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Abstract. Recently a first-order Spatial Integer-valued Autoregressive SINAR(1,1)
model was introduced to model spatial data that comes in counts (Ghodsi et al. ,
2012). Some properties of this model have been established and the Yule-Walker esti-
mator has been proposed for this model. In this paper, we introduce the conditional
maximum likelihood method for estimating the parameters of the Poisson SINAR(1,1)
model. The asymptotic distribution of the estimators are also derived. The properties
of the Yule-Walker and conditional maximum likelihood estimators are compared by
simulation study. Finally, the Student data (Student , 1906) on the yeast cells count are
used to illustrate the fitting of the SINAR(1,1) model.
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1 Introduction

Time series count data are usually modelled by standard ARMA time series models
when the counts are relatively large. However, when the counts are relatively small the
approximation by ARMA processes are rather poor. A remedy to this problem would
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be to replace the multiplication operator in ARMA models by "o’ called as binomial
thinning operator which was introduced by Steutel and Van Harn (1979). The first time
series models based on this operator was proposed by McKenzie (1985) and Al-Osh
and Alzaid (1987). Al-Osh and Alzaid (1987) proposed the conditional maximum
likelihood estimation method to estimate the INAR(1) model parameters. Freeland
(1998) derived the score and information of the conditional maximum likelihood func-
tion for the INAR(1) model and established the asymptotic properties of the estimators.
Freeland and McCabe (2004) extended these results for INAR(p) model.

Spatial data may also come in counts. For instance, the number of observed lip
cancer cases in the districts of a country, neuronal cells in a tissue culture well (McShane
et al. , 1997), counts of particles throughout a liquid. Count data may also arise in
observational studies of ecological phenomena like weed occurrence in a farmer’s field
(Kruijer et al. , 2007). Kruijer et al. (2007) used hierarchical spatial models to analyze
weed counts. In such models it is assumed that the conditional distribution of weed
counts is poisson. The number of a special species of plants in a forest is another
example of count data. A Poisson or Gaussian distribution is not always suitable for
modeling integer-valued spatial process. In view of this fact, Ghodsi et al. (2012)
have recently extended the INAR model from time series to the spatial lattice case, thus
proposing a First-Order Spatial Integer-Valued Autoregressive SINAR(1,1) model on a
regular lattice which defined as follows,

Let{Xij, 1, j € Z}be a spatial non-negative integer-valued process on a two-dimensional
regular lattice with mean ux and finite variance. The SINAR(1,1) model is given as

Xij=a10Xi1j+a20 X1 +az0Xi1j-1 + &, (1.1)

where

X, )
a0 X, = Z Yi, {Yi} i Bernoulli(a,),
k=1

in which Xj, X5, X5 are X;_1j, X; j-1, Xi-1,j-1, respectively. {Y ,r = 1,2,3} are mutually
independent. E(Yy,) = ay, Var(Yy,) = a,(1 — ) and a, € [0,1) for r = 1,2,3. {g;;} is
a sequence of i.i.d. non-negative integer-valued random variables having finite mean
pe and variance ag, independent of {Y} } for r = 1,2,3. The sequence {¢;;} are also
independent of X; y;; for all k > 1 or I > 1. Note that, since ux = ﬁ (see
Proposition 1 in Ghodsi et al. (2012)) , the restriction aj+a> +az < 1 is necessary
because the quantity ux must be positive and this can only happen if a1 +as +az < 1.
Noting that the unilateral model is considered for simplifying the asymptotic prop-
erties (see Whittle (1954) ; Tj¢pstheim (1978) and Tj¢stheim (1983)). Some properties of
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this model have been studied byGhodsi et al. (2012) and the Yule-Walker estimator
has been proposed for this model. The Yule-Walker estimator of the parameters ay, a,
and a3 are given as,

N

& = p‘lp, (1.2)
where & = (d, dz, d3), p' = (p(1,0), (0, 1), (1, 1)) and

P=| p(,-1) 1 p(1,0)
p(0,1)  p(1,0) 1

noting that p(k, 1) = y(k,1)/¥(0,0), in which y(k, ) for a given data set

{Xij}i =1..m & j=1,., nz} is given by,

nanZZXU X)Xi,j+1 — X), (1.3)

where max{1, 1 — k} <i<min{ny, n; — k}, max{1,1 - [} <j<min{ny, n, — I} and k,l € Z. p,
and ag can be estimated as follows,

fie = XA —-a& -ar~-az) (1.4)
62 = PO,0)[1- (@1 +&dn)d - (@ + dras)i - a3)
3
-X ) ai(l-a), (1.5)
i=1

where X = Y. Z”Z Xij/(nnz) and 0 < A <1and 0 < # < 1 are obtained using folloing
equations,

(1+a2 - a2 —a2) - \/( 42 — a2 — 422 — 4(a + Aoty )?

A 1.
A= 2(0(1 + 072@3) ( 6)
and R
. dp+asA
=T 1.7
=" A (1.7)

N

provided &; + &xa3 # 0. If &1 + d&2d3 = 0 then A =0and ] = a.
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The SINAR(1,1) model as defined in (1.1) is termed as Poisson SINAR(1,1) model if
€ij ~ P(/\).

The aim of this paper is to extend the results of Freeland and McCabe (2004) in
time series to the spatial case. We propose the conditional maximum likelihood (CML)
estimation method for estimating the parameters of the Poisson SINAR(1,1) model (1.1)
and establish the asymptotic properties of the CML estimators.

2 Conditional Maximum Likelihood Estimation of the SINAR(1,1)
Model

The conditional likelihood function of the Poisson SINAR(1,1) model is defined as

n ny

L) = | | [ [ pxiixz),

i=2 j=2
where 6 = (01,02,03,64)" = (a1, a2,a3,A), Xi; = (Xie1,j, Xi j-1, Xi-1,j-1) and P(X;51X)
has been derived in Proposition (2.1).
Proposition 2.1. For the Poisson SINAR(1,1) model the conditional distribution of X;; given
Xz_] = (Xi—l,j/ Xl',]'_1, Xi—l,j—l) is HSfOllOZUS.

min{Xi_y,j,Xij} min{X; j1,Xij—s1} min{Xi_1 j_1,Xij—s1-s2}

PXgXp) = ) Y )

S1 =0 5220 S3=0

Pay (511Xi-1,j)Pa, (521X j-1)Pas (531 Xi-1,j-1)§(Xij —$1 =52 —53),

where
p4w0=(f)¢a—aﬁﬁ s=0,1,...,X

e N¢E

g(e) = ; e=0,1,...

el

Proof. LetY;j = XijIXi_]. and Bﬁ“’) =aq, OXr|Xi_j where B ~ Binomial(X,, a,) forr = 1,2, 3.
As ¢j; is independent of XZ._]., using (1.1) we can write

Y= B+ BY + B 1. 2.1)
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It is obvious that Bg“l), B(Z“Z), Bé“3) and ¢;; are mutually independent. Therefore by letting
Si = Bgal), Sy = B(ZQZ) and S3 = Bé%), the joint distribution of Y;;, S, 52 and S is given as,
1Yij,51,50,55 (Wijs $1,52,83) = fs,(51) fs,(52) fs,(53)8(Yij — 51 — 52 — 53),

where 0 <s1 < X;1,0<s < Xjj1,0<s3 <X 1,;1. Note that ¢;; > 0 so from (2.1) we
have s1 + sy + 53 < Xi]‘.
The marginal distribution of Y;; is obtained as follows,

fri(ip) = P(Xi1X5)

min{Xi-y,j,Xij} min{X; j1,Xij—s1} min{Xi_y j—1,Xij—s1-52}

Y, L 2,

$1=0 $p=0 s3=0

1Y11,51,82,85(Vij» $1, 52, 83)
which complets the proof. a

Note that, the conditional log-likelihood of the Poisson SINAR(1,1) model is given
by

£(6) = InL(6) = 2 Zz" In P(X;1X7)

i=2 j=2

The score vector of the L(0) is defined as

bo = (o, lo,, lo,, Lo,),

where
ty = ¢
0, 0, (0)
1 1y a
_ Z ‘ a—erlnp(xiﬂxij)
=2 j=2
i Z = P<X1,|X )
— (2.2)

which is given in Proposition 2.2, forr = 1,2, 3,4.
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Proposition 2.2. The first derivatives of the conditional log-likelihood function of the Poisson
SINAR(1,1) model with respect to the parameters are given as

) 1 n np
ba, Y Y Xi j(Pi(1,1,0,0) = ),

l1-«a
12 =

1 ny np
Y ) Xija(Pi(1,0,1,0) 1),

1 -
i

o
N
Il
L

=
flry
3
N

. 1
loy = Xi-1,j-1(P;j(1,0,0,1) = 1),

- ]':2

—_
W

1=

N

=
=
)

1
by = (Pij(1,0,0,0) — 1),

i=2 j=2

N

where

P(Xij — d1|Xi-1,j — d2, Xij-1 — d3, Xi-1,j-1 — da)

Pij(dy,d>,d3,dy) = -
j(dy,dp, d3, dy P(Xz'j|Xi]')

(2.3)

and dq,d, ds, dy can be 0 or 1.

Proof. (Hint) The first derivatives can be easily obtained by making use of

e N

(X)=x( 31,

2gei) = (5 1) st

and see the proof of Freeland and McCabe (2004) in one dimension. O

The information matrix also is defined as

bo = [lo, 0, l4xa,
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where

82

lo, 6, = =5—=-—0(0)

36,.90,,
ny Ny 82

- —  InP(X;X7)
; ]=Z2 86”189?2 Y

92 Y
n - Ny WP(XZAXZ])

=2

== P(XiIX})
0 In P(X;;| X J In P(X;i| X 2.4
- {er n P(Xjj] i]-)}{ﬁrz n P(X;i1X3))] (2.4)

which can be obtained using Proposition 2.3 for r,72 = 1,2, 3, 4.

Proposition 2.3. The second derivatives of the conditional log-likelihood function of the Poisson
SINAR(1,1) model with respect to the parameters are given as

falal

{azaz

{0430‘3

E/\A

ny M
m Yo Y Xt (X - DP§(2,2,0,0),
=2 j=2
~Xi-1,,P5(1,1,0,0) +2P;;(1,1,0,0) — 1),
1 nm m
—— Y ) X (X1 — 1Py(2,0,2,0),

— )2
(1 - a)* = =2

_Xi,j—lpl‘zj(lr 0/ 1/ O) + 2Pl](11 0/ 1/ O) - 1)/

ny np
Y ) Xinja (i, - DP;(2,0,0,2),

i=2 j=2
_Xl'—l,j—lplgj(]-/ O/ 0/ ]-) + 2Pl](]-/ O/ 0/ ]-) - 1)/

_
(1 - a3)?

n

n
Y Y (Pii(2,0,0,0) - P4(1,0,0,0)),

i=2 j=2
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. 1 np m
4 = Xi_1:X;i-1(P;ii(2,1,1,0),

—Pij(1,1,0,0)P;(1,0,1,0)),

y 1 O
4 = Xio1,iXi-1,i-1(P(2,1,0,1),
aias (1 —0(1)(1 —0(3) ;]:ZZ i-1,j%i-1,j 1( 1]( )

_Pij(ll ]-1 OI O)Pl](]-/ O/ 0/ 1))

iy 1 o
4 = — Xii—1Xi-1,i-1(P;i(2,0,1,1),
we (1-a2)(1-as) ;‘;2‘ i1 Xim1,j-1 (Pl )
—P;(1,0,1,0)P;(1,0,0,1)),
) 1 ny ng
50(1)\ = 1— aq ; FZZ Xi—l,j(Pij(zl ]-1 OI 0) - Pl](]-/ 1/ 01 O)Pl](]-/ 01 OI O))/
1 n m
faz/\ = 1— an ; ]:ZZ Xi,j—l (Pl](2/ 0/ 1/ 0) - PZ](ll O/ 11 O)Pl](ll 01 O/ 0))/
1 n mn
bt = 7 = ; ; Xi-1,j-1(Pij(2,0,0,1) = P;(1,0,0,1)P;(1,0,0,0)),

where Pjj(dy,da, d3, dy) is defined as (2.3) with dy,dp,d3,dy = 0,1 or 2.
(Hint) The second derivatives can be easily obtained by making use of
s2=s(s—1)+s,

s(s—l)( }: ):X(X—l)( }s(__zz )

and see the proof of Freeland and McCabe (2004) in one dimension.

2.1 Asymptotic Properties

To establish the asymptotic properties of the conditional maximum likelihood estima-
tors of the SINAR(1,1) model the following lemmas are needed.
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Lemma 2.1. The SINAR(1,1) model (1.1) is an ergodic process.

Let {Y(i,j),i=1,..,n1 & j=1,..n} be all Bernoulli sequences {Y},}{Y,} and
{Yka} inajo Xi—l,j +ar OXi,j—l +a30 Xi—l,j—l where k1 =1,2,... rXi—l,jr kry=1,2,... rXi,]'—l
and k3 = 1, 2, . /Xi—l,j—l-

Since, from (1.1), X ; is a function of ¢; j and Y(i, j), we can write

o{Xij, Xi-1,j, Xij-1, Xi-1,j-1,-- -} Coleij, Y0, )), €i-1,;, YA =1, )),...},

where o{X; j, Xi_1,j, Xi j-1, Xi-1,j-1, - . . } is the o-field generated by
{Xij, Xi-1,j, Xi j-1, Xi-1,j-1, - - - |- Hence

.38

1l
—_

(o)
ﬂG{XZ]IXl 1]/ i,j— 1, Xi- 1,j-1,- }
=1

1

c ﬂ (oters, YG, )€1, YA =1,), ) (2.5)

i=1 j=1

The right-hand side of (2.5) is a tail o-field of the process {¢;j, Y(i, j)}. Since ¢;;’s are
independent and are independent of Y(i, j)’s and since Y(i, j)’s are mutually indepen-
dent for all 7, j, then {¢; ;, Y(i, j)} is an independent random process. From Kolmogrov’s
zero-one law we know that all events in this tail o-field are trivial (see (See, Breiman ,
1992, Chapter 3)). So every set in the tail o-field of {X; ;} (the set on left hand side of
(2.5)) has probability 0 or 1, then stationary process {X; j} is ergodic (Breiman , 1992,
Chapter 6, Definition 6.30 and Proposition 6.32).

Lemma 2.2. The scores of the conditional likelihood function of the Poisson SINAR(1,1) model
are martingale sequences.

Proof. Let

Fij = o{Xielk, €) < (i, )}
= 0(X11, -, Xing, Xo1, 0, Xongs o, Xic12y - -+ Xictng, Xty - -+, Xiif),

where < notes the lexicographic order on {1,2,...,n1} X {1,2,...,n5}, i.e. (k, ) < (i, )) if
and only if either k <ior k =iand ¢ < j. By noting

u® = L1 p(x;, e 2.6

ij 89 n ( 1 ij)’ ( . )
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where 0 can be either a1, a2, az or A, foranyi=1,...

d
d0

E{UIFi 1) = El5z In P(X4IXp)IF 1)

= Z{ o In P(X1X;)IP(Xi1X ;)

£'90

= Z aGP(X11|X1_])

l]_

d

= 550

= 0,

,nmand j=1,...

,1> we have

2.7)

which shows that {llf].e)} is a martingale difference sequence. The score g given in (2.2)

can be rewritten as

11

11
0 0
Shm = ), 2 U

i=2 j=2

Using (2.7) we can write
0 = E(unl nzlﬁﬁ Nny— 1)
0 0

= E(Sim, = Sy 1 Fa-1)

= E(S;?gml,m_l) —ES© | Fu 1)
= B m-1) = Sum-1,
which implies that
E(S) [P m-1) = Snymp-1-

Therefore {S7), } is a martingale sequence.

niny
Let
8 7’
Uij = =5 In P(X;j1X) = (U, Ui, Ui, 1)
and 2 P 2 1
Vi = P(XijiX;) = | 5555~ In P(X1X;;
] = 8689’ n ( | 1]) 86,19&2 n ( 1]| Z])4

2.8)

(2.9)
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Lemma 2.3. For the Poisson SINAR(1,1) model if E(Xl.zj) < oo, then Var(b'U;;) is finite where
b = (b1, b2, b3, by)’ is any four dimensional real valued vector.

Proof. First we note that

X..
(6) 2 _
UZ.]. < oa-0) for 0 =a,ar, a3
and <
UZQ) < —Z], for 6=A7
j 0

We prove the first expression for 6 = a3. The proof for 6 = ay, a3 and A is similar.
Using proposition 2.1 and 2.2 we have

@ _ _1
UZ-;-“ = mxi—l,j(Pij(l,l,O,O)—l)

1
mxi—l,jpij(ll 1,0,0)

IA

ml‘l’l{X,’_lrl’—l,X,']‘—l} min{Xi,]'_l,Xij—l—sl}

B Xi-1,j
S oa- an)P(XijX5) Z‘ Z‘

S1 =0 5220

min{Xi-1,j-1,Xij—1-s1-52}

p(s11Xi-1,j — Dp(s2lXi j-1)p(s31Xi-1,j-1)

S3=0
8§(Xij—1—51—52—353)

min{Xi-y,j,Xij} min{X; j1,Xij—s1}

Xi-1,j
(1 = a1)P(X;|X) Slzz‘i SZZ:(‘)

min{Xi_1,j-1,Xij—s1-s2}

Z p$1 — UXi1,j — Dp(s2lXi j-1)p(s31Xi-1,j-1)

S3=0

8(Xij —s1 — 52 —53)
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IA

IA

min{Xi-1,j,Xij} min{X; j1,Xij—s1}

51—1

Xi-1,j
(1 — Oll)P(Xz]|Xl_]) s1=1 $p=0
min{Xi_1,j-1,Xij—s1-s2}
( Xi1,j—1 )ail—l(l _ al)Xi—l,j_sl

5320

p(s2lXi j-1)p(s31Xi-1,j-1)8(Xij — 81 — 82 — 83)

min{Xi_y,j,Xij} min{X; j1,Xij—s1}

1
a(l = ar)P(XX5) Sl; SZZ:;J

min{X;-1,j-1,Xij—s1-s2}
Xi1i o
51( o )ail(l —ay) "

51
S3=O

ps2lXi j-1)p(s3lXio1,j-1)8(Xij = 51— 52 = 53)
i i—1,jr4%ij i X,’ i ,XI--—
min{X;_1,j, Xij} mm{le:,] Xij} min{ i j—s1)
a(l - al)P(Xij|Xi_j)

51 =0 sp=0

min{X;_1,j-1,Xij—s1-s2}

Xic1i L
i-1,j )ail(l _ al)Xz—l,] 51

S3=0

p(s2lXi j-1)p(s31Xi-1,j-1)8(Xij — 81 — 82 — 83)

i P(X;X7)
a(l = a1 P(X;1X5)) T

a(1-ay)

Alireza Ghodsi
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Now let E(Xizj) < co. Then,

Epu? = E{Zbru@}Z

IA IA
M- T
-
§

S

Jiz
e

which implies that Var(b’'U;;) < co. m]

Lemma 2.4. Var(b'U;j) = 0 iffb = 0.
Proof. We know, for non-zero b, that Var(b’llij) = 0 iff b’llij = ¢ for some constant ¢
with probability one. From proposition 2.2 we have

/ 1 1
bU; = by =X Pi(1,1,0,0) + b X;;-1P;(1,0,1,0)

1
- —X;_ 1,j- 1P11(1 0,0, 1) +b4PZ](1 0,0, 0)

= ¢ (2.10)

Taking (X; j, Xi-1,j, Xi j-1, Xi-1,j-1) = (2,0,0,0),(1,0,0,0),(1,1,0,0),
(1,0,1,0),(1,0,0,1) in (2.10) we get,

+bz3——

P(1]0,0,0) _ 2b,

‘P0,0,00 A (2.11)

4% - bf =< (212)

T B0 * PALSS = @13)
1 Ezaz 122(1):8 (1) 8; " b”‘i?l):g: 1 8; -G (2.14)
bs P(00,0,0) , P(00,0,1) _ 015

1-a3 P(10,0,1) = *P(10,0,1)
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Egs. (2.11) and (2.12) yeild by = ¢ = 0. By noting P(x1lxp, x3,x4) is positive for
x1,%2,x3,X4 > 0 and replacing by = ¢ = 0 in (2.13-2.15) we obtain by = b, = b3 = 0
which complets the proof. m]

In the next lemma we show that the Fisher information matrix is positive definite
and finite which implies the non-singularity of Fisher information matrix.

Lemma 2.5. Fisher information matrix of the conditional maximum likelihood function of the
Poisson SINAR(1,1) model (1.1) is positive definite and finite.
Proof. Using Egs. (2.2, 2.4, 2.8) and (2.9) we can write fp = Z?zlz Z]'ZZ U;; and by =
T, Z’JZZ Vii. Since E({g) = EE({|Fij-1) = 0 (see Eq. 2.7), the Fisher information
matrix can be written as
1(0) = Var(£o)
= E(fol})
= —E(fg)

== i i E(Vij)

i=2 j=2

ny np

-3 3
=2 j=2
1

= Z i Var(uz-]-).

i=2 j=2

Therefore b'I(0)b = b’ .72, Z'}Zz Var(U;b = Y., Z}Zz Var(b’U;j) which by Lemmas
2.4 and 2.5 is finite and positive for any non-zero four dimensional real valued vector
b. |

Proposition 2.4. Let O be the maximum likelihood estimator of the parameter vector @ =
(01,02, 03,04) = (a1, a2, a3, A) of the Poisson SINAR(1,1) model (1.1). Then,

0-02%NO,170)),

where
1(6) = [irl,r2]4><4,



Conditional Maximum Likelihood Estimation of SINAR(1,1) Model 29

6(0)
90,,90,,

and f'grl 0, has been derived in Proposition (2.3).

irr, = —E( )=~E(lo,0,) 11,72=1,234

Proof. For some 0 € [0, 69] which 6y is the true value of 6, using vector form of the
Mean Value Theorem we have

0=~y =Fp, +£5(0 - 0y)

Then, we can get

A -1

0-00=-t5 s,
assuming b5 is non-singular. Since the scores and informations are functions of the
process {X; j} which is stationary and ergodic (see Lemma 2.1) it follows that these pro-
cesses are also stationary and ergodic. Hence, using ergodic theorem we can conclude
that the conditional maximum likelihood estimators which are obtained by solving

¢ o = 0, are consistent.
To establish the distribution of 6 we can write

0 — 0y = —F5  I(06)I"(B0)l s,

since @ € [, 0p] and by consistency result & — 0y, uniform strong law af large numbers

implies that —I71(8y)¢5 2, I, the 4 x 4 unit matrix. Also, using the martingale central
limit theorem of Brown (1971) and Scott (1973) (see also Crowder (1976) and Bu and
Hadri (2006)) and Cramer and Wold (1936) device I” 1(60)t’90 is asymptotically normal
as N4(0,171(8)) which completes the proof. O

3 Simulation Results and A Real Data Example

In this section we discuss the simulation results of our study. We simulated realisations
using (1.1) assuming ¢;; ~ Poisson(A), with three different sets of 8’ = (a1, a2, a3, A) val-
ues. The three sets of O-values used were (i) 0’ = (0.4,0.3,0.1,1), (ii) 8" = (0.2,0.2,0.5,1)
and (iii) 0’ = (0.1,0.1,0.1,1). The size of generated processes are 15 x 15, 30 x 30 and
50%50. We investigate the performance of the Yule-Walker (YW) estimators (see Ghodsi
et al. (2012)) and the Conditional Maximum Likelihood (CML) estimators through a
simulation study. All the simulations were carried out by writing R programs.

Let s represent the number of replications. In this simulation study s is 300. The
following computations were carried out from the simulation study,
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1. Mean of the point estimates (Mean), 0= Yo 0i/s.

2. Estimated biases (Bias)= 0-0.

S
3. Estimated stadard deviations (SD) = J Z(éi - 0)2/(s - 1).
i=1

S
4. Estimated root mean squared errors (RMSE) = Z(éi - 0)2/s.
i=1

The results are presented in Table 1. It can be seen that the Bias, SD and RMSE of
the estimated parameters using CML are quite small and smaller than those of the YW
method. The biases of a’s estimators are offen negative but the bias of the A’s estimator
is positive in both methods. It can be also seen that, the RMSEs decrease when the
value of parameters decrease. The RMSE of A depends on the values of as. If the value
of at least one of the as increase, the RMSE of A also will increase. Also, we can see
that the bias and RMSE values of the estimated parameters decrease when the grid size
increases.

Figure 1 and 2 show Q-Q normal plots of the Bias of parameters using CML method
when 0" = (0.4,0.3,0.1,1) and grid sample sizes are 15 X 15 and 50 x 50, respectively.
From these figures it can be seen that the estimators are normally distributed not only
for large grid sizes of 50 x 50 but also for small grid sizes of 15 x 15.

To illustrate the fitting of the SINAR(1,1) model, we consider the data set from
a regular grid presented by Student (1906) on the yeast cell counts (see Hand et al.
(1994)). Yeast cell counts were made on each of 400 small regions on a microscope slide.
The 400 squares were arranged as a 20x 20 grid and each small square was of side 1/20
mm. Mean and variance of the data are 4.675 and 4.464, respectively.

The fitted models to the Student’s data using YW and CML estimation methods are
respectively as follows

Xij=0.077 0 Xj1,j+0.044 0 X j 1 + €jj, eij ~ P(4.114)

Xij =0.040 0 Xi—l,j +0.013 0 Xi,j—l + Eij/ EZ‘]' ~ P(4427)

Note that, since the estimated values for a3 using both methods were negative, the
terms containing X;_1 ;-1 were omitted from the model. The fitted model can be used
for prediction.
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Figure 1: Q-Q normal plots of the Bias of the parameters for set (i) and grid sample
sizes of 15 X 15 using CML method.
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Figure 2: Q-Q normal plots of the Bias of parameters for set (i) and grid sample sizes
of 50 x 50 using CML method.

4 Conclusion

The models described in this paper can be useful in the analysis of count data on a
regular grid. In this paper, the conditional maximum likelihood (CML) estimation
method to estimate the parameters of the Poisson SINAR(1,1) mode was derived. The
asymptotic distribution of the estimators also established. The simulation study to
compare the RMSE of CML estimators with YW estimators was performed and it was
found that the Bias, SD and RMSE of the CML method are quite small and less than of
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the YW method. It is hoped that more researchers would consider using this model for
various applications.
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Table 1: Mean, Bias, SD and RMSE of the estimates.

M &
Set Size Method  Mean Bias SD RMSE Mean Bias SD RMSE
CML 0.3920  -0.0080 1.6e-17 0.0080 0.2846  -0.0154 1.2e-17 0.0154
15% 15
YW 0.3678  -0.0323 2.0e-17 0.0322 0.2751 -0.0246 8.3e-19 0.0249
CML 0.3975  -0.0025 4.4e-18 0.0025 0.2989  -0.0011 1.5e-17 0.0011
(1) 30%30
YW 0.3906 -0.0093  8.3e-18  0.0093 02993  -0.0007 24e-17  0.0007
CML 0.3997 -0.0003 2.7e-17  0.0003 03012  0.0012  2.7e-17  0.0012
50% 50
YW 0.3958  -0.0042 2.2e-17 0.0042 0.3021 0.0021 1.7e-17 0.0021
CML 0.1944 -0.0056  9.4e-17  0.0059 0.1890  -0.0110 1.0e-17  0.0110
15% 15
YW 0.2231  0.0231 1.3e-17  0.0231 0.2158  0.0158 1.1e-17  0.0158
CML 0.1953 -0.0047 1.2e-17  0.0047 0.1965 -0.0035 7.7e-18  0.0035
(i)  30x30
YW 0.2117 0.0117 3.3e-18 0.0117 0.2129 0.0129 1.3e-17 0.0129
CML 0.1984 -0.0016 3.98e-18  0.0016 0.1988  -0.0012  8.0e-18  0.0012
50x 50
YW 0.2088 0.0088 1.4e-18 0.0088 0.2095 0.0095 3.1e-18 0.0095
CML 0.1030  0.0030 6.9e-20  0.0030 0.1096  0.0096 1.8e-18  0.0096
15x 15
YW 0.0970 -0.0031  5.0e-19  0.0040 0.1000  0.00001 4.9e-18  0.00001
CML 0.0974  -0.0026 4.2e-19 0.0026 0.1042 0.0042 6.5e-19 0.0042
(iii)  30x30
YW 0.095 -0.0053 5.8e-18 0.0053 0.1017 0.0017 3.7e-18 0.0017
CML 0.0989  -0.0011 5.1e-18 0.0011 0.0998  -0.0002 6.3e-18 0.0002
50x 50
YW 0.0971 -0.0029  5.6e-18  0.0029 0.0984 -0.0016 5.3e-18  0.0016
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