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Abstract. We examine the Rasch model for latent structure para-
meters in binary and multiple response questionnaires and develop
methodologies and data-analytic tools for assessing collaboration/che-
ating in multiple choice tests.

1 Introduction

Data collection in the form of a questionnaire is a common practice
in many fields of science and engineering. Applications could vary
from product testing in reliability studies, to achievement tests in
education. The collected data are used to assess individual’s charac-
teristics, such as student’s ability based on his test score, or popula-
tion’s characteristics, such as product-reliability where test results of
a sample are used to assess the population. Rasch (1960) proposed a
latent structure model for analyzing binary response questionnaires.
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The model introduces a “difficulty” parameter for each question and
an “ability” parameter for each examinee, and uses the test results
to estimate these parameters. The advantage of this approach, com-
pared to estimating examinee’s ability and question’s difficulty by
the corresponding marginal scores, is that the former calibrates the
estimated abilities to the difficulties of the questions. Similarly, the
estimated difficulties are calibrated to the abilities of the student who
answered these questions. Two additional features of such a latent
structure model are: (a) It provides a reasonable way of comparing
across different tests, and (b) It provides a simple probability model
for assessing more complicated quantities related to the performance
of the examinees. This last point is demonstrated in a regression
example later to assess collaboration in multiple choice tests.

For achievement tests with more complicated response options,
the difficulty-of-question parameter could be a vector. Also, the test
could be such that individual’s ability is measured in several cate-
gories, so it too could be a vector parameter. To accommodate such
high dimension situations Rasch (1961, Section 4) extended his origi-
nal model and proposed the following class of probability functions, as
a general statistical framework for analyzing a variety of achievement
tests data.

P{ylai, B} o< exp{o(y)ai +¥(y)B; + x(y)aiB; +ply)}  (1.1)

Here y is the response, «; and g; are the ability and difficulty pa-
rameters, possibly vectors, and (1.1) is the probability that subject i
chooses response y to question 7, when the difficulty of the question
is #; and the ability of the subject is ay;¢ = 1,...,1,5 = 1,...,J,
y € {possible responses to question j}. The functions ¢,, x and p
depend on the response, y, only. In the case of vector parameters,
the products ¢(y)a; and 9 (y)f5; are interpreted as inner products of
vectors, x(y) is taken to be a matrix, and x(y)a;3; is a homogeneous
bilinear form in the coordinates of c; and ;. The responses are
assumed to be independent across the i’s and j’s.

Despite the fact that (1.1) is designed to handle vector parame-
ters, most of the published literature still focuses on the binary re-
sponse case, while the multivariate situation has not been explored in
depth. In this paper we propose a model which is particularly useful
and natural for looking at multiple choice test data. The model is a
special case of (1.1) and can be labeled a “Rasch model for multiple
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choice tests.” The essential feature is that the “difficulty-of-question”
parameter, 3;, which was a one-dimensional parameter in the binary
response case, is now an M — 1 dimensional vector parameter where
M is the number of choices for the question. The interpretation is
changed accordingly from ; being the difficulty of question j to 3
being the appeal of the kth incorrect choice as a prospective response
to question 7; note that there are M — 1 incorrect choices, as only
one of the M is assumed to be correct.

In Section 2 we describe the details of the model and connect the
interpretation of the parameters with the mathematical properties
of the model. In Section 3 we discuss the likelihood function and
the likelihood equations. We further show that the likelihood can be
conveniently factorized into a conditional likelihood and a marginal
likelihood, with the latter corresponding to a binary response Rasch
model. This is used in the estimation procedure, which is discussed
in Section 4. Specifically, Section 4 briefly reviews some of the known
issues related to the consistency of the maximum likelihood estimator
(MLE) and proposes a simple algorithm which converges monotoni-
cally, in the sense of increasing likelihood from iteration to iteration,
to the MLE of the model’s parameter. Section 5 describes an appli-
cation of the model to a problem of assessing collaboration between
two students who were accused of cheating on a test.

2 The Model

The model we propose for multiple choice tests can be formally de-
rived from (1.1) as follows. Denote the possible responses (“choices”)
for each question by 01,...,0as, where 0y = (dk1,...,0k01), & =
1,..., M,

1, ifk=m

S = 2.1
‘ {0, itk £m (21)

Without loss of generality assume that the correct response to each of
the questions is d;. Let [3; be a vector parameter of length M whose
first coordinate is 0,

B =(0,B52,....0im), j=1,...,J

and let «; be a one-dimensional parameter. In (1.1) set x(y) =
0, p(y) =0, ¢(y) = 1ly = 01] and ¢(y) = y. The resulting model
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can then be described as follows: Let Y;; be the response of subject
1 to question j,7=1,...,land j=1,...,J. Then

ei e
A e (22)
A iftk=2,...,M
Alternatively:
Pijr = P{Yij = 0x} = MeAiM (2.3)
SR
i=1,...,0, j=1,....0, k=1,....M
with
o, itk =1,
ik = il [k = 1] + Bl [k # 1] = {,Bjk, k=2 .M (2.4)

The responses are assumed to be independent across questions, for
any fixed individual, as well as across individuals.

Interpretation and Observations

(i) «; are measures the ability of subject i. The probability of
correct response from subject i to question j, P{Y;; = 1}, is
a monotone function of a; approaching 1 as a; — oo and 0 as
o — —0O0.

(ii) The conditional probability of a particular incorrect response to
question 7, given an incorrect response, is independent of the
subject’s ability parameter:

exp{ Bk }

P{Yi: = 8|V #6,) =
{ J k| 375 1} Z%f:gexp{ﬁjm}

(iii) fB;r measures the appeal of the incorrect choice dj as a plausible
choice for question j. For example, if (1) Albany, (2) New York
City, (3) Buffalo and (4) Miami, are the four choices in a ques-
tion about the capital of New York State, do (“New York City”)
appears more plausible than d3 or d4. Note that the probability
that subject 7 chooses 0 for problem j is a monotone function
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of Bjr which approaches 1 if 8j, — oo and 0 if 3;; — —oo.
Furthermore, the probability that subject 7 chooses the correct
response to problem ¢, P{Y;; = 41}, is a monotone decreasing
function in each of the 8;. (k =2,..., M) and approaches 0 as
Bjr — oo for some k.

(iv) The assumption that the number of possible choices, M, is the
same for all questions was made only to simplify the notation.
The statistical procedures we derive are easily modified to ac-
commodate tests where different questions may have a different
number of choices.

3 The Likelihood

Define the following statistics

(Y (i,j) =k iff Y =0y,

Xij = I[Yi; = d1],
) Si = Xiy =32; Xij,

Cij = S 1Yy = 0] = Y1, 0kY7,

Cj = Yilo Cj = Cja + -+ + Cjnr = £,(1 = Xyy),
(Tj=1-Cj=Xy;=>,Xjj

(3.1)

Lower case letters indicate the observed values of the corresponding
statistics. The interpretation is as follows:
y(7,7) is the numerical-label of individual ¢’s response to question j;
x;j is 1 if subject ¢ answers correctly question j; otherwise z;; is 0;
s; is the total test score of subject i;
cji is the total count for response k to question j;
c; is the total count of incorrect responses to question j;
tj is the total count of correct responses to question j;

Clearly tj+c; = I. For example, if individual number nine marked

the third choice as the correct one for question number seventeen,
then y(9,17) = 3, etc.
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Define also the following function of the parameters o, 8j2, ..., Bjm,
a; = e, b; =ebir . qefiv, i=1,...,I, j=1,...,],

a:(ala"'aal)v b:(bla"'abJ)a
njk:eﬁfk/bj:P{Y}jzdkmj#61}, k=2,....M

From (1.3), the liklihood function is

I H exp{AZ]y (i)} _exp { Eij Nijy(ig) }
1 exp{)\”m} [1;;(ai + b))

Simple algebraic manipulations give
ij i jk
and so the log-likelihood is

t=loglL = Z QpS; + Z ,Bjkcjk — Z log(ai + bj) (3.5)

The likelihood equations are

J
(901 Z (3.6a)
I
ov ﬂ,k
] :
Summing (3.6b) over k gives us
Ty,
i — =0 3.7
% ; a; + b; (3.7)
Using this, and the fact that (3.6b) can be rewritten as
3.60'
ik Z a; + b ( )

i=1
We conclude that
'ﬁjk = Cjk/Cj (0/0 = 0) (3.8)
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Plugging this into (3.6b") shows that (3.6b) can be replaced by (3.7)
which is independent of & (the choice of the incorrect response), k =
2,...,M. Thus, we can combine (3.6a), (3.7) and (3.8) (with an
obvious modification to (3.7)) as an equivalent form of the likelihood
equations:

a; .
=g, i=1,...,1 3.9
Z a; + bj s v ( a)

a; .
— =1 =1,... 9b
Xijai+bj oo d=1d (3.9b)

Ak =cipfci, j=1,...,0, k=2....M (3.10)

An equivalent form of (3.9) is
EXi+:$i+,’i:1,...,I; EX+j:$+]‘,j:1,...,J (311)

That is, each row-margin of the matrix {a;/(a; + b;)} is equal to the
corresponding subject’s test score, while each column-margin is equal
to the corresponding question’s total correct count.

