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Abstract. Following a Bayesian statistical inference paradigm, we
provide an alternative methodology for analyzing a multivariate lo-
gistic regression. We use a multivariate normal prior in the Bayesian
analysis. We present a unique Bayes estimator associated with a prior
which is admissible. The Bayes estimators of the coefficients of the
model are obtained via MCMC methods. The proposed procedure
is illustrated by analyzing a data set which has previously been ana-
lyzed by various authors. It is shown that our model is more precise
and computationally less taxing.

1 Introduction

In most areas of scientific research where statistical models are used,
non-linear models are essential tools for analysing the results. They
are used when one has a discrete and/or non-linear response. One
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such important model is the logistic model which is used to ex-
plore the effects of some covariates, discrete and/or continuous in-
dependent variables, on a discrete response. Whenever both the
response and covariates are discrete, one has a contingency table.
Two important areas of current interest in which such models ap-
pear are logistic regression with covariate measurement error and
random effects models for binary outcomes. These topics can be
dealt with either by the frequentist or the Bayesian methods. From
a Bayesian point of view, for example Dellaportas and smith(1993)
demonstrated an adaptive-rejection sampling(ARS) from the univari-
ate conditional prior densities of the coefficients in the logistic re-
gression model. Gamerman(1997) uses a normal approximation to
the posterior density of the regression coefficients using iterative-
reweighted-least-squares(IRLS). The Gamerman’s approach requires
Metropolis-Hastings updates and hence data dependent accept-reject
steps. Chen and Dey(1998) described a Bayesian logistic regression
model based on the scale mixture method. They use a Bayesian
model selection for multinomial logistic regression by using a scale
mixture of normals representation for the noise process. Madigan et
al. (2005) consider a problem similar to ours in the context of author
identification, using both normal and Laplace priors for regression
coefficients. Wang and Kapat (2006) present four types of priors, but
they also recommend the use of normal and Laplace priors.

This article presents a Bayesian analysis for contingency tables
where a logistic model is used. We focus on Laplace-Metropolis al-
gorithm to approximate the marginal distribution. It also provides
an algorithm for implementation of this method. We consider both
normal and non-informative priors. When the researcher has enough
prior information, he can use the normal specification. However, if
he does not have or is not willing to specify such a prior, he may use
the non-informative prior. Both cases have been explored, here. The
proposed method is illustrated by a real example, which has previ-
ously been used by Schull(1958) and later by Ntzoufras et al.(1999)
to illustrate their proposed methods. Originally, Schull(1958) stud-
ied the pregnancy outcome in three districts of Shizuoka city, Japan,
according to the degree of consanguinity between the parents. In
his study, Death ( categorized as abortion, stillbirth, death in less
than 12 months, death in 13-60 months, survived) is considered as
a multinomial response variable, and Residence( rural district, inter-
mediate district and urban district) and Consanguinity ( no relation,
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2nd cousins, 1% cousins and 1st cousins) are covariates. Ntzoufras
et al. (1999) developed Metropolis-Hastings algorithm for exact in-
ference on binomial and multinomial logistic regression models based
on repeated categorical response.

In this paper, we will study this problem by the subjective Bayesian
theory via MCMC, considering the logistic regression analysis for a
multinomial response variable. In Section 2, the model is presented
and for the logistic regression model the Bayes estimates of param-
eters are obtained.In Section 3, a real data set is analyzed. A small
scale simulation in section 4 is reported.

2 The Model

LetY be a multinomial response variable with K41 categories which
are denoted by 0,1,---, K. Supose for « = 1,2,---, I, the indepen-
dent vectors Y; are distributed multinomially with probability vec-
tors p; = (pio,- -, pik), that is, Y/ ~ Mult(N;,p;), with fixed Nj.
The counts matrix Y = (y;5), for i = 1,2,---, T and j = 0,1,---, K
contains the data. Columns of Y are denoted by (yo,y1, -, ¥K),
where yg = N — Z]K:1 yj, with N = (Ny,--- ,N;7)'. The likelihood
function is

TN I K

LPY =y)= <H )69610 <Z Z?Jijloy(pij)>a (2.1)

i
i=1 Hj=0vi! i=1j=0

where P = (p;;), 0 < p;; < 1 and Zf:opz’j = 1, for each i. Now
suppose for j = 1,2,---, K, ﬂ;- = (Bjo,Bj1,- -, Bjq) is the vector
of regression parameters corresponding to the vector of ¢ covariates
x; = (1,21, -, 2ig). Using log odds log(%) = 1;j, the assumed
structure for the logistic regression is

nii = %85, i=1,2,---,1. (2.2)
or for m; = (my,---,nrj), we can write ; = X}, with
X1
x=| :
X

From (2.1) and (2.2), the canonical likelihood function for 8 = (81, - -,
Br) is equal to:
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LY =y) =
N;!

(H i ;'ij!>exp (; ;yijxgﬁj — ; N;log(1 + ; emp(xé@-)). (2.3)

3

As with any statistical model, we must avoid overfitting the training
data on a multinomial logistic regression model. This would make
accurate predictions on unseen data feasible. One Bayesian approach
for this problem is to use a prior distribution for 3; which assigns a
high probability to values of 8; near u;. Since each individual covari-
ate cannot be expected to exert much leverage on the response, one
may choose f1; in the vicinity of zero and o; a small number, at most
2 to reflect the prior belief on 3;;. These prior beliefs can be reflected
by a normal prior 8; ~ N|u;,>;] which has been frequently used
in the literature. Therefore, the choice of a set of values for p; and
¥j, e.g.(0,1), can help initiate the computational process described
below. If someone does not prefer to use this normal prior due to
lack of prior information, he may choose a non-informative prior like
uniform in place of normal. In that case, an alternative estimator
would be obtained while the rest of our procedure for estimating ]3]-
would be the same as for the normal prior. We assume a priori that
the components of 3; are independent and hence the overall prior for
Bj is the product of the priors for its components. Hence, in addition
to the likelihood function (2.3), and the assumed structure for the
logistic regression in (2.2), the prior distributions are specified below:

where ¥; = Diag(ojo,--,0jq). Thus the posterior distribution is
obtained as

exp <E]~:1(y¢jX2ﬂj — 3B — 1) =71 (B - w))))
T(BY =y) Z:r[l{ L+ %, exp(xB)) N

(2.5)

Bayesian inference is now based on the analysis of the posterior dis-
tribution (2.5). In general, this posterior will not have a known closed
form rather it will have a complicated high dimensional density only
known up to the normalizing constant which makes direct inferences
almost impossible. Markov Chain Monte Carlo(MCMC) methods are
techniques that have been developed to resolve this kind of problem.
Thus, we employ the MCMC method to compute the posterior
distribution and the posterior expectations of some functions of ;.

|
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We have to compute

mly) = [

; ijij!X
con( Tyt = 185~ )= 6, - ) )
/ / TR dpi - Br
1 g ( +Zj:1 EZ‘p(Xiﬂj)) ¢
(2.6)

as the marginal distribution of y and

T(BlY =y) =

W
( 1(yixiBy — 5((Bj — Mj)lzfl(ﬂj - uj))>
H H] y” (14 X,—1 exp(x}B;))N:

as the posterior density of 8;. Now, computation of Bayes estimator is

L (2.7)

quite simple. The Bayes estimator of 3; is any number Bj, minimizing
the posterior risk E(L(B;, Bj)|Y =y). If we define,

. 0, |,3] - IBJ| <C
L(3,B) = { A
L, |/33 - :3]| > C,

then, Bj is the midpoint of the interval T = {Bj, 1B; — B]| < C} of
length 2C which maximizes P(8; € I|y), (Robert, 2001, pp. 166-

167). In this case the Bayes estimator is the posterior mode. From
(2.7) we have

tog (x(81Y =) ) = 4+ X2 3 (i — 5 (65— s =5 (8- ))

i=1j=1

— ZNlog (1+ Zexp x;0;)) (2.8)

j=1
1 N;!
A= log<m(y) ];[(Hj yij!)>'

