جلد 19، شماره 1 - ( 3-1399 )                   جلد 19 شماره 1 صفحات 209-228 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmad Z, Hamedani G, Elgarhy M. The Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations. JIRSS. 2020; 19 (1) :209-228
URL: http://jirss.irstat.ir/article-1-548-fa.html
The Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations. پژوهشنامه انجمن آمار ایران. 1399; 19 (1) :209-228

URL: http://jirss.irstat.ir/article-1-548-fa.html


چکیده:   (346 مشاهده)
In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions,
called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived; and certain characterizations are also discussed. To estimate the model parameters, the method of maximum likelihood is applied. A simulation study is carried out to assess the finite sample behavior of the maximum likelihood estimators. Finally, the usefulness of the proposed method via two applications to real data sets is illustrated.
     
نوع مطالعه: Original Paper | موضوع مقاله: 60Exx: Distribution theory
دریافت: 1397/7/20 | پذیرش: 1398/8/4 | انتشار: 1399/4/14

فهرست منابع
1. Bjerkedal, T. (1960), Acquisition of Resistance in Guinea Pies infected with Different Doses of Virulent Tubercle Bacilli. American Journal of Hygiene, 72, 130-48. [DOI:10.1093/oxfordjournals.aje.a120129]
2. Fisher, R. A. (1934), The effects of methods of ascertainment upon the estimation of frequellcies. Annals of Eugenics, 6, 13-25. [DOI:10.1111/j.1469-1809.1934.tb02105.x]
3. Ghitany, M. E., Al-qallaf, F., Al-Mutairi, D. K. and Husain, H. A. (2011), A twoparameter weighted Lindley distribution and its applications to survival data. Mathematics and computers in Simulation, 81, 1190-1201. [DOI:10.1016/j.matcom.2010.11.005]
4. Glänzel, W. (1987), A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Probability Theory, B, 75-84. [DOI:10.1007/978-94-009-3965-3_8]
5. Glänzel, W. (1990), Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21, 613-618. [DOI:10.1080/02331889008802273]
6. Gupta, R. and Kirmani, S. (1990), The role of weighted distribution in stochastic modeling. Communication in Statistics: Theory & Methods, 19, 3147-3162. [DOI:10.1080/03610929008830371]
7. Gupta, R. D. and Kundu, D. (2009), A new class of weighted exponential distributions. Statistics, 43, 621-634. [DOI:10.1080/02331880802605346]
8. Hamedani, G. G. (2013), On certain generalized gamma convolution distributions II, Technical Report No. 484, MSCS, Marquette University.
9. Kilany, N. M. (2016),Weighted Lomax distribution. Springer Plus, 5, 1-18. [DOI:10.1186/s40064-016-3489-2]
10. Lawless, J. F. (2011), Statistical models and methods for lifetime data. JohnWiley & Sons, 362.
11. Mahdavi, A. (2015), Two weighted distributions generated by exponential distribution. Journal of Mathematical Extension, 9, 1-12.
12. Mahdy, M. (2013), A class of weightedWeibull distributions and its properties. Studies in Mathematical Sciences, 6, 35-45.
13. Patil, G. P. (2002),Weighted distributions.Encyclopedia of Environmetics, 4, 2369-2377.
14. Patil, G. P. and Ord, J. K. (1975), On size-biased sampling and related form-invariant weighted distributions. Sankhya, Series B, 38, 48-61.
15. Patil, G. P. and Rao, C. R. (1977),Weighted distributions: a survey of their applications. In Applications of Statistics. P. R. Krishnaiah (ed.), 383-405.
16. Patil, G. P. and Rao, C. R. (1978),Weighted distributions and size-biased sampling with application to wildlife populations and human families. Biometrics, 34, 179-189. [DOI:10.2307/2530008]
17. Rao, C. R. (1977), A natural example of a weighted binomial distribution. American Statistician, 31, 24-26. [DOI:10.1080/00031305.1977.10479187]
18. Rao, C. R. (1985),Weighted distributions arising out of methods of ascertainment: What population does a sample represent Chapter 24 in Celebration of Statistics, The 151 Centenary Volume, A. C. Atkinson and S E Fienbwg (eds), 543-569. [DOI:10.1007/978-1-4613-8560-8_24]
19. Shahbaz, S., Shahbaz, M. and Butt, N. S. (2010),Aclass of weightedWeibull distribution. Pakistan Journal of Statistics and Operation Research, 6, 53-59. [DOI:10.18187/pjsor.v6i1.126]
20. Shakhatreh, M. K. (2012), A two-parameter of weighted exponential distributions. Statistics & Probability Letters, 82, 252-261. [DOI:10.1016/j.spl.2011.10.008]

کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb