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Abstract. The most challenging task in dealing with Bayesian networks is learn-
ing their structure. Two classical approaches are often used for learning Bayesian
network structure: Constraint-Based method and Score-and-Search-Based one.
However, neither the first nor the second one are completely satisfactory. There-
fore, the heuristic search such as Genetic Algorithms with a fitness score function
is considered for learning Bayesian network structure. To assure the closeness
of the genetic operators, the ordering among variables (nodes) must be de-
termined. In this paper, we determine the node ordering by considering the
Principal Component Analysis (PCA). For this purpose, we first determine the
appropriate correlation between variables and then use the absolute value of
variable’s coefficients in the first component. It means that a node Xi can only
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have the node X j as a parent if the absolute value of coefficient X j in the first
component is higher than Xi. We then use the Genetic Algorithm with fitness
score BIC regarding the node ordering to construct the Bayesian Network. Ex-
perimental results over well-known networks Asia, Alarm and Hailfinder show
that our new technique has higher accuracy and better degree of data match-
ing. In addition, we apply our technique to the real data set which is related to
Bank’s debtor that owe over 500 million Rials to Maskan Bank in Iran. Results
also show that the proposed technique has greater modeling power than other
node ordering techniques such as Hruschka et al. (2007), Chen et al. (2008) and
K2 algorithm.
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1 Introduction

Bayesian Network (BN) is a specific type of graphical model which is a directed
acyclic graph (DAG) where the nodes are random variables and the arcs specify
the independence assumptions between the random variables (Pearl (1988),
Geiger (1990), Cooper (1992), Jensen (1996), Friedman (1997), Bouckaert
(2001), Perrier et al. (2008)). The learning task in a BN can be separated into
two subtasks: structure learning that is to identify the topology of the network,
and parameter learning which estimates the conditional probabilities for a given
network (Heckerman (1998), Ghahramani (1998), Grossman (2004)). In this
paper, we concentrate on the structure learning. Two classical approaches are
often used for learning a BN structure. The first one is based on the statistical tests
and the second one uses a scoring metric (Spirtes et al. (1995), Chickering (1996)).
However, neither the first nor the second are completely satisfactory in the task
of learning a BN structure (Robinson (1977), Pearl (2011)). Therefore, heuristic
search such as Genetic Algorithms (GA) which have emerged for solutions to
combinatorial complex problems is considered (Larrañaga et al. (1996), Wong
(2000), De Campos (2006)). GAs are a family of computational models inspired
by Darwins theory of Evolution. GAs encode potential solutions to a problem
in a chromosome-like data structure, exploring and exploiting the search space
using dedicated operators. In a GA, the search space of a problem is represented
as a collection of individuals which are often referred to as chromosomes. The
purpose of the GA is to find the individual from the search space which has the
best genetic material. The quality of an individual is measured with an objective
function called fitness score. The part of the search space to be examined is called
the population. In the process of the GA, a BN structure can be represented by a
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connectivity matrix C where its elements satisfy in

C =

1 if node j is a parent of node i
0 otherwise

Therefore, an individual of the population is represented by the string of
ci js, i.e., c11, c12, . . . , cnn, where n is the number of nodes. For evaluating the
structures constructed by a GA, we use the Bayesian information criterion (BIC)
score. To assure the closeness of the genetic operators, the node ordering must
be determined (Larrañaga et al. , 1996). The space of orders is much smaller
than the space of network structures. Determining the node ordering is very
important because a BN approach for learning structures upon variables can be
expensive and lead to large dimension models. In other words, the number of BN
structures is super-exponential in the number of random variables in the domain
(Chickering , 1996). So, to overcome such difficulties in terms of computational
complexity, the node ordering must be considered. It is easy to verify that, in
case an ordering is assumed, the connectivity matrices of the network structures
are triangulated and the genetic operators are closed operators. In this case, the
strings length used to represent a BN structure with n nodes is

(n
2
)
, instead of

n2 of the general case. Note that, if node Xi comes prior to the node X j in the
ordering, then the node X j cannot be a parent of the node Xi.