Finding the maximum of (2.7) or equivalently of (2.8), gives the Bayes
estimator of 3;, as

where

, 1 1
Bi = nj+ 7%, (Z aini) = pj+ 75X <Yj - Nz’Pj>' (2.9)
i=1
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where a5 = Yij — Nz'pij-

To appreciate the nature of the estimator of 8;, we present it in an
iterative format. For any given P;, use an initial estimator 15]-, sat-
isfying n%(lAD] —P;) = Oy(1) to obtain an estimator Bj of ;. Such
initial estimators can easily be obtained. Our method starts with
the likelihood estimator and iterates the following steps 1-4 until it
converges:

Step 1: Let lg,go) = N%-Yj

Step 2: Given }s,g_o), let Bj(-o) be the solution of (2.9) for §;.

Step 3: Find ; = Xf from (2.2).

Step 4: Given 1), let the updated estimator of f’j and Bj be f’g-l)
and ,8] .

Iterate steps 2-4 until a convergence criterion is met.

In case of non-availability of good prior information to formulate
an informative prior, we can employ a non-informative prior for g;
such as uniform prior for each ;. The resulting posterior density is
then proportional to the likelihood function:

m(BIY =y) o< [] L(BIY:i = yi)
i=1
Hence, the maximum likelihood estimator of 3;, is the Bayesian esti-
mator under the 0-1 loss function. The Newton-Raphson method is
a suitable iterative method for solving this problem. Thus, we can
write the following algorithm:

. 5(0) _ 1~
Step 1: Let P, = ViYJ
For t =0,1,---,T we have,

Step 2: Zg.t) = ﬁj(.t) + Diag_l(NifDi(f)(l _ P-(?)))(Yj _ Ni15§-t))
Step 3:

Hlt+1) _ . () A(t) -1 . () (H)\\rz (1)
() — (X' Diag(N, B (1-PV))X) ! (X Diag(N; P (1-BP)) Z{1))

1 p(t+1)
. plt1) _ _esp(xifi )
Step 4¢P = Ly
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To provide an idea about the asymptotic behavior of the posterior
distribution, one notes that when N; — oo, each Mult(N;, P;) tends
to a multivariate normal distribution. Since the chosen prior is either
normal or a constant the asymptotic posterior will be a normal. This
fact has generally been proven for posterior distributions, Bernardo
and smith (1994).

In order to estimate B;, we employ the MCMC method. The
MCMC techniques generate samples from desired distributions by
embedding them as limiting distributions of a Markov chain. There
are many ways of categorizing MCMC methods. The simplest one
is to classify them in one of two groups: the first group is used in
estimation problems where the unknowns are typically parameters of
a model, which are assumed to have generated the observed data;
the second group is employed in more general scenarios where the
unknowns are not only model parameters, but the models as well.
In this paper, we use the MCMC method for both groups. On the
other hand, we construct Markov chains that have as their stationary
distribution the required posterior distribution of the parameters.
Details of the technicalities involved for MCMC can be found, for
example, in Rosenberg and Young(1999) and Ntzoufras et al.(1999).
One of the most popular MCMC methods, is the Gibbs sampler.
Here, we will estimate the marginal and the posterior distributions
of parameters using Gibbs sampling.

First, we estimate the marginal distribution. The marginal dis-
tribution can be computed from the n realizations of the Gibbs se-
quence. For 7 = 1,--- K, if we draw a large number of values
Bij,B2j, -+, Bn; from the density (2.4), then from (2.6) we shall have:

() = Brgy (81, IV =) = S H(BegBur)lY =)

