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Abstract. In this article, we use a measure of expected true evidence
for determine the required sample size in type-II censored experiments
for obtaining statistical evidence in favor of one hypothesis about the
exponential mean against another.
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1 Introduction

In a life-testing experiment, n items are placed on the test. The failure
times observed from such a life-test, X(1) ≤ ... ≤ X(n), are the order
statistics from a random sample of size n from a parametric distribution
with probability density function (pdf) f(x; θ) and cumulative distribu-
tion function (cdf) F (x; θ), where θε�. However, one may not continue
the experiment until the last failure since the waiting time for the final
failure is unbounded (Muenz and Green, 1977). For this reason, in some
cases, the life-testing experiment is usually terminated when the rth fail-
ure X(r) is observed, which is referred to as a type-II censoring scheme.
This censoring model saves time and cost, but some information about

A. Habibi Rad (�)(ahabibi@um.ac.ir), M. Emadi(emadi@um.ac.ir),
M. Arashi(m arashi stat@yahoo.com), N. R. Arghami(arghami nr@yahoo.com)
Received: August 23, 2010



2 Habibi Rad et al.

the underlying parameters is lost in the censored data (Zheng and Park,
2004). So, the inference based on Type-II censored data will naturally
be less efficient than that based on the complete data of n observations.
More than the above specified scheme, there exist some other different
sorts of censoring schemes such as random censoring, hybrid censoring
(Epstein, 1954) and progressively Type-II censoring (Balakrishnan and
Aggarwala, 2000).

Let X(1), · · · ,X(n) denote the ordered values of the random sam-
ple X1, · · · ,Xn (failure times). In Type-II plan, observations terminate
after the rth failure occurs. So we only observe the r smallest observa-
tions in a random sample of n items. The likelihood function based on
X(1), · · · ,X(r) is given by (Arnold et al. 1992)

Lcen. =
n!

(n − r)!

r∏
i=1

f
(
x(i)

) [
1 − F (x(r))

]n−r
.

In Type-II censoring, the number of failure times r is fixed whereas the
endpoint X(r) is a random observation.

An important role of the statistical analysis in science is interpret-
ing observed data as evidence, that is assessing “What do the data
say?”. Although standard statistical methods (hypothesis testing, es-
timation, confidence intervals) are routinely used for this purpose, the
theory behind those methods contains no defined concept of evidence
and no answer to the basic question ”when is it correct to say that a
given body of data represent evidence supporting one statistical hypoth-
esis against another?” (Royall, 1997, 2000). Emadi and Arghami (2003)
and Emadi et al. (2007) have studied some measures of support of sta-
tistical hypotheses. Doostparast and Emadi (2006), Arashi and Emadi
(2008) have studied some measures of support of statistical hypotheses
based on independent and identically distribution (iid) observations and
record statistics.

Habibi et al. (2006) generalized the concept of “expected true sta-
tistical evidence” based on the law of likelihood. So, when the objective
of the study is to produce statistical evidence for one hypothesis against
another, it is desirable to have a measure of performance of the experi-
ments E1 and E2. This can be defined as

Sϕ(E) = Eθ1ϕ(λ) + Eθ2ϕ(1/λ),

where ϕ(.) is a non-decreasing function and

λ =
f1(X)
f2(X)

,
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where f1(.) and f2(.) are densities of X under H1 and H2, respectively,
and when X = x, λ is the likelihood ratio.
By definition (Royall, 1997) when H1 is true and we observe λ > K
or when H2 is true and we observe λ < 1/K, we have strong true evi-
dence under H1 or H2, respectively, where K is arbitrary and is usually
between 8 and 32. Now if we take

ϕ(t) =

{
1, t ≥ K
0, t < K,

Sϕ(E) is the sum of the probabilities of observing strong true evidence
under H1 and H2.

If ϕ(t) = t/(1 + t), then Sϕ(E) = abc(E) = the area between the
cumulative distribution function (cdf) curves (under H1 and H2) of η =
λ/(1 + λ) (Emadi and Arghami, 2003).