3.1 Standardization of the Model (Identifiability)

It is clear from (2.2) and (3.2) that the model (2.2) is invariant under
the scale change

(ai,bj) — (ai,bj)d (d > 0)

so that the parameters are identifiable only up to a multiplicative
constant. This is also apparent in the likelihood equations (3.6) and
(3.9-10). The physical interpretation is that a matching scale-change
to both units of measurement, that of ability of subjects (a;) and that
of difficulty of questions (b;), does not effect the response probabili-
ties. (Makes sense!) To eliminate this indeterminacy from our model,
we set a; = 1 for some 1 <4 < [. Excluding subjects who answered
the questions all correctly or all incorrectly, for whom &; = 0 or oo,
it is convenient to set the a of the lowest scoring subject to zero:

a;, =1, wherei; =argmin{s;;i=1,...,1,s; >0} (3.12)
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3.2 Decomposition of the Model

The likelihood equations (3.9-10) can be derived directly from the
likelihood function upon observing that it can be decomposed as fol-
lows: T
a;"” b
L= -
[H a; + bj ] [

ij

1—z;;
H "jy(i,;)] = Il (3.13)

L]

where

Ly = H a;'b;’/ H(ai + b;) (3.14)
ij ij

Ly =[] (3.15)
ik

Ly is the likelihood of the data when we do not distinguish between
different incorrect choices. This is the likelihood function of the stan-
dard, binary-response, Rasch model and the likelihood equations are
those in (3.9). Lo is the likelihood of the observed responses, condi-
tionally on them being incorrect. From (3.2)

M
=1, j=1,...,J
k=2

so that (3.10) gives the likelihood equations for Lo, or rather the
MLE’s for nj; based on the likelihood Ls. The decomposition in
(3.13) also shows that the statistics s;, 1 < i < I, ¢;, 1 <35 < J
are sufficient for a;, 1 < ¢ < I, b;, 1 < 5 < J, and the statistics
cjk, 1 <3< J, 2<k < M, are sufficient for n;;, 1 <j < J.

4 Estimation

There are various likelihood-based methods for estimating the a;’s
and b;’s, and from a practical point of view the appropriateness of
different methods depends, among other things, on the relative val-
ues of I and J. For instance, if either I or J, but not both, is very
large, the usual likelihood methodology fails due to a large number of
incidental parameters, and conditional likelihood methods and mix-
ture model techniques have been used to derive consistent estimators.
(See Lindsay, Clogg and Grego, 1989, for a comprehensive discus-
sion.) From a technical point of view the problem is the following: If,
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for instance, by,...,bs are the model’s “structural” parameters, and
ai,as,...,ar are the “incidental” parameters (unknown constants),
then the MLE of by,...,b; is inconsistent fot fixed .J when I — oc.
On the other hand, if both I — oo and J — o0, then under some mild
conditions (Haberman, 1977) the MLE of by,bs,...,b; is consistent.
In fact, when I and J approach infinity, both sets of parameters,
bi,bo,...,b; and a1,a9,...,ar can be estimated consistently by the
MLE.

The following is a very simple iterative procedure which converges
monotonically (in the sense of increasing likelihood from one iteration
to the next) to the solution of (3.9); i.e. to the MLE of a and b.

An Algorithm for Estimating a and b

The following iterative procedures solve (3.9).