(2.11)
The estimator (2.11) is unstable when the prior is diffuse or the like-
lihood is much more concentrated than the prior. In such cases the
simulation will be inefficient since most of the simulated values will
have low likelihood values and therefore the estimator will be dom-
inated by few large values. Moreover, the variance of the estima-
tor (2.11) will be large and the convergence of the estimator to its
true value will be very slow. An alternative way to approximate the
marginal distribution is the Laplace approximation. This method has
been used by Tierney and Kadane (1986), Erkanli(1994) and Kadane
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and Lazar(2004) for a model of dimension d. Its application provides

log (m(y)) ~ 0.5 d log(27) + 0.5log|H*| + log <L(ﬁ*|Y = y)ﬂ'(ﬁ"))
(2.12)

where * is the vector of posterior mode estimate of 8, (Lewis and
Raftery, 1997) and H* is the inverse of the Hessian matrix {0?h(8,y)/

9B 9B'} of h(B,y) = log (L(ﬂ|Y = y)w(ﬂ)) evaluated at B*.

Usually, the Bayes factor is used for models comparison. If we
apply the above approximation by expanding the numerator and de-
nominator of the Bayes factor, we would get an approximation of the
Bayes factor. For the models M; and M, one has

U LBHY =) [HA(B) |V 1\
BFw = For o () <2ﬁ> (2.13)
or
log(BF;ir) ~ log(An) + S(B7, Bir) (2.14)

where )\, is the standard likelihood ratio for the comparison of models
M; and My, and S(B},B;;) denotes the remainder term. When M;
is a submodel of M;, the remainder term S(B;,(;) is of o(1), (see
Gelfand and Dey (1994)).

To compare various models by the Bayes factor, we use the Bayes
factor approximation (2.13). Now, (2.13) along with its interpreta-
tions provided by Kass and Raftery (1995), is used to choose the
best model for an specific example, i.e., the pregnancy outcomes in
consanguineous marriages.

3 Analysis of Pregnancy Outcomes in Con-
sanguineous Marriages

In this Section, we reanalyze a subset of data regarding the preg-
nancy outcome in consanguineous marriages. Schull(1958) analyzed
these data using a frequentist approach and Ntzoufras et al.(1999)
reanalyzed it via Metropolis-Hastings algorithms. We will analyze
it by a Bayesian procedure outlined above. Data in Table 1, taken
from Ntzoufras et al.(1999), which initially appeared in Schull(1958),
show the pregnancy outcomes in various districts for different de-
grees of consanguinity. This sample, according to the degree of con-
sanguinity between the parents, included 6358 pregnant women in


http://jirss.irstat.ir/article-1-133-en.html

Downloaded from jirss.irstat.ir at 22:26 +0430 on Monday June 25th 2018

Bayesian Logistic Regression Model Choice via ... 17

three districts of Shizuka city, Japan. Here, we have two covariates,
R=Residence( coded as Rural district=-1, Intermediate district=0,
Urban district=1) and C=Consanguinity( coded as no relation=0,
2nd cousins=l1, 1% cousins=1.5, 1st cousins=2). The categories of
the response variable are Deaths( A=Abortion, S= Stillbirth, U=
death in less than 12 months, V= death in 13-60 months, and Su=
Survived). We consider a multinomial regression model (2.2) for the
pregnancy outcome, with district as a categorical covariate. The goal
is to find the effect of consanguinity on the pregnancy outcome while
accounting for the type of residence district. Here, we shall use the
Survived as the baseline category in the model (2.2) which is now
stipulated as

M; : Nij = lOQ( Pij > = Bjo + Bj1 R+ Bj2C + BjsR+ C (3.1)

i,5U

for j = A,S,U,V. Also we consider three submodels as alternatives
to M1:

My: i = Bjo+ BjiR+ B2C (3.2)

Ms:  mij=PBjo+BipR (3.3)

My:  mij = Bjo + Bj2C (3.4)
Now, we compute the log Bayes factors for these models by (2.14)
with respect to My for various categories of death, which are pre-
sented in Table 2. It can be observed that, Ms, is the best one for
data under study. For this model, we present the results of Bayesian
Markov Chain Monte Carlo analysis. The procedure employed here
follows the method of Bayesian logistics regression analysis. From
(2.9) and using exp(fi; — Mik) = (§:i), i #k=1,---,K, we have
obtained the estimates of the coefficients in equation (3.2) and confi-
dence region , respectively. A confidence region is the highest poste-
rior density (HPD) region, that is,

