1. Algamal, Z. Y. (2012), Diagnostic in poisson regression models. Electronic Journal of Applied Statistical Analysis, 5(2), 178-186.
2. Algamal, Z. Y. (2018), Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review. Al-Qadisiyah Journal for Administrative and Economic Sciences, 20(1), 37-43.
3. Algamal, Z. Y.(2018), A new method for choosing the biasing parameter in ridge estimator for generalized linear model. Chemometrics and Intelligent Laboratory Systems, Elsevier, 183, 96-101. [
DOI:10.1016/j.chemolab.2018.10.014]
4. Algamal, Z. Y. and Alanaz, M. M.(2018), Proposed methods in estimating the ridge regression parameter in Poisson regression model. Electronic Journal of Applied Statistical Analysis, 11, 506-515.
5. Arashi, M., Kibria, B. G., Norouzirad, M. and Nadarajah, S. (2014), Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model. Journal of Multivariate Analysis, Elsevier, 126, 53-74. [
DOI:10.1016/j.jmva.2014.01.002]
6. Arashi, M., Nadarajah, S. and Akdeniz, F. (2017), The distribution of the Liu-type estimator of the biasing parameter in elliptically contoured models. Communications in Statistics-Theory and Methods, Taylor and Francis, 46, 3829-3837. [
DOI:10.1080/03610926.2015.1073315]
7. Arashi, M., Norouzirad, M., Ahmed, S. E. and Yüzba and scedil, and imath, B. (2018), Rank-based Liu regression. Computational Statistics, Springer, 33, 1525-1561. [
DOI:10.1007/s00180-018-0809-8]
8. Asar, Y., and Genç, A. (2017), A New Two-Parameter Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 793-803. [
DOI:10.1007/s40995-017-0174-4]
9. Batah, F. S. M., Ramanathan, T. V., and Gore, S. D. (2008), The e ciency of modified jackknife and ridge type regression estimators: a comparison. Surveys in Mathematics and its Applications, 3.
10. Cameron, A. C., and Trivedi, P. K. (2013), Regression analysis of count data. Cambridge university press, 53. [
DOI:10.1017/CBO9781139013567]
11. De Jong, P., and Heller, G. Z. (2008), Generalized linear models for insurance data. Cambridge University Press Cambridge, 10. [
DOI:10.1017/CBO9780511755408]
12. Akdeniz Duran, E., and Akdeniz, F. (2012), Efficiency of the modified jackknifed Liutype estimator. Statistical Papers, 53(2), 265-280. [
DOI:10.1007/s00362-010-0334-5]
13. Hinkley, D.V. (1977), Jackknifing in unbalanced situations. Technometrics, 19(3), 285-292. [
DOI:10.1080/00401706.1977.10489550]
14. Hoerl, A. E., and Kennard, R. W. (1970), Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. [
DOI:10.1080/00401706.1970.10488634]
15. Karbalaee, Mohammad H and Tabatabaey, Seyed Mohammad M and Arashi, Mohammad, (2019), On the preliminary test generalized Liu estimator with series of stochastic restrictions. Journal of The Iranian Statistical Society, 18(1), 113-131. [
DOI:10.29252/jirss.18.1.113]
16. Karbalaee, M. H., Tabatabaey, S. M. M. and Arashi, M. (2019), On the Preliminary Test Generalized Liu Estimator with Series of Stochastic Restrictions. Journal of The Iranian Statistical Society, 18, 113-131. [
DOI:10.29252/jirss.18.1.113]
17. Liu, K. (1993), A new class of blased estimate in linear regression. Communications in Statistics-Theory and Methods, 22(2), 393-402. [
DOI:10.1080/03610929308831027]
18. Kibria, B. M. G. (2003), Performance of some new ridge regression estimators. Communications in Statistics - Simulation and Computation, 32(2), 419-435. [
DOI:10.1081/SAC-120017499]
19. Kibria, B. G., Mansson, K., and Shukur, G. (2015), A simulation study of some biasing parameters for the ridge type estimation of Poisson regression. Communications in Statistics-Simulation and Computation, 44(4), 943-957. [
DOI:10.1080/03610918.2013.796981]
20. Liu, K. (2003), Using Liu-type estimator to combat collinearity. Communications in Statistics-Theory and Methods , 32(5), 1009-1020. [
DOI:10.1081/STA-120019959]
21. Mansson, K., Kibria, B. G., Sjolander, P., and Shukur, G. (2012), Improved Liu estimators for the Poisson regression model. International Journal of Statistics and Probability, 1(1), 2. [
DOI:10.5539/ijsp.v1n1p2]
22. Månsson, K., and Shukur, G. (2011), A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481 . [
DOI:10.1016/j.econmod.2011.02.030]
23. Montgomery, D. C., Peck, E. A., and Vining, G. G. (2015), Introduction to linear regression analysis. New York: John Wiley and Sons.
24. Nyquist, H. (1988), Applications of the jackknife procedure in ridge regression. Computational Statistics and Data Analysis, 6(2), 177-183. [
DOI:10.1016/0167-9473(88)90048-5]
25. Quenouille, M. H. (1956), Notes on bias in estimation. Biometrika, 43(3/4), 353-360. [
DOI:10.1093/biomet/43.3-4.353]
26. Rashad, N. K. and Algamal, Z. Y. (2019), A New Ridge Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science, Springer., 43, 2921-2928. [
DOI:10.1007/s40995-019-00769-3]
27. Singh, B., Chaubey, Y., and Dwivedi, T. (1986), An almost unbiased ridge estimator. Sankhy¯a: The Indian Journal of Statistics, Series B, 342-346.
28. Tukey, J. (1958), Bias and confidence in not quite large samples. Ann. Math. Statist., 29(614). [
DOI:10.1214/aoms/1177706647]
29. Türkan, S., and Özel, G. (2015), A new modified Jackknifed estimator for the Poisson regression model. Journal of Applied Statistics, 43(10), 1892-1905. [
DOI:10.1080/02664763.2015.1125861]
30. Türkan, S., and Özel, G. (2017), A Jackknifed estimators for the Negative Binomial regression model. Communications in Statistics - Simulation and Computation, 47(6), 1845-1865. [
DOI:10.1080/03610918.2017.1327069]
31. Yıldız, N. (2018), On the performance of the Jackknifed Liu-type estimator in linear regression model. Communications in Statistics-Theory and Methods, 47(9), 2278-2290. [
DOI:10.1080/03610926.2017.1339087]