If ϕ(t) = log(t), then

Sϕ(E) = Eθ1

[
log

f(X; θ1)
f(X; θ2)

]
+ Eθ2

[
log

f(X; θ2)
f(X; θ1)

]
= D(fθ1, fθ2) + D(fθ2 , fθ1)
= J(fθ1 , fθ2),

where D(pθ1 , pθ2) and J(pθ1 , pθ2) are, respectively, asymmetric and sym-
metric Kullback-Leibler (K-L) distance (information) of pθ1 and pθ2 ,
(Kullback, 1959).
Also, other measures like as Fisher information (Park, 1996, Zheng and
Gastwirth, 2000, Zheng and Gastwirth, 2001, and Zheng and Park, 2005)
are used for this reason.

If the experimenter’s object is obtaining statistical evidence about
some competing hypotheses, then she/he would like to know the poten-
tial true evidence in the available data.

It turns out that “per failure expected true evidence” is a decreas-
ing function of r, the number of failure times (Fig. 3), and thus the
optimum value of r is one. The purpose of this paper, however, is to
explain the process of choosing the value of r, when we are content with
a percentage of the information contained in a non-censored sample.

The outline of this paper is as follows. In Section 2, we specify the
model and the likelihood functions based on type-II censored data and
iid observations. Section 3 contains some numerical studies and conclu-
sions appear in Section 4. Finally the Maple program of the simulation
study in section 3 is included in the Appendix.
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2 Measuring Statistical Evidence

The model under study is the exponential model with the following
density function

fθ(x) =
1
θ

exp
(
−x

θ

)
, x > 0, θ > 0. (1)

Then, the likelihood functions associated with iid observations and Type-
II censored data are, respectively, given by

Liid(θ) =
(

1
θ

)n

exp

{
−1

θ

n∑
i=1

xi

}
, (2)

and

Lcen.(θ) =
n!

(n − r)!

(
1
θ

)r

exp

{
−1

θ

[
r∑

i=1

x(i) + (n − r)x(r)

]}
, (3)

where r is the number of failures.
Statistical evidence is represented and interpreted by the law of like-

lihood and its strength is measured by the likelihood ratio. The law
of likelihood explains that the strength of statistical evidence for one
hypothesis over another is measured by their likelihood ratio, (Blume,
2002)

Let random vector X have densities f1(x) and f2(x) (both com-
pletely known) under H1 and H2 respectively. We are going to use the
one-to-one function η = λ/(1 + λ) of λ as a measure of statistical evi-
dence in favor of H1 against H2. Note that the transformed measure η
is a strictly increasing and continuous function in λ and takes values in
the unit interval (0, 1).

As a measure of expected true statistical evidence, we use abc(η),
defined by Emadi and Arghami (2003), as

abc(η) = E1(η) − E2(η), (4)

where Ei(η) is the expected value of η under Hi, i = 1, 2.

3 Optimal Stopping Point

In this section we find the value r (stopping point) in Type-II censored
data which is optimum in the sense that it maximizes expected true
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evidence per observed failure.
Consider the following hypotheses.{

H1 : θ = θ1

H2 : θ = ρ.θ1
, (5)

where ρ =∈ (0, 1) is known. Since H1 and H2 can be interchanged
without loss of generality, we can not assume ρ > 1.

Theorem 3.1. For the hypotheses in (5), γ depends only on ρ and
not on θ1, where

γ =
abccen.(η)
abciid(η)

, (6)

where abccen.(η) and abciid(η) are respectively expected true evidence pro-
vided by censored data and the complete sample.

Proof. The likelihood for the hypotheses in (5) is

λ =
fθ1(x)
fρ.θ1(x)

.

Based on equations (1)-(3) we have

λ =
(

ρ.θ1

θ1

)r

exp
[(

1
ρ.θ1

− 1
θ1

)
Q

]
, Q =

r∑
i=1

x(i) + (n − r)x(r).