Initialization. Start the algorithm with

af' =1 (for identifiability) (4.1a)
0 if s; =0,
a?l = { oo if s; = J, (4.1b)
affort if 0 <s; < J and i # 4
0 if ¢; =0,
pld={ oo ife =1, (4.1¢)

btert 0 <cj <1

with i1 defined in (3.12) and a'" and bj-t‘“"t being arbitrary finite

i

positive numbers, 1 =2,..., I and 5 =1,...,J.
Iteration. For i =1,...,1, a;°V is the solution of
J
jz::l%jiib]qm:si, if0<s; <J (4.2a)

otherwise a;'“" < afld.

old new
21 ’

ai"® < a;*’/a i=1,...,1 (4.2b)
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(This rescales the a;’s and resets a;, back to 1, to maintain the iden-
tifiability condition.)
For j =1,...,J, b7°" is the solution of

0
b.
Sy = H0<e <I (4.2¢)
i=1 1 J
otherwise b7 « bjo.ld.
ot i, =1, (4.2d)
Return to (4.2a). (4.2¢)

Necessary and sufficient conditions for the existence and unique-
ness of the MLE were given in Fischer (1981). Fisher’s conditions can
be described as follow: Assume, without loss of generality, that the
s;’s and t;’s are ordered, s; < --- < syand t; <--- <t;. Then the
likelihood equation (3.9) has a unique solution if and only if there do
not exist integers 79 and jg such that

0< Sipg < Sig+1 < J, 0< tjo < tj0+1 <I (4.3(1)
20 J
Z si + (I —io)(J — jo) = Z tj (4.30)
i=1 J=jo+1
Theorem 4.1. Under the above conditions of Fischer, the algo-

rithm (4.1)-(4.2) converges to the unique MLE of a and b.

Proof. For the purpose of this proof, it is simpler to consider the
likelihood as a function of the natural parameters. Because of the
factorization (3.13) we can assume, without loss of generality, that the
test consists entirely of binary response questions (M = 2). In this
case f; = fBj2 = logb;, and the likelihood L, of (3.14) is log concave
ina;,B; i =1,...,1, 5 =1,...,J) and under Fisher’s conditions
has a unique point of maximum (&, B) Furthermore, (&,B) is the
unique root of the likelihood equation (3.9) (Fisher 1981, Theorem
1). If we remove all subjects ¢ with s; = 0 or J (and guestions j
with ¢; = 0 or I), the values of & and /3’]- and the values of the
iterative sequence in the algorithm are unchanged for the remaining
subjects and questions. Thus, we shall further assume 0 < s; < J
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and 0 < ¢; < I for all ¢, 5. Combining the existence, uniqueness and
finiteness of the MLE with the concavity and continuity of [ = log L1,
we find that it can be shown that the set

Q= {(er, B) : Lo, B) Z U™, po1r)}

is convex and compact. The algorithm is such that in each itera-
tion we maximize the log-likelihood along a particular direction, so
that the likelihood increases from one iteration to the next. Let A;
be the increment of the log-likelihood [ at step (4.2c). Since the
log-likelihood is increasing and bounded, the sequence of differences,
{A;}, must diminish to zero as the iterations progress. That is, for
any fixed 7, A; — 0 as the number of iterations goes to infinity. Since
ol/op; =0 at B, by the one-dimensional Taylor expansion of I as
a function of f;, about 57, we get

— (B2 — B7)?(0%1/0B3) /2 = Aj — 0 (4.4)

where the second derivative 921/ 8,6]2 is evaluated at a4, gpev.

3 ld ld 73 ld 2
s By By B5¢, B; for some between ﬁ]‘-’ , for some 3; between

ﬁ]‘-’ld and ﬁ]’-ww which lies in the set Q. Since [ is strictly concave
in the direction f3;, 82l/8ﬁ32 < 0. By the compactness of Q and
the continuity of the second derivative, 61/ aﬁ]? in (4.4) is uniformly

*

bounded away from 0, so that necessarily ﬁ]‘-’ld — ﬁ;‘ew — 0 as the
iterations progress to infinity. By the same argument, we can also
show that ag’ld — a7 — 0. Hence, any point of convergence satisfies
(3.9), and the theorem follows from the compactness of 2 and the

uniqueness of the solution of (3.9).

5 An Example

The example we consider originated from our consulting work in con-
nection with a test taken by thirty seven students, two of whom were
accused of cheating by collaborating with each other during the exam.
The test was made up of an essay and forty two multiple choice ques-
tions, with four choices for each question. A comparison of the two
essays showed a strong similarity in choice of topics, key sentences,
etc. The students attributed the similarity to the fact that they stud-
ied together. On the multiple choice part the two students also had
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a disproportionally high number of matches. In fact, their responses
matched on 40 out of the 42 questions, which is very high, relative to
their low overall scores of 28 and 29 (out of a possible maximum of 42)
and taking into account the responses of other students. A complete
discussion of the relevant statistical methodology and data analysis,
for assessing whether the data provide significant evidence against the
students, is outside the scope of this paper. Our purpose in bringing
this example here, is to demonstrate how the extended Rasch model
is used in estimating parameters from the multiple-choice test data.

Let M;; be the total number of matched responses between stu-
dents 7 and ', and M be the total number of matched responses on
wrong choices between students 7 and 4'. If students 4 and 7’ collab-
orate during the test, there should be a high rate of matches in their
responses. However, the number of matches are also statistically de-
pendent on the scores. For example, the pair (7,4') tends to have large
My (and small M;¥) when both s; and s; are near J, although this
dependency is not monotone in the scores throughout their range.
Another example is that both M;; and M}, tend to be small when
the score difference is large. To assess the significance of the match-
ing pattern between a pair of students with equal or very similar over
all scores, it is useful to plot M;; and EM;y, or alternatively M
and EMY, for all pairs (i,4'), 1 < ¢ <’ < I, for which [S; — Sy|
is small (say |S; — Sy| < d, where d is the score difference between
the two suspected students) and S; + Sy = s varies over the relevant
range. Such plots can serve as proxies for the more conventional, but
computationally complicated, regression plots,

E[Mu/| |Si — SZ'I| <d, S;+ Sy = S]

and
E[M5||S; — Sy| < d, S; + Sy = 5]

i’

The rational behind plotting M;; and EM,; as functions of the sum
of the scores for all (7,7') with similar test scores is that it exhibits
a well understood function between the matching level and the score
level. Specifically, consider

J M

J M
EMiy = > PiyxPrje and EM =3 % PycPr
j=1k=1 j=1 k=2
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Under the extended Rasch model,

aiaTibj’ lszl,
Pk =9\ b yen—o  m
a;+b;° — Ay

T - M .
where a; = % ,b; = > _, ePim and

big =bi—
’ er]\r{:Qeﬁjm

= bjnjk

It follows that

M
i (> k=2 77]2'19)(?? +aay

EM; =
v (ai + bj)(ai’ + bj)

j=1

and

w _ i b? El]cvi2 77]2'k

Y e by)(ar + by)
which depend on students 7 and i’ only through their ability param-
eters a; and ay. Now, it is clear from the estimating equations (3.9a)
that students with the same overall scores have the same estimated
abilities & (because their estimating equations are interchangeable)
and so EM ;v depends on the pair (7,7') only through the pair of
scores (S;, ;7). In other words, there exists a function, h(u,v) such
that s; = w and sy = v imply EZ\\/[Z-Z-/ = h(u,v). Figure 1 plots the
functions h(u,v) against u+v = s for |u —v| = 0 and 1. Specifically,
it plots

_ L (Chly 22 + aids
EM;y =) ===
o (@i +b5) (@i + b))

against the sum of the test-scores when the difference of the scores is
constrained to be small. It also gives a scatter plot of the observed
matches M;; for all pairs with a small score difference (< 1) as a
function of the sum of the test scores. Figure 2 gives the analog results
calculated only for matches on wrong choices M. Both pictures flag
out the pair of students accused of cheating as an extreme outlier.
The estimation of the parameters for the plots was determined on the
basis of the extended Rasch model as discussed in Section 4. As a
remark we add also that we have seen the argument in the education-
testing literature that only matches on wrong choices should be used
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to assess cheating. Note, however, that for binary response questions
we have the identity

My = S; + Sy +2M5 — J
so that inference based on M;; is equivalent to inference based on

M. Much of this relation is preserved in multiple-choice tests, be-
cause many of the questions are affectively binary responses.
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TOTAL NUMBER OF MATCHES

Number Of Matches
30 35 40

25

20

50 60 70 80

Sum Of Grades

Figure 1: Total number of matches: The area of a circle is pro-
portional to the number of observations at a point. The estimated
expectations are connected by line segments into curves for d = 0

and 1, where d is the difference of scores.
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NUMBER OF MATCHES ON WRONG ANSWERS

12

10

Number Of Matches

50 60 70 80

Sum Of Grades

Figure 2: Number of matches on wrong answers: The area of a cir-
cle is proportional to the number of observations at a point. The
estimated expectation are connected by line segments into curves for

d =0 and 1, where d is the difference of scores.


http://jirss.irstat.ir/article-1-88-en.html