In general, node ordering algorithms are categorized into two groups: evolu-
tionary algorithms and heuristic algorithms. Initial research on evolutionary al-
gorithms has provided extensive experimental results through various crossover
and mutation methods (Romero et al. , 2004). In terms of heuristic methods,
Hruschka et al. (2007) introduced the feature ranking-based node ordering al-
gorithm, which is a type of feature selection method in the classification domain.
It measures dependencies of variables over the class label using χ2 statistical
tests and information gain. It then sorts the variables by the dependence-based
scores. The sorted variables are regarded as the node ordering. Chen et al.
(2008) incorporated information theory and exhaustive search functions in their
algorithm. The algorithm comprises three major phases. In the first two phases,
it constructs an undirected structure through mutual information, independence
tests, and d-separation. The last phase is related to determining the ordering
between nodes.

In this paper, we use the Principle Component Analysis (PCA) to determine
the node ordering according to the coefficients of variables in the first component
(Abdi et al. , 2010). This is based on the fact that the first principal component
has the greatest variance (Zwick et al. (1986), Jolliffe (2002)). Then, we use
the GA for learning the BN structure. In addition, we use the Hruschka et al.
(2007) and Chen et al. (2008) techniques for determining the node ordering as
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an input of the GA. Since the K2 algorithm is one of the most famous score-based
algorithms which receive the ordering of the variables, we also compare our
results with the K2 algorithm (Cooper , 1992).

The paper is organized as follows. In Section 2, the concept of BN structures
learning is introduced. Then our methodology for learning a BN structure using
the GA as well as node ordering via PCA are introduced in Section 3. In Section 4,
we also introduce the K2 algorithm which receives the ordering of the variables
for learning the BN structure. Finally the efficiency of our proposed technique is
compared with other node ordering techniques such as Hruschka et al. (2007)
and Chen et al. (2008) as well as the K2 algorithm. For this purpose, we use
three well-known datasets: Asia, Alarm and Hailfinder as well as real data set
of Maskan Bank in Iran. This data is related to bank’s debtor (corporations) that
owe over 500 million Rials.

2 Learning Bayesian Network Structure

The global joint probability distribution of the BN constructed by variables is
written as

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)), (2.1)

in which pa(xi) indicates the parents of the node xi. It is not always possible for
experts to determine the structure of a BN and in some cases the determination
of the model can therefore be a problem to solve. The task in the BN structure
learning is to find a structure of the BN that describes the observed data the most
according to a score function, which is proved to be a NP-complete problem
(Chickering , 1996). The methods used for learning the structure of BNs can be
divided into two main groups (Heckerman , 1998):

• Constraint-Based Approach: Discovery of independence relationships us-
ing statistical tests, e.g. the PC and GS algorithm,

• Score-and-Search-Based Approach: Exploration and evaluation which use
a score to evaluate the ability of the graph to recreate conditional indepen-
dence within the model, e.g., AIC, BIC, and K2.

The Constraint-Based approaches are based on the conditional independence
tests under the assumption that graphical separation and probabilistic indepen-
dence imply each other. The Score-and-Search-Based approaches start from an
initial structure (generated randomly or from domain knowledge) and move to
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the neighbors with the best score in the structure space determinately or stochas-
tically until a local maximum of the selected criteria is reached. Neither the
first nor the second are really satisfactory in the task of learning a BN structure
(Robinson , 1977). Therefore, evolutionary methods such as GA have already
been used in various forms for learning BN structures (Larrañaga et al. (1996),
De Jong (2006)). GAs are search algorithms based on the mechanism of natural
selection and genetics. The search space in a GA for learning BN structures is all
the possible structures of directed acyclic graphs (DAGs) given the number of
variables in the domain. Therefore the number of DAGs is super-exponential in
the number of nodes. So, considering the node ordering can reduce the space of
network structures.

3 Learning Bayesian Network Structure using Genetic Al-
gorithm and PCA

In this section, the BN structure leaning using a GA is introduced. GAs are search
algorithms based on the mechanics of natural selection and natural genetics. The
algorithm is started with a set of solutions (represented by chromosomes) called
population. Solutions from one population are taken and used to form a new
population. This is motivated by a hope, that the new population will be better
than the old one. Solutions which are selected to form new solutions (offspring)
are selected according to their fitness function. First, the initial population is
chosen, and the quality of each of its individuals is determined. Next, in ev-
ery iteration, parents are selected from the population. These parents produce
children which are added to the population. With a probability near zero, all
newly created individuals of the resulting population mutate , meaning that
they change their hereditary distinctions. After that, some individuals are re-
moved from the population according to the fitness score in order to reduce the
population to its initial size. One iteration of the algorithm is referred to as a
generation which consists of a population of character strings that are analogous
to the chromosome. A chromosome is called a solution and is composed of
several genes (categorical variables). The algorithm evolves the following three
operators (Larrañaga et al. (1996), Yu et al. (2004)):

• Selection which equates to survival of the fitness,

• Crossover which represents mating between individuals,

• Mutation which introduces random modifications.

The steps of the genetic algorithm are as:
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• Making initial population at random,

• Selecting parents from the population,

• Producing children from the selected parents (by crossing operator),

• Mutating the individuals (mutation operator),

• Extending the population by adding the children to it,

• Reducing the extended population.

In the process of a GA, parents are selected according to their fitness. For
choosing the better chromosomes, the roulette wheel is chosen. A BN structure
constructed by the GA can be represented by an n × n connectivity matrix C,
where its elements ci j is 1 if node j is a parent of node i (Larrañaga et al. , 1996).
Therefore, an individual of the population is shown by the string

c11, c12, . . . , c1n, c21, c22, . . . , c2n, . . . cn1, cn2, . . . , cnn.

If there is no assumption for node ordering, the genetic operators are not
closed operators. Then the cardinality of the search is given by Pearl (1988) as

f (n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i) f (n − i), f (0) = 1, f (1) = 1.

To assure the closeness of the genetic operators, the node ordering must be
determined. The space of orders is much smaller than the space of network
structures. This is very important, because the GA starts with a random ordering.

In this paper, the node ordering is determined using the PCA. Since most
of the times the variables are measured in different scales, the PCA must be
performed with standardized data. For this purpose, we first determine the
appropriate correlation between variables. We then perform the PCA on the
correlation matrix. As we know, the number of components extracted by PCA
is equal to the number of observed variables (Cattell (1966), Cliff (1988)). We
only use the first component and consider the coefficients of the variables in this
component for determining the ordering between them. The idea behind this
fact is that the first principal component has the greatest variance. For instance,
into the first component, a node Xi can only have node X j as a parent if the
absolute value of the coefficient of X j will be higher than that of Xi.

In case an ordering is assumed, the connectivity matrix of the network struc-
ture is triangulated. Therefore, the genetic operators are closed operators. Hence,
the network is represented by the strings of triangulated matrix and the fitness
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score is calculated at each iteration. The initial population of a λ individuals is
generated at random. The fitness function to be used to evaluate the quality of
a structure is based on the BIC score. Each individual is selected to be a parent
with a probability proportional to the rank of its fitness function. If we denote the
jth individual of the population at time t by I j

t , and the rank of its fitness function
by rank(g(I j

t)), then the individual I j
t is selected to be a parent with probability

P j,t =
rank(g(I j

t))
λ(λ + 1)/2

.

Furthermore, the BIC score defined as (De Campos , 2006)

SBIC(BN,D) = log (L(BN, θ|D)) − 1
2

Dim(BN). log (N), (3.1)

where D represents the data and θ = P(Xi|Pa(Xi)) specifies the parameters. In
Eq. 3.1, N is the total number of instances (cases) in data, and Dim(BN) is the
dimension function defined by

Dim(BN) =
n∑

i=1

(ri − 1) ×
∏

X j∈Pa(X j)

r j, (3.2)

where ri is the number of possible values of Xi. The log (L(BN, θ|D)) in Eq. 3.1 is
the log-likelihood (LL) score and defined by (De Campos , 2006)

log (L(BN, θ|D)) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Ni jk logθi jk, (3.3)

where qi is the number of possible configurations of the parent set of Xi and equals
to

∏
X j∈Pa(X j) r j, and Ni jk is the number of instances in the data where the variable

Xi takes its kth value and the variables in Pa(Xi) take their jth configuration. In
this paper, we divide the log-likelihood score into two terms as

log (L(BN, θ|D)) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Ni jk × logθi jk × δ(pa(Xi) , ∅) (3.4)

+

n∑
i=1

ri∑
k=1

Ni_k × logθi_k × δ(pa(Xi) = ∅)

where θi_k indicates the probability that the variable Xi takes its kth value without
considering the jth configuration, Ni_k is the number of cases with Xi = k and
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δ(pa(Xi) = ∅) tells us to include only variables which has no parents. In other
words, the first term in Eq. 3.4 is used for those variables (nodes) which have at
least one parent and second term is used for those variables that have no parents.
The MLE estimate for θi jk and θi

i_k are given as (Heckerman , 1998)

θ̂i jk =
Ni jk

Ni j
, (3.5)

θ̂ik =
Ni_k

Ni_
, (3.6)

in which Ni_ =
∑

k Ni_k .

4 K2 Algorithm

K2 algorithm is the most famous score-based algorithm in BNs. K2 algorithm is
a greedy heuristic. It starts by assuming that a node lacks parents, after which
in every step it adds incrementally that parent whose addition increases the
probability of the resulting structure the most (Cooper , 1992). K2 stops adding
parents to the nodes when the addition of a single parent cannot increase the
probability. The K2 algorithm receives as input a total ordering of the variables
which can have a big influence on its result. Thus, finding a good ordering of the
variables is also crucial for the algorithm success (Ruiz, 2005). In other words,
The K2 algorithm reduces this computational complexity by requiring a prior
ordering of nodes as an input. The inputs of the e K2 algorithm are a set of n
nodes, an ordering on the nodes, an upper bound on the number of parents as
node may have, and a database containing all cases. In this paper, we set the
upper bound value to n − 1.

As mentioned in Section 1, Hruschka et al. (2007) introduced the feature
ranking-based node ordering algorithm and Chen et al. (2008) incorporated
information theory and exhaustive search functions for determining the node
ordering. However, to the best of our knowledge, the most effective heuristic
algorithm for determining the node ordering is the one proposed by Chen et al.
(2008) whose time complexity is O(n4). Therefore, we perform the K2 algorithm
considering the node ordering obtained by Chen et al. (2008) technique.

5 Application

5.1 Asia, Alarm and Hailfinder Networks

In this section, we present the empirical results. For this purpose, we use three
well-known BNs: Asia, Alarm and Hailfinder. These are BNs from which we
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Figure 1: Asia Network

can sample any dataset we want in order to perform multiple tests and estimate
more precise metrics. So, we conducted learning exercise using 10000 cases.

The Asia network has 8 variables and each one has two attributes (Figure
1). This BN is a small synthetic about lung diseases (tuberculosis, lung cancer
or bronchitis) and visits to Asia (Lamma et al. , 2005). As the variables in the
Asia network are nominal (TRUE or FALSE), we use the Nominal vs. Nominal
correlation for performing PCA (as the data must be standardized before the
analysis, we use the correlation matrix). For this purpose, we calculate Cramer’s
V. In statistics, Cramér’s V (sometimes referred to as Cramér’s ϕ) is a measure
of association between two nominal variables.

The ALARM network has 37 variables and each one has two, three or four
possible attributes (Beinlich et al. , 1989). The original BN structure of ALARM
is shown in Figure 2. The 37 nodes in ALARM network can viewed as ordinal
variables. So, the Spearman’s rank correlation coefficient between variables for
performing PCA is considered.

Hailfinder is a Bayesian network designed to forecast severe summer hail in
northeastern Colorado (Abramson et al. , 1996). The number of nodes and arcs
are 56 and 66, respectively (Figure 3). The 56 nodes in Hailfinder network can
be viewed as ordinal variables. Therefore, the Spearman correlation coefficient
between variables can be considered for doing PCA.

The existence of the original network structures allows us to define important
terms which indicate the performance of the technique. We compare the edge
scores by computing the number of edges that are correct, missing, reverse and
additional by the following definitions:

• Correct edge: Edges detected with the same edge direction.

• Reverse edge: Edges detected with the opposite edge direction.

• Missing edge: Edges not detected compared to the true structure (original
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Figure 2: Alarm Network

structure).

• Additional edge: Detected edges that are not present in the true structure.

The edge scores make it possible to define the important terms which indicate
the performance of the method. For this purpose, the True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN) values are computed.
In addition, known measure such as Positive Predictive Value (PPV), True Pos-
itive Rate (TPR) and F-score measure (F) are considered (Baesens et al. , 2002).
The F-score is defined as

F −measure =
2.PPV.TPR
PPV + TPR

.

F-measure is a useful quantity used to compare learned and original (actual)
networks. In this paper, F-measure is used as accuracy and degree of data
matching. Comparing this measure between different techniques indicates that
which technique is more efficient in the task of learning a BN. The algorithm with
larger values for correct edges and F-measure is more efficient in the structure
learning of a BN.

The input of a GA is determined via the PCA and the techniques in Hruschka
et al. (2007) and Chen et al. (2008).
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Figure 3: Hailfinder Network

Table 1 shows the correct edges, F-measure values and the graph error which
is computed by summing the three erroneous edge type: missing, reverse, and
additional for different techniques. It should be noted that we also perform the
K2 algorithm with consideration of the node ordering via Chen et al. (2008) tech-
niques. The experimental results show that the proposed technique outperforms

Table 1: Comparing Correct Edges (C), Graph Error (E) and F-measures (F)
Data Proposed Technique Hruschka et al. Chen et al. K2

C E F C E F C E F C E F
Asia 5 3 0.62 4 7 0.42 5 6 0.52 5 7 0.50

Alarm 23 43 0.41 22 49 0.37 23 52 0.35 23 47 0.38
Hailfinder 30 55 0.44 22 62 0.29 30 69 0.36 27 61 0.35

other techniques. This methodology causes a significant decrease in the com-
plexity of the GA algorithm. In addition, our proposed technique significantly
avoids creating extra edges.

5.2 Real Data set

We also present the empirical results on a real data set. This data set is related
to bank’s debtors (corporations) that owe over 500 million Rials to the Maskan
Banks in Iran from November 2010 to November 2014. We get the data from
Maskan Banks in Tehran. The data set has 1358 rows as corporations and 6
columns as variables. All variables can be viewed as ordinal variables of the
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Table 2: Coefficients of variables in first component of PCA
Variable’s name Coefficient

X1 -0.345
X2 -0.291
X3 -0.464
X4 0.381
X5 0.513
X6 -0.415

following form:

• Paid amount with four levels (X1): less than 1,000,000,000 Rials, between
1,000,000,000 and 10,000,000,000 Rials, between 10,000,000,000 and 100,000,000,000
Rials, between 100,000,000,000 and 900,000,000,000 Rials.

• Corporation’s Age with 6 levels (X2): less than 10 years, between 10 and
20, between 20 and 30, between 30 and 40, between 40 and 50, more than
50 years.

• Number of years elapsed since the Date of Contract with 4 levels(X3): less
than 5 years, between 5 and 10 years, between 15 and 20 years, more than
20 years.

• Time of installments with 5 levels (X4): one year, two years, between 3 and
4 years, between 5 and 7 years, more than 7 years.

• Deferred liabilities with 3 levels (X5): between 2 and 6 months, between 6
and 18 months, more than 18 months.

• Level of branch with 5 levels (X6): level 1, level 2, level 3, level 4, and level
5. This variable has been determined by the Maskan Bank based on the
place of the branch.

The frequency of all variables are shown in Figure 4. As the variables are ordi-
nal, the Spearman rank correlation is used for doing a PCA. The coefficients of
variables in the first component are shown in Table 2. The absolute value of this
coefficients is used for determination of the node ordering which is needed for
learning of a BN structure using a GA.

Learning a BN structure regarding the node ordering is performed using the
GA. The GA algorithm is stopped when 5000 structures have been evaluated
with consideration of the following assumptions:

• Population size: 50
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Figure 4: Frequency of the levels of all variables in the bank’s debtor data set

• Crossover probability =0.5

• Mutation rate =0.01.

The learned BN structure on a real data set using a GA is shown in Figure 5.
To provide a tool for an accurate performance evaluation of our technique, we
calculate the BIC score for the learned BN structure. The BIC score of the learned
BN structure using proposed technique is −9218.9202 which is higher than the
BIC scores of other techniques used in this paper. Therefore we can conclude
that the proposed technique is more efficient.

6 Conclusion

Yielding more effective node ordering is an important issue for running a GA
in the task of the learning a BN structure. In this paper, using the PCA, we in-
troduce a novel node ordering. This methodology causes a significant decrease
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Figure 5: Bayesian Network Structure learned by GA on Real Data Set

Table 3: Time consumed (s) during node ordering
Data Set Proposed Technique Hruschka et al. (2007) Chen et al. (2008)

Asia 8.9 s 30.3 s 11.1s
Alarm 508.8 s 705.9s 601.2s

Hailfinder 900.8s 1801.5 s 1084.1s

in the complexity of the algorithm. In addition, our proposed method signifi-
cantly outperforms other techniques. The proposed technique has the following
advantages:

• It reduces the computational complexity of a GA by considering a prior
ordering of nodes as an input.

• It significantly avoids creating extra edges.

We also compare the time consumption by the node ordering techniques as input
of GA. In this comparison, less time reflects a better performance. The results
are presented in Table 3. It shows that our technique has the better performance.
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