Now 2Q
θ ∼ χ2

2r, where χ2
2r is the central chi-square distribution with

2r degrees of freedom (see Cohen, 1991, 1995). By using (4) we have

abc(η)cen. = E

⎧⎨
⎩

ρr exp
[

1
2

(
1
ρ − 1

)
χ2

2r

]
1 + ρr exp

[
1
2

(
1
ρ − 1

)
χ2

2r

]
⎫⎬
⎭

−E

⎧⎨
⎩

ρr exp
[

1
2 (1 − ρ) χ2

2r

]
1 + ρr exp

[
1
2 (1 − ρ) χ2

2r

]
⎫⎬
⎭ . (7)

For the special case of r = n (complete sample) we denote abc(η)cen. by
abc(η)iid.

As it can be seen, abc(η)cen. and abc(η)iid are independent of θ1, and
thus so is γ. Therefore γ depends only on ρ, r and n.
Since no explicit expression for γ exists we use the approximations of
the next section.
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3.1 Taylor Expansion

As one way to evaluate γ approximately, we use Taylor Expansion
method and the following lemma (Lehmann and Casella, 1998).

Lemma 3.1. Let X1, · · · ,Xn be iid with E(X1) = μ, V ar(X1) = σ2

and finite forth moments. Suppose h is a function of a real variable
whose first four derivatives h′(t), h′′(t), h′′′(t), and h(iv)(t) exist for
all t ∈ I where I is an interval with P (X1 ∈ I) = 1 , and such that
|h(iv)(X)| ≤ M for all X ∈ I, for some M < ∞, then

E(h(X̄)) = h(μ) +
σ2

2n
h′′(μ) + Rn,

where the reminder Rn is O
(

1
n2

)
, that is there exist no and A < ∞ such

that Rn(μ) < A
n2 for n > no and for all μ.

To utilize the above lemma we define

h(X) =
ρkebX

1 + ρkebX
, (8)

where, X ∼ χ2
2r, k ∈ {r, n}, b ∈ {1

2

(
1
ρ − 1

)
, 1

2(1 − ρ)}. It is easy to see
that

h(iv)(2r) <
b4

16[1 + ρrerb]5
× (ρrerb − 11ρ2re2rb + 11ρ3re3rb − ρ4re4rb).

By using triangle inequality and Taylor Expansion of erb, it is easy to
show that |h(iv)(2r)| is bounded.
So we can apply Lemma 3.1 to compute abc(η)cen., abc(η)iid and γ, up
to the term of O

(
1
n2

)
.

We have computed γ, for the value ρ = 0.4, n ∈ {10, 20, · · · , 50} and
r
n ∈ {0.1, 0.2, · · · , 1} by using Lemma 3.1. The results are shown Figure
2.

3.2 Simulation

In this part we conducted a simulation study to compute γ and compare
the results with the results of the Taylor expansion.

In the Simulation procedure, we derived n ∈ {10, · · · , 50} random
sample from the central chi-square distribution with 2r and 2n degrees
of freedom separately, and computed the expression given by (7) for
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ρ n r
n = 0.1 0.2 0.3 0.4 0.5

0.4 10 0.202523 0.369415 0.508015 0.613638 0.704896
20 0.305585 0.512608 0.652619 0.757141 0.837543
30 0.399047 0.624931 0.75342 0.845239 0.898941
40 0.482428 0.701458 0.830364 0.896938 0.940164
50 0.544538 0.776487 0.883131 0.935503 0.966505

0.6 10 0.137523 0.265294 0.386540 0.492638 0.594627
20 0.175876 0.325705 0.445917 0.557875 0.658970
30 0.211849 0.375825 0.504908 0.616494 0.703653
40 0.241618 0.419826 0.553572 0.666040 0.743990
50 0.275646 0.462601 0.601401 0.705270 0.785825

