جلد 19، شماره 1 - ( 3-1399 )                   جلد 19 شماره 1 صفحات 185-208 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajesh G, Abdul-Sathar E I, Reshmi K V A. Bivariate Extension of Past Entropy. JIRSS. 2020; 19 (1) :185-208
URL: http://jirss.irstat.ir/article-1-496-fa.html
G Rajesh، Sathar E I Abdul. Bivariate Extension of Past Entropy. پژوهشنامه انجمن آمار ایران. 1399; 19 (1) :185-208

URL: http://jirss.irstat.ir/article-1-496-fa.html


University of Kerala ، sathare@gmail.com
چکیده:   (517 مشاهده)

Di Crescenzo and Longobardi (2002) has been proposed a measure of uncertainty related to past life namely past entropy. The present paper addresses the question of extending this concept to bivariate set-up and study some properties of the proposed measure. It is shown that the proposed measure uniquely determines the distribution function. Characterizations for some bivariate lifetime models are obtained using the proposed measure. Further, we define new classes of life distributions based on this measure and properties of the new classes are also discussed. We also proposed a non-parametric kernel estimator for the proposed measure and illustrated performance of the estimator using a numerical data.

     
نوع مطالعه: Original Paper | موضوع مقاله: 62Exx: Distribution theory
دریافت: 1396/11/11 | پذیرش: 1398/7/1 | انتشار: 1399/4/14

فهرست منابع
1. Abdul-Sathar, E. I., Rajesh, G., and Nair, K. R. M. (2010), Bivariate geometric vitality function and some characterization results. Calcutta Statistical Association Bulletin, 62(3-4), 207-228. [DOI:10.1177/0008068320100305]
2. Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy. Journal of Statistical Planning and Inference, 137(6), 1931-1941. [DOI:10.1016/j.jspi.2006.06.035]
3. Balakrishnan, N. and Lai, C. D. (2009). Continuous bivariate distributions. Springer Science & Business Media. [DOI:10.1007/b101765_6]
4. Belzunce, F., Navarro, J., Ruiz, J. M., and Aguila, Y. D. (2004). Some results on residual entropy function. Metrika, 59(2), 147-161. [DOI:10.1007/s001840300276]
5. Bismi, N. G. (2005). Bivarite burr distributions. PhD thesis, Cochin University of Science and Technology.
6. Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions. Journal of Applied Probability, 39(2), 434-440. [DOI:10.1017/S002190020002266X]
7. Ebrahimi, N. (1996). How to measure uncertainty in the residual life time distribution. Sankhy a: The Indian Journal of Statistics, Series A, 48-56.
8. Ebrahimi, N., Kirmani, S., and Soofi, E. S. (2007). Multivariate dynamic information. Journal of Multivariate Analysis, 98(2), 328-349. [DOI:10.1016/j.jmva.2005.08.004]
9. Kim, H. and Kvam, P. H. (2004). Reliability estimation based on system data with an unknown load share rule. Lifetime Data Analysis, 10(1), 83-94. [DOI:10.1023/B:LIDA.0000019257.74138.b6]
10. Kundu, A. and Kundu, C. (2017). Bivariate extension of (dynamic) cumulative past entropy. Communications in Statistics-Theory and Methods, 46(9), 4163-4180. [DOI:10.1080/03610926.2015.1080838]
11. Kundu, A. and Kundu, C. (2018). Bivariate extension of generalized cumulative past entropy. Communications in Statistics-Theory and Methods, 47(8), 1962-1977. [DOI:10.1080/03610926.2017.1335412]
12. Nair, K. R. M. and Rajesh, G. (2000). Geometric vitality function and its applications to reliability. IAPQR TRANSACTIONS, 25(1), 1-8.
13. Nair, N. U. and Asha, G. (2008). Some characterizations based on bivariate reversed mean residual life. ProbStat Forum, 1, 1-14.
14. Nanda, A. K. and Paul, P. (2006). Some properties of past entropy and their applications. Metrika, 64(1), 47-61. [DOI:10.1007/s00184-006-0030-6]
15. Rajesh, G., Abdul-Sathar, E. I., Nair, K. R. M., and Reshmi, K. V. (2014a). Bivariate extension of dynamic cumulative residual entropy. Statistical Methodology, 16, 72-82. [DOI:10.1016/j.stamet.2013.07.006]
16. Rajesh, G., Abdul-Sathar, E. I., Reshmi, K. V., and Nair, K. R. M. (2014b). Bivariate generalized cumulative residual entropy. Sankhya A, 76(1), 101-122. [DOI:10.1007/s13171-013-0031-2]
17. Rajesh, G., Sathar, A. E. I., and Nair, K. R. M. (2009). Bivariate extension of residual entropy and some characterization results. Journal of Indian Statistical Association, 47, 91-107.
18. Rao, M., Chen, Y., Vemuri, B. C., and Wang, F. (2004). Cumulative residual entropy: a new measure of information. IEEE transactions on Information Theory, 50(6), 1220-1228. [DOI:10.1109/TIT.2004.828057]
19. Roy, D. (2002). Acharacterization of model approach for generating bivariate life distributions using reversed hazard rates. Journal of the Japan Statistical Society, 32(2), 239-245. [DOI:10.14490/jjss.32.239]
20. Sathar, A. E. I., Nair, K. R. M., and Rajesh, G. (2009). Generalized bivariate residual entropy function and some characterization results. South African Statistics Journal, 44, 1-18.
21. Shaked, M. and Shanthikumar, J. G. (2007). Stochastic orders. Springer Science & Business Media. [DOI:10.1007/978-0-387-34675-5]
22. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423. [DOI:10.1002/j.1538-7305.1948.tb01338.x]
23. Sunoj, S. and Linu, M. (2012). Dynamic cumulative residual renyi's entropy. Statistics, 46(1), 41-56. [DOI:10.1080/02331888.2010.494730]

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb