
JIRSS (2014)

Vol. 13, No. 1, pp 57-67

Inferences on the Generalized Variance

under Normality

A. A. Jafari1, M. R. Kazemi2

1Department of Statistics, Yazd University, Yazd, Iran.
2Department of Statistics, Fasa University, Fasa, Iran.

Abstract. Generalized variance is applied for determination of disper-
sion in a multivariate population and is a successful measure for con-
centration of multivariate data. In this article, we consider constructing
confidence interval and testing the hypotheses about generalized vari-
ance in a multivariate normal distribution and give a computational
approach. Simulation studies are performed to compare this approach
and three approximate methods; the simulations show that our approach
is satisfactory. At the end, two practical examples are given.
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1 Introduction

Let X1, . . . ,Xn be an independent random sample from a p-variate
normal population with positive definite covariance matrix Σ. Wilks
(1932) introduced generalized variance, which is defined as the deter-
minant of covariance matrix, |Σ|, for dispersion of a multivariate pop-
ulation. This measure is used for overall multivariate scatter, and one
can rank distinct groups and populations based on the order of their
spread. Generalized variance is a successful measure for concentration
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58 Jafari and Kazemi

of multivariate data (Djauhari, 2007) and is applicable in monitoring
process variability (Djauhari, 2005; Djauhari, et al., 2008). Therefore,
many researchers have studied the estimation of generalized variance.
Sarkar (1989) provided the shortest confidence interval for generalized
variance. Sarkar (1991), and Iliopoulos and Kourouklis (1998) obtained
a stein-type interval and an improvement confidence interval for gen-
eralized variances, respectively. For natural exponential family, Koko-
nendji (2003) proposed uniformly minimum variance unbiased estimator
(UMVUE) of the generalizad variance, and Kokonendji and Pommeret
(2007) compared this estimator and the maximum likelihood estima-
tor (MLE). Djauhari (2009) derived an asymptotic distribution for the
sample generalized variance.

Our focus is to find a confidence interval for |Σ| and one-sided test
of hypothesis

H0 : |Σ| ≤ d0 vs. H1 : |Σ| > d0, (1)

and two-sided test of hypothesis

H0 : |Σ| = d0 vs. H1 : |Σ| �= d0. (2)

For p = 1, 2, the distribution of sample generalized variance has a
simple form. But for p > 2, its exact distribution has a complicated
nature, and it would as well be difficult to obtain the interval estimation
and test of |Σ|; therefore, the authors gave some approximate methods.
In this paper, the state p > 2 is our interest. However, our paper is
organized as follows: In Section 2, for constructing confidence interval
and testing the hypotheses in (1) and (2), we give a computational ap-
proach and review three approximate methods. In Section 3, the meth-
ods are compared using the Monte Carlo simulation, and we illustrate
our method using two real examples. Some conclusions are provided in
Section 4.

2 Inferences

Let X1, . . . ,Xn be a random sample from a p-variate normal distribu-
tion with positive definite covariance matrix Σ. Let

S =
1

n− 1

n∑
i=1

(X i − X̄)(X i − X̄)′, (3)
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Inferences on the Generalized Variance under Normality 59

be the sample covariance matrix. Our interest is to find a confidence
interval and hypothesis test for the generalized variance, |Σ|. For this
purpose, we can use the exact distribution of the determinant of S. It is
well known that |S| is distributed as a product of chi-square distributions
(See Anderson, 2003), i.e.

U =
(n− 1)p

|Σ| |S| ∼
p∏

j=1

χ2
(n−j), (4)

where χ2
(n−j), j = 1, ..., p are independently chi-square random variables

with n− j degrees of freedom. Therefore, distribution of |S| is stochas-
tically increasing in |Σ|, i.e. P (|S| > a) is an increasing function of |Σ|
and the p-value for the one-sided hypothesis test in (1) is given by

p = P (|S| ≥ |s| | H0) = P

(
U ≥ (n− 1)p

d0
|s|
)
, (5)

and for the two-sided hypothesis test in (2) it is given by

p = 2min

{
P

(
U ≥ (n− 1)p

d0
|s|
)
, P

(
U ≤ (n− 1)p

d0
|s|
)}

, (6)

where |s| is the observed value of |S|. Also, an (1−α) confidence interval
for |Σ| based on U is (

(n− 1)p

Uα/2
|s| , (n− 1)p

U1−α/2
|s|
)
, (7)

where Uγ is the (1− γ)th percentile for distribution of U .

The p-values in (5) and (6), and confidence interval in (7) cannot be
calculated exactly because density function of U has a complicated form.
However, it can be estimated numerically using Monte Carlo simulation.
The following algorithm is useful to estimate the confidence interval for
|Σ| in (7) and p-values in (5) and (6):

Algorithm 1 Given p, n and |s|;
1- Generate Uj ∼ χ2

(n−j).

2- Calculate U =
∏p

j=1 χ
2
(n−j).

3- Calculate V = (n−1)p

U |s|.
4- Repeat steps 1-3 for large number of times (say m = 5000) and obtain
the m values of V .
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Let V(γ) be the 100γth percentile of Vl’s, i = 1, ...,m. Then 1− α confi-
dence interval for |Σ| is [V(α/2), V(1−α/2)]. The p-value in (5) for testing
hypothesis in (1) is estimated by proportions of Vl’s that are less or equal
to d0.

The p-values in (5) and (6), and the confidence interval in (7), can
also be calculated approximately. In the following sections, we consider
three normal approximations.

2.1 Anderson Approximation

Based on central limit theorem, Anderson (2003) showed that

√
n− 1

( |S|
|Σ| − 1

)
d−→N (0, 2p) . (8)

Using this approximation, the p-value in (5) becomes

p = P (|S| ≥ |s| | H0) = 1−Φ

(√
n− 1√
2p

( |S|
d0

− 1

))
, (9)

where Φ (.) is the cumulative distribution function of standard normal
distribution. In addition, the (1− α) confidence interval based on this
approximation is( √

n− 1 |S|√
n− 1 +

√
2pZα/2

,

√
n− 1 |S|√

n− 1−√
2pZα/2

)
, (10)

where Zα/2 is the (1− α/2)th quantile of standard normal distribution.
This formula requires, however, that n be sufficiently large, i.e. n >
2pZ2

α/2 + 1, provided that the upper bound is positive.

2.2 Sarkar Approximation

Hoel (1937) suggested an approximation density function for U as

f∗p,n (x) = γp−1fτ

(
γx

1
p

)
x

1
p
−1,

where fτ (x) is the density of a chi-square random variable with τ =

p (n− p) degrees of freedom and γ = p(1− 1
2n (p− 1) (p− 2))

1
p , where

f∗p,n (x) is exact for p = 1 and p = 2. Sarkar (1989) showed that this
approximation is useful for p ≤ 3, and suggested the following normal
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Inferences on the Generalized Variance under Normality 61

approximation for p > 3. Based on Johnson et al. (1994), we approxi-
mately have

log
(
χ2
(v)

)
∼ N

(
ψ
(v
2

)
+ log (2), ψ′

(v
2

))
, (11)

where ψ(.) is the digamma function and ψ′(.) is its derivative. Applying
this approximation for

Y = log (U) =

p∑
j=1

log
(
χ2
(n−j)

)
, (12)

we can conclude that Y has a normal distribution with mean μY =∑p
j=1 ψ

(
n−j
2

)
+ p log(2) and variance σ2Y =

∑p
j=1 ψ

′
(
n−j
2

)
. Therefore,

we approximately have

P

(
U ≥ (n− 1)p

d0
|s|
)

= 1−Φ

(
p log(n− 1) + log(|s|)− log(d0)− μY

σY

)
,

where Φ(.) is the cumulative distribution function of standard normal
distribution. From approximation for Y in (12), we can also obtain an
approximate confidence interval for |Σ| as(

(n− 1)p |s| exp (−μY − σY Zα/2

)
, (n− 1)p |s| exp (−μY + σY Zα/2

))
.

(13)

2.3 Djauhari Approximation

Djauhari (2009) derived an asymptotic distribution for |S|. He showed
that |S|

|Σ|
d−→N (b1, b2) , (14)

where b1 = 1
(n−1)p

∏p
j=1 (n− j) and b2 = b1

(n−1)p
∏p

j=1 (n− j + 2) − b21.

Using this approximation, the p-value in (5) becomes

p = P (|S| ≥ |s| | H0) = 1− Φ

( |s| − b1d0

d0
√
b2

)
. (15)

In addition, the (1− α) confidence interval based on this approximation
is (

|S|
b1 +

√
b2Zα/2

,
|S|

b1 −
√
b2Zα/2

)
. (16)

This formula requires, that b21 > b2Z
2
α/2, provided that the upper bound

is positive.
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3 Numerical Studies

In this section, the given approaches in Section 2 are compared using the
Monte Carlo simulation. In addition, these approaches are illustrated
by using two real examples.

3.1 Simulation

Using the Monte Carlo simulation, with 10000 replications, we compare
the coverage probabilities and expected lengths of the confidence inter-
vals for generalized variance, |Σ|. We consider the following methods:
i) computational method (CM) using algorithm 1 with m = 5000, ii)
the Anderson method (AM), iii) the Sarkar method (SM), and iv) the
Djauhari method (DM). Note that the Andeson method and Djauhari
method are not applicable in some cases.

For this purpose, we generate a random sample of size n from multi-
variate normal with dimension p, mean vector 0, and covariance matrix
Σ, and obtain the 95% two sided confidence intervals for |Σ| through
the above approaches. The coverage probabilities and expected lengths
of the methods are given in Table 1, and we can conclude that

1. The coverage probabilities of all methods are close to the confi-
dence coefficient 0.95.

2. The expected length of Anderson method and Sarkar method are
greater than other methods.

3. The expected length of all methods increase when the dimension
p, of multivariate normal increases.

4. The expected length of all methods decrease when the sample size
n, increases.

5. The expected length of all methods increase when the generalized
variance |Σ|, increases.

We also performed a simulation study for comparing the actual sizes
and powers of the methods for testing the one-sided test of hypothesis

H0 : |Σ| ≤ d0 vs. H1 : |Σ| > d0,

with d0 = 0.2. We generate a random sample of size n from multivariate
normal with dimension p, mean vector 0, and covariance matrix Σ, and
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Inferences on the Generalized Variance under Normality 63

Table 1: Simulated coverage probabilities and expected lengths of 95%
two sided confidence intervals for |Σ|.

p
n |Σ| method 2 3 5 10
15 0.2 CM 0.946(0.653) 0.951(1.022) 0.946(2.110) 0.948(20.543)

AM — — — —
SM 0.942(0.610) 0.948(0.954) 0.943(1.958) 0.951(17.681)
DM — — — —

1 CM 0.953(3.347) 0.956(5.089) 0.949(11.135) 0.947(33.401)
AM — — — —
SM 0.947(3.133) 0.952(4.713) 0.943(10.260) 0.948(31.059)
DM — — — —

30 0.2 CM 0.948( 0.361) 0.946(0.483) 0.946(0.781) 0.967(1.891)
AM 0.952(0.595) 0.976(1.545) — —
SM 0.949(0.350) 0.950(0.468) 0.945(0.755) 0.963(1.814)
DM 0.952(0.673) 0.961(3.212) — —

1 CM 0.947(1.801) 0.953(2.411) 0.951(3.856) 0.942(9.393)
AM 0.966(2.972) 0.971(7.705) — —
SM 0.949(1.748) 0.947(2.334) 0.955(3.749) 0.944(9.007)
DM 0.962(3.362) 0.958(16.013) — —

50 0.2 CM 0.946(0.253) 0.955(0.325) 0.945(0.466) 0.938(0.879)
AM 0.960(0.318) 0.966(0.483) 0.979(1.307) —
SM 0.952(0.249) 0.955(0.321) 0.948(0.458) 0.942(0.862)
DM 0.961(0.334) 0.962(0.562) 0.958(3.401) —

1 CM 0.951(1.274) 0.950(1.605) 0.948(2.361) 0.944(4.5702)
AM 0.959(1.601) 0.968(2.382) 0.984(6.596) —
SM 0.955(1.253) 0.949(1.582) 0.953(2.315) 0.945(4.497)
DM 0.958(1.684) 0.960(2.774) 0.955(17.166) —

consider the cases that each approach reject the null hypothesis at the
nominal level, α = 0.05. The sizes and powers of the methods are given
in Table 2. In this table, the actual sizes are determined when |Σ| = 0.2,
and the powers are determined when |Σ|= 1. We can conclude that

1. The actual sizes of our method and Sarkar method are close to the
nominal level, α = 0.05.

2. The actual size of Djauhari method is greater than the nominal
level, α = 0.05.

3. The actual size of Anderson method is satisfactory when p is small,
and is very conservative when p is large.
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Table 2: Actual sizes and powers of the tests for |Σ| at 5% significance
level.

|Σ| 0.2 1.0

p p

n method 2 3 5 10 2 3 5 10

15 CM 0.045 0.050 0.052 0.056 0.885 0.747 0.535 0.288
AM 0.047 0.036 0.010 0.001 0.892 0.717 0.321 0.001
SM 0.033 0.040 0.050 0.052 0.871 0.726 0.518 0.275
DM 0.063 0.064 0.062 0.033 0.906 0.784 0.565 0.214

30 CM 0.049 0.045 0.060 0.042 0.998 0.953 0.834 0.524
AM 0.058 0.039 0.029 0.001 0.998 0.945 0.739 0.057
SM 0.045 0.039 0.059 0.038 0.998 0.942 0.830 0.513
DM 0.073 0.063 0.077 0.045 0.998 0.966 0.861 0.549

50 CM 0.039 0.038 0.046 0.051 1.000 0.999 0.957 0.775
AM 0.051 0.041 0.028 0.002 1.000 0.999 0.931 0.336
SM 0.036 0.038 0.043 0.047 1.000 0.999 0.955 0.768
DM 0.064 0.053 0.061 0.060 1.000 0.999 0.972 0.800

4. The power of Djauhari method is larger than other methods.

5. The power of all methods decrease when p increases.

6. The power of all methods increase when n increases.

3.2 Numerical Examples

Example 1. Six hematology variables are measured on 51 workers
(Royston 1983). In addition, the data are given by Rencher (2002, page
109). The sample determinant of covariance matrix, |s|, is equal to
6.2453. The %95 confidence intervals for |Σ| by different methods are
given in Table 3. In addition, for the hypothesis test H0 : |Σ| ≤ 6.0 vs.
H1 : |Σ|>6.0, the p-values are given in Table 3. Therefore, we cannot
reject H0 at 5% significance level. We note that Algorithm 1 has been
used by m = 10000.

Example 2. Timm (1975, page 233) reported the results of an ex-
periment where n = 11 subjects responded to ”probe words” at p = 5
positions in a sentence. In addition, the data are given by Rencher (2002,
page 70). The sample determinant of covariance matrix, |s|, is equal to
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Table 3: p-values and 95% confidence intervals for generalized variance,
|Σ|.

method p-value Confidence interval length

Computational 0.3356 (3.6022, 14.4061) 10.8039
Anderson 0.4617 (3.6928, 19.3117) 15.6189
Sarkar 0.3301 (3.5051, 14.0165) 10.5113

Djauhari 0.3915 (3.8766, 21.9662) 18.0896

2.7231. The %95 confidence intervals for |Σ| by different methods are
given in Table 4. Note that we cannot compute the confidence intervals
based on Andesron approximation and Djauhari approximation. In ad-
dition, for the hypothesis test H0 : |Σ| ≤ 2.7 vs. H1 : |Σ| > 2.7, the
p-values are given in Table 4. Therefore, we can reject H0 at 5% signif-
icance level. We note that Algorithm 1 has been used by m = 10000.

Table 4: p-values and 95% confidence intervals for generalized variance,
|Σ|.

method p-value Confidence interval length

Computational 0.0537 (1.8612, 226.1532) 224.2919
Anderson 0.0866 —– —–
Sarkar 0.0612 (1.6293, 191.6412) 190.0119

Djauhari 0.0553 —– —–

4 Conclusion

For testing the hypothesis and constructing confidence interval for the
generalized variance in a multivariate normal distribution, we proposed a
computational method using the distribution of the sample generalized
variance. We compare this computational approach with three other
approximate approaches based on the coverage probability and expected
length for constructing confidence interval, and based on the actual size
and power for testing the hypothesis. For a range of choices of the sample
size and parameter configurations, we have investigated the performance
of the above approaches using Monte Carlo simulation, and we concluded
that the computational method is satisfactory and better than other
methods.
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