0.8 10 0.109640 0.2130640 0.322066 0.426016 0.523189
20 0.118806 0.234408 0.340034 0.447215 0.547017
30 0.126604 0.245715 0.354872 0.462078 0.565139
40 0.135231 0.258125 0.374564 0.477805 0.581519
50 0.142545 0.269641 0.387160 0.496448 0.598006

ρ n r
n = 0.6 0.7 0.8 0.9

0.4 10 0.783827 0.85137 0.913219 0.954743
20 0.883949 0.925347 0.956161 0.983479
30 0.937293 0.962504 0.978512 0.992087
40 0.967337 0.982124 0.991386 0.997352
50 0.981916 0.991673 0.996402 0.998255

0.6 10 0.686114 0.771759 0.845768 0.927873
20 0.741411 0.815743 0.896107 0.943600
30 0.786855 0.853672 0.902141 0.958327
40 0.822868 0.887156 0.928710 0.965933
50 0.846718 0.906286 0.939001 0.974190

0.8 10 0.625049 0.724149 0.817888 0.917647
20 0.642239 0.738213 0.826884 0.910137
30 0.657518 0.752686 0.83903 0.919547
40 0.672988 0.760869 0.852922 0.927635
50 0.689780 0.778254 0.849786 0.936027

Table 1: Values of γ
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Figure 1: γ computed by simulation for n=10, · · · ,50 and ρ = 0.4.

different ratios r
n , when ρ = 0.4. The whole process was repeated 104

times. Averaging all, the support measure γ was evaluated through
equation (6). The obtained results are shown in Table 1 and Figure 1.

Figure 3, by the way, shows that the optimum value of r that maxi-
mizes “per failure expected true evidence” is one. This means that it is
better, in terms of statistical evidence generated, to set up n experiment
each containing n items and in each observe only the first failure.

3.2.1 How to use Table 1 and figure 1

Suppose we are satisfied with (100)γ0 percent of the expected true evi-
dence of the complete sample, Table 1 and Figure 1 can help us find the
ratio r

n that would result in the desired percentage. For example if we
choose γ0 = 0.75, then the horizontal line in Figure 1 would tell us the
required ratio r

n for each n. For values of ρ other than those are given
in Table 1, one can use the Maple12 program given in the Appendix.
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Figure 2: γ computed from Taylor expansion for n=10, · · · ,50
and ρ = 0.4.

Figure 3: Optimum value of r for n=10, · · · ,50 and ρ = 0.4.
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4 Conclusions

The problem of deciding about the stopping point (r) in Type-II cen-
sored sampling was considered and found the optimum in the sense that
it maximize expected true evidence per observed failure.

For further research, it would be of much interest that one can include
the cost factor in the model and propose a method for striking a balance
between cost and accuracy.
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Appendix

(Maple Program)
with(Statistics):
randomize();
g:=fopen(”D:\ \ · · · \ \data1.txt”,APPEND)
Y:=RandomVariable(Chisquare(2·n));
ρ := 0.8;
n:=50;
fprintf(g,”%g%g \n”,n,ρ);
for r from n

10 by n
10 to n do

λ:=unapply
(
ρke

bq
2 , k, b, q

)
;

X:=RandomVariable(Chisquare(2·r));
ηc1:=0;
ηc2:=0;
ηi1:=0;
ηi2:=0;
nn:=10000;
for i to nn do
x:=Sample(X,1);
y:=Sample(Y,1);

ηi1 := ηi1 +
λ
(
n, 1

ρ
−1,y1

)
1+λ

(
n, 1

ρ
−1,y1

) ;

ηi2 := ηi2 + λ(n,1−ρ,y1)
1+λ(n,1−ρ,y1)

;

ηc1 := ηc1 +
λ
(
r, 1

ρ
−1,x1

)
1+λ

(
r, 1

ρ
−1,x1

) ;

ηc2 := ηc2 + λ(r,1−ρ,x1)
1+λ(r,1−ρ,x1)

;
end do;

γ :=
ηc1
nn

− ηc2
nn

ηi1
nn

− ηi2
nn

fprintf(g,”%g,”,γ);
end do;
fclose(g)