B ={3in(ely) > |

where B has a posterior probability (1 — «) of containing 8. These
values are shown in Table 3. Having obtained Bj = (ng, le, ng, ng,),
we can estimate 7j;;, from (2.2). Next, we compute various log odds
relative to various levels of covariates from (2.2). These log odds are
given in Tables 4-7. Finally, Table 8 provides the estimated odds
ratios with respect to the baseline category, "no relation”. We see
that Consanguineous marriages and Residence independently have
significant effect on the pregnancy outcome for each cell.
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Table 1. Pregnancy Outcomes in Consanguinous Marriages(Data
from Ntzoufras et al.(1999))

Resid. Consang. |Abor|Still|< 12Mon.|13 — 60Mon.|Survived
no relation | 27 | 15 57 25 834
Rural | 2nd cousins | 1 1 13 6 139
district 1% cousins 3 2 7 2 51
1st cousins | 12 2 18 11 250
no relation | 67 | 20 128 76 2379
Inter. | 2nd cousins | 11 1 25 10 291
district 1% cousins | 11 4 14 12 196
1st cousins | 23 6 40 27 558
no relation 7 5 21 14 496
Urban | 2nd cousins | 4 0 1 2 63
district 1% cousins 3 0 5 2 100
1st cousins 7 1 15 11 226

Table 2. Estimates of the log Bayes factor approximations from
(2.13).

outcome. M, | My | Ms | My

Abortion 2111 1 |.040 | .010

Stillbirth | .453 | 1 |.384 | .341

1

1

<12Mon. | .329 400 | 412
13 —60Mon. | .112 .165 | .185

For this problem, the design matrix is

1 -1 M
X=(1 0 N
11 P
with
1 0 0
1 1 -1
L= [ M=[15 15 |
1 2 2
0 0 0 0
1 0 1 -1
N=l 150 P 1.5 1.5
2 0 2 2
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Table 3. The Bayesian MCMC estimated parameters of the log

odds model and their confidence region(baseline
category="survived”)

‘ Outcome ‘ Source ‘ coefficient ‘ conf. region(HPD) ‘
Cons. | -3.037 (-4.124 -2.143)
Abortion R -0.438 (-0.534 -0.343)
C 0.394 (0.154 0.432)
R*C | -0.092 (-0.524 0.214)
Cons. | -4.828 (-5.765 -3.789)
Stillbirth R -0.592 (-0.625 -4.987)
C 0.81 (0.787 0.943)
R*C 0.001 (-0.001 0.002)
Cons. | -2.631 (-3.546 -1.943)
< 12Months | R 0.08 (0.076 0.091)
C -0.15 (0.173 -0.125)
R*C -0.197 (-0.256 0.129)
Cons. -3.124 (-4.765 2.87)
13-60 months R -0.101 (-0.241 -0.043)
C -0.384 (-0.424 -0.245)
R*C | -0.061 (-0.283 0.098)

Table 4. The Bayesian MCMC log odds of ”abortion” to

?survived”
Residence consanguinity
no relation 2nd cousins 1% cousins 1st cousins
Rural —3.981 —3.803 —3.333 —-3.521
Intermediate —3.574 —3.398 —-2.921 —-3.132
Urban —3.551 —3.351 —2.897 —3.097

Table 5. The BMCMC log odds of "stillbirth” to ”survived”

Residence consanguinity
no relation 2nd cousins 1% cousins 1st cousins
Rural —5.021 —6.102 —4.466 —5.176
Intermediate —4.711 —5.667 —4.089 —4.854
Urban —4.066 —5.144 —3.535 —4.251
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Table 6. The BMCMC log odds of ”< 12 months ” to ”survived”

