XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emami H. Ridge stochastic restricted estimators in semiparametric linear measurement error models. JIRSS. 2018; 17 (2)
URL: http://jirss.irstat.ir/article-1-442-fa.html
Ridge stochastic restricted estimators in semiparametric linear measurement error models. پژوهشنامه انجمن آمار ایران. 1397; 17 (2)

URL: http://jirss.irstat.ir/article-1-442-fa.html


چکیده:   (531 مشاهده)

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery Industry data set.

     
نوع مطالعه: Original Paper | موضوع مقاله: 62Jxx: Linear inference, regression
دریافت: ۱۳۹۶/۴/۲۹ | پذیرش: ۱۳۹۶/۱۱/۱۶ | انتشار: ۱۳۹۷/۲/۱

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb