جلد 19، شماره 1 - ( 3-1399 )                   جلد 19 شماره 1 صفحات 85-120 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalifeh A, Mahmoudi E, Dolati A. Sequential-Based Approach for Estimating the Stress-Strength Reliability Parameter for Exponential Distribution. JIRSS. 2020; 19 (1) :85-120
URL: http://jirss.irstat.ir/article-1-559-fa.html
Sequential-Based Approach for Estimating the Stress-Strength Reliability Parameter for Exponential Distribution. پژوهشنامه انجمن آمار ایران. 1399; 19 (1) :85-120

URL: http://jirss.irstat.ir/article-1-559-fa.html


چکیده:   (547 مشاهده)

In this paper, two-stage and purely sequential estimation procedures are considered to construct fixed-width confidence intervals for the reliability parameter under the stress-strength model when the stress and strength are independent exponential random variables with different scale parameters. The exact distribution of the stopping rule under the purely sequential procedure is approximated using the law of large numbers and Monte Carlo integration. For the two-stage sequential procedure, explicit formulas for the distribution of the total sample size, the expected value and mean squared error of the maximum likelihood estimator of the reliability parameter under the stress-strength model are provided. Moreover, it is shown that both proposed sequential procedures are finite, and in exceptional cases, the exact distribution of stopping times is degenerate distribution at the initial sample size. The performances of the proposed methodologies are investigated with the help of simulations. Finally using real data, the procedures are clearly illustrated.

     
نوع مطالعه: Original Paper | موضوع مقاله: 62Lxx: Sequential methods
دریافت: 1397/9/4 | پذیرش: 1398/6/4 | انتشار: 1399/4/14

فهرست منابع
1. Awad, A. M., Azzam, M. M., and Hamdan, M. A. (1981). Some inference results on Pr(X < Y) in the bivariate exponential model. Communications in Statistics - Theory and Methods, 10, 2515-2525. [DOI:10.1080/03610928108828206]
2. Bandyopadhyay, U., Das, R., and Biswas, A. (2003). Fixed width confidence interval of P(X < Y) in partial sequential sampling scheme. Sequential Analysis, 22, 75-93. [DOI:10.1081/SQA-120022084]
3. Bapat, S. R. (2018). Purely sequential fixed accuracy confidence intervals for P(X < Y) under bivariate exponential models. American Journal of Mathematical and Management Sciences, 37, 386-400. [DOI:10.1080/01966324.2018.1465867]
4. Beg, M. A. (1980). On the estimation of Pr(Y < X) for the two-parameter exponential distribution. Metrika, 27, 29-34. [DOI:10.1007/BF01893574]
5. Birnbaum, Z. W. (1956). On a use of the mann-whitney statistic. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Ed. J. Neyman. Berkeley: University of California, pp 13-17.
6. Birnbaum, Z.W. and McCarty, R. C. (1958).Adistribution-free upper confidence bound for P(Y < X), based on independent samples of X and Y. The Annals of Mathematical Statistics, 29, 558-562. [DOI:10.1214/aoms/1177706631]
7. Chao, A. (1982). On comparing estimators of Pr(Y < X) in the exponential case. IEEE Transactions on Reliability, 31, 389-392. [DOI:10.1109/TR.1982.5221387]
8. Chiodo, E. (2014). Model robustness analysis of a bayes stress-strength reliability estimation with limited data. In 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. New York: IEEE, pp 1140-1145. [DOI:10.1109/SPEEDAM.2014.6872000]
9. Cramer, E. and Kamps, U. (1997). The umvue of P(X < Y) based on type-II censored samples from weinman multivariate exponential distributions. Metrika, 46, 93-93. [DOI:10.1007/BF02717169]
10. Domma, F. and Giordano, S. (2013). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54, 807-826. [DOI:10.1007/s00362-012-0463-0]
11. Enis, P. and Geisser, S. (1971). Estimation of the probability that Y < X. Journal of the American Statistical Association, 66, 162-168. [DOI:10.2307/2284867]
12. Ferguson, T. (1996). A course in large sample theory. New York: Chapman and Hall. [DOI:10.1007/978-1-4899-4549-5]
13. Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association, 56, 971-977. [DOI:10.1080/01621459.1961.10482138]
14. Govindarajulu, Z. (1974). Fixed-width confidence intervals for P(X < Y). In Reliability and biometry: statistical analysis of lifelength, Eds. E. F. Proschan and R. J. Serfling. Philadelphia: SIAM, pp 747-757.
15. Govindarajulu, Z. (2004). Sequential Estimation. Singapore: World Scientific. Johnson, R. A. (1988). 3 stress-strength models for reliability. In Quality Control and Reliability, Eds. P.R. Krishnaiah and C.R. Rao. Amsterdam: Elsevier, pp 27-54. [DOI:10.1016/S0169-7161(88)07005-1]
16. Kao, E. (1997). An Introduction to Stochastic Processes. Scituate :Duxbury.
17. Kelley, G. D., Kelley, J. A., and Schucany, W. R. (1976). E cient estimation of P(Y < X) in the exponential case. Technometrics, 18, 359-360. [DOI:10.1080/00401706.1976.10489457]
18. Kotz, S., Lumel'skii, I., and Pensky, M. (2003). The Stress-strength Model and Its Generalizations: Theory and Applications. Singapore: World Scientific. [DOI:10.1142/5015]
19. Kundu, D. and Gupta, R. D. (2006). Estimation of P(Y < X) for weibull distributions. IEEE Transactions on Reliability, 55, 270-280. [DOI:10.1109/TR.2006.874918]
20. Lim, D. L., Isogai, E., and Uno, C. (2004). Two-sample fixed width confidence intervals for a function of exponential scale parameters. Far East Journal of Theoretical Statistics, 14, 215-227.
21. Mahmoudi, E., Khalifeh, A., and Nekoukhou, V. (2018). Minimum risk sequential point estimation of the stress-strength reliability parameter for exponential distribution. Sequential Analysis. doi: 10.1080/07474946.2019.1649347. [DOI:10.1080/07474946.2019.1649347]
22. Marshall, A. W. and Olkin, I. (1967). A generalized bivariate exponential distribution. Journal of Applied Probability, 4, 291-302. [DOI:10.2307/3212024]
23. Mirjalili, M., Torabi, H., Nadeb, H., and Bafekri. F., S. (2016). Stress-strength reliability of exponential distribution based on type-I progressively hybrid censored samples. Journal of Statistical Research of Iran, 13, 89-105. [DOI:10.18869/acadpub.jsri.13.1.5]
24. Mukhopadhyay, N. and Zhuang, Y. (2016). On fixed-accuracy and bounded accuracy confidence interval estimation problems in fisher's "nile" example. Sequential Analysis, 35, 516-535. [DOI:10.1080/07474946.2016.1238264]
25. Nadarajah, S. and Kotz, S. (2006). Reliability for some bivariate exponential distributions. Mathematical Problems in Engineering, 2006, 1-14. [DOI:10.1155/MPE/2006/41652]
26. Patowary, A. N., Hazarika, J., and Sriwastav, G. L. (2013). Interference theory of reliability: a review. International Journal of System Assurance Engineering and Management, 4, 146-158. [DOI:10.1007/s13198-013-0162-9]
27. Sathe, Y. and Shah, S. (1981). On estimating P(X > Y) for the exponential distribution. Communications in Statistics - Theory and Methods, 10, 39-47. [DOI:10.1080/03610928108828018]
28. Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics, 16, 243-258. [DOI:10.1214/aoms/1177731088]
29. Tong, H. (1974). A note on the estimation of Pr(Y < X) in the exponential case. Technometrics, 16, 625-625. [DOI:10.1080/00401706.1974.10489247]
30. Xia, Z., Yu, J., Cheng, L., Liu, L., and Wang, W. (2009). Study on the breaking strength of jute fibres using modified weibull distribution. Composites Part A: Applied Science and Manufacturing, 40, 54-59. [DOI:10.1016/j.compositesa.2008.10.001]

کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb