,

E(|X − Y| | (X,Y) ∈ I2) ≤
∫ t2

t1

F̄(z)
F̄(t1) − F̄(t2)

∣∣∣∣∣log
Ḡ(z)

Ḡ(t1) − Ḡ(t2)

∣∣∣∣∣ dz

+

∫ t2

t1

Ḡ(z)
Ḡ(t1) − Ḡ(t2)

∣∣∣∣∣log
F̄(z)

F̄(t1) − F̄(t2)

∣∣∣∣∣ dz

= ICRI(X,Y; t1, t2) + ICRI(Y,X; t1, t2).

Furthermore, we have

E(|X − Y||(X,Y) ∈ I2) =
∫ t2

t1

E(|X − u||X ∈ I) f (u)du

≥
∫ t2

t1

|u − E(X)| f (u)du

= E(|X − E(X)||X ∈ I),

and the proof is completed. □

Corollary 4.1. In the special cases, when t1 = 0 and t2 = ∞ in Theorem 4.2, then
E(|X − E(X)|) ≤ E(|X − Y|) ≤ CRI(X,Y) + CRI(Y,X).
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5 Conclusion

When we estimate the probability density function based on lifetime observations, our
estimation results have some precision, one is due to the lack of enough information
or vagueness in our estimation (e.g. missing observation or insufficient data) and the
other is due to incorrect information (e.g. miss-specifying the model). It is known that
the error due to vagueness can be explained by Shannon entropy and the error due to
wrongly specifying the distribution can be measured by the Kullback-Liebler measure
of discrimination. So, the inaccuracy measure is a good tool for considering these tow
errors together.

Motivated by this, in the present paper, we considered some extensions of cu-
mulative Kerridge inaccuracy measure due to the residual, past and interval lifetime
random variables. Among our results, we have presented some characterization re-
sults for three certain specific lifetime distributions. Also, the relationships with other
well-known aging classes such as the DRHR, IMPL and IDCPE are obtained. Of course,
other properties of these functions are still waiting to be discovered.
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