Residence consanguinity
no relation 2nd cousins 1% cousins 1st cousins
Rural —3.185 —2.854 —2.838 —2.945
Intermediate —2.898 —2.564 —2.552 —2.651
Urban —2.711 —2.369 —2.361 —2.452

Table 7. The BMCMC log odds of ”13-60

months” to ”survived”

Residence consanguinity
no relation 2nd cousins 1% cousins 1st cousins
Rural —3.596 —3.433 —3.181 —3.174
Intermediate —3.422 —3.261 —-3.125 —3.161
Urban —3.617 —3.222 —-3.119 —3.080

Table 8. The Bayesian MCMC estimated log odds with respect to
“no relation” for each district

Consan. Resid. Rural | Interm. | Urban
Abortion 2nd cousins | .920 .840 .810
1.5st cousins | .523 .522 .518

1st cousins .633 .648 .635

Stillbirth 2nd cousins .339 .384 341
1.5st cousins | 1.748 1.860 1.715

1st cousins .860 911 .833

< 12Mon. 2nd cousins | 1.394 1.400 1.412
1.5st cousins | 1.408 1.415 1.423

1st cousins | 1.254 1.277 1.295

13— 60Mon. | 2nd cousins | 1.181 1.165 1.185
1.5st cousins | 1.511 1.500 1.522

1st cousins | 1.528 1.545 1.564

Now, based on developed theory, the models in Table 3 are stud-
ied numerically. Considering the stillbirth case as an example, the
obtained model will be as follows:

! (Ps
og| =
gP

Su

) — 4828 — 0.592R + 0.81C
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This model is considered in two different cases:

Case 1: Keeping consanguinity fixed at one of its levels, we obtained
the odds for various level of R. For example, the odds of stillbirth in
rural to urban district is:

exp(—4.828 — 0.592(—1) + 0.81C)

OR(S, SulC) = = 1898 —0.592(1) 1 0.81C)

= 3.267

which shows the rural residents have 3.267 times more chances of
stillbirth than urban residents, given they have the same degree of
consanguinity.

Case 2: Keeping the type of residence fixed ,one can compute the
odds of stillbirth for first cousins as compared to no relation:

exp(—4.828 — 0.592R + 0.81(1))

OR(S, Su|R) = exp(—4.828 — 0.592R + 0.81(0))

= 2.247

this number shows that among the residents of a given place, the first
cousin-parents have 2.247 times more probability to have stillbirth
compared to no-related parents. In general accounting for the effect
of residential place, one can conclude that the consanguinity is an
effective factor in child mortality.

4 A Small Scale Simulation

As suggested by a referee,we perform a small scale simulation to eval-
uate the performance of our proposed algorithm. In this simulation
we choose

0.2 03 05
04 0.2 04
b= 0.7 0.1 0.2
0.3 03 04

To generate the data according to the multinomial distribution with
cell probabilities given in various rows of P, we sampled 40,50,50 and
50 observations from U(0, 1) and assigned them to rows of Y.

8 17 15
19 14 17
Y= 36 5 9

17 16 17
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suppose there two binary covariates. The proposal model contains
main effects and the interaction term. Thus according to(2.2), the
design matrix is

e

Il
e
= =0 O
—_ O = O
—_ o O O

Applying our algorithm leading to (2.10), after 10 iterations, we ob-
tained

—0.6007739
~ | 1.9467943
Bo= 07089874
—2.0550079

0.1212609
~ | —0.6679046
Br=1 _0.3004131
0.7971163

Even for this small number of iterations, our algorithm has lead to
quite acceptable results for reconstructing P as P?

0.2098 0.3822 0.4080
0.3861 0.2871 0.3268
0.7221 0.1089 0.1691
0.3465 0.3267 0.3268

PP =

Using P?, we have computed the cell expected values, which are used
for testing the goodness of fit of our model.

8.395 15.288 16.321
19.307 14.355 16.340
36.139 5.445  8.45

17.327 16.337 16.340

EP =

x? = 0.89272. As a final observation, one can see the proposed algo-
rithm performs well in estimating P and the expected cell counts.
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