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Abstract. We investigate the distribution, mean value, variance
and some limiting properties of an urn model of white and red balls
under random multiple drawing (either with or without replacement)
when the number of white and red balls added follows a schedule that
depends on the number of white balls chosen in each drawing.

1 Introduction

The urn model is an abstract form of various population models,
especially in biology. The basic distribution associated with the cor-
responding probabilistic process is the well-known Pólya distribution.
A Pólya distribution can be generated by repetition of drawings from
an urn. The urn starts out with τ0 balls, of which ω0 are white and
the remaining τ0 − ω0 are red. A drawing is affected by selecting a
ball at random from the urn, noting its color, and replacing it with c
balls of the same color. For further details see, for example, Johnson,
Kotz and Kemp (1992).
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166 Johnson et al.

Table 1: The Replacement Scheme S1.

Number of white balls chosen 0 1 2 . . . j . . . k
Number of white balls added 1 0 −1 . . . −(j − 1) . . . −(k − 1)
Number of red balls added 0 1 2 . . . j . . . k

There have been many modifications of this process since the orig-
inal paper of Pólya (1930), see, for example, Kotz and Balakrishnan
(1997) for a recent survey. The basic models, and several modifica-
tions therein, serve as convenient tools for the probabilistic analysis
of algorithms. For example, they model well random trees, which un-
derly many sorting algorithms. Mahmoud (2003) surveys numerous
applications in this area.

In the present paper we describe a modified version that has so far
received attention in the literature only in the recent work of Tsukiji
and Mahmoud (2001). Graph-theoretic motivation and applications
in informatics for the generalization described below are lucidly dis-
cussed in Tsukiji and Mahmoud (2001), but our generalization is not
restricted, as in their work, to the case of drawing only two balls
in each operation. Specifically, we consider selecting k balls in each
draw, observing the number Wn of white balls chosen, replacing them
in the urn, and then adding or removing balls from the urn according
to the scheme presented in Table 1.

This replacement scheme can be summarized as

Addition rule: Replace the balls removed from the urn in the course
of random sampling by k red balls and one white ball .

In the scheme of Table 1 the total number of balls in the urn
increases by one with each draw, hence the designation S1. We shall
briefly discuss generalization to schemes adding a total of c ≥ 1 balls,
which are to be called Sc. In the S1 scheme, the number of balls in
the urn after n draws is

τn = τ0 + n. (1)

In Section 2 we establish a formula for the expected value of the
number ωn of white balls in the urn at the conclusion of the nth draw.
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Urns with Multiple Drawings 167

In that section it is shown that the same results apply whether the
sampling is with or without replacement. In later sections, on vari-
ance of ωn and a recurrence formula for its probability distribution,
we do need to make allowance for these differences in the sampling
procedures. Also, it must be admitted that the without-replacement
model is, in the scheme S1, only a possibly useful approximation to
the with-replacement model. This is because it is possible in sam-
pling with replacement to observe a white ball more times than there
are white balls in the urn, and the system can then require more
white balls to be removed from the urn than are contained therein.
The scheme would then be “untenable,” as it is often called in the
literature. See Balaji and Mahmoud (2003) for a characterization of
tenability in the usual case of single drawing.

A scheme based on sampling with replacement can be immunized
against untenability, if there are no circumstances under which the
number of balls (of either color) can be reduced. Such a system could
be created by increasing the number of white balls to be added in the
scheme S1 to c, where c ≥ k.

2 Expected number of white balls

Let πn := ωn/τn be the proportion of white balls in the urn after n
draws. Conditioned on ωn−1, the number Wn of white balls in the
sample is binomial(k, πn−1) in the case of sampling with replacement,
and is hypergeometric(k, ωn−1, τn−1) in the case of sampling without
replacement. These two distributions have the same mean kπn (but
not the same variance). The expected number of white balls chosen
in the sample in the nth draw is

E[Wn |ωn−1] = k
ωn−1

τn−1
= kπn−1.

This conditional expectation holds whether the sampling is with or
without replacement .

Recall that ω0, τ0, and π0 are deterministic parameters, and so is
τn (in view of (1)). The number of white balls after the nth draw is
equal to their number after n−1 draws plus the number of balls added
(possibly negative) after the nth drawing. Therefore, the number of
white balls in the urn follows the stochastic recurrence

ωn = ωn−1 + 1−Wn.
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168 Johnson et al.

From this recurrence, it follows that the conditional expectation (given
ωn−1) is

E[ωn |ωn−1] = ωn−1 + 1−E[Wn |ωn−1]

= 1 +
(
1− k

τn−1

)
ωn−1, (2)

whether the sampling is with or without replacement. Taking expec-
tations again we find

E[ωn] = 1 +
(
1− k

τn−1

)
E[ωn−1].

We derive next an informative rearrangement of this equation in
terms of E′j = E[πj − (k + 1)−1], the expected distance between
the proportion of white balls after j draws and what will turn out to
be its limiting value. The last equation can be rewritten as

τnE[πn] = 1 + (τn−1 − k)E[πn−1].

Utilizing the fact that the difference τn − τn−1 is 1 we write

τnE′n = (τn−1 − k)E′n−1 +
1

k + 1
(τn−1 − τn + 1)

= (τn−1 − k)E′n−1.

Equivalently,
τnE′n = τn−k−1E

′
n−1.

Unwinding this recurrence, under the initial condition E′0 = π0−(k+
1)−1, we obtain a solution to the recurrence. This solution is most
conveniently written in terms of the descending factorial

a(r) = a(a− 1) . . . (a− r + 1).

One obtains

E
[
πn −

1
k + 1

]
=

(τ0 + n− k − 1)(n)

(τ0 + n)(n)
E
[
π0 −

1
k + 1

]
=

τ
(k+1)
0

(τ0 + n)(k+1)

(
π0 −

1
k + 1

)
. (3)

Clearly τ
(k+1)
0 /(τ0 + n)(k+1) = O(n−(k+1)) → 0, as n →∞. Hence,
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Urns with Multiple Drawings 169

(i) ∣∣∣E[πn]− 1
k + 1

∣∣∣ ≤ ∣∣∣E[πn−1 −
1

k + 1

]∣∣∣,
with equality holding if π0 = 1

k+1 ;

(ii) limn→∞E[πn] = 1
k+1 ;

(iii) E[πn]
>
=
< 1

k+1 for all n according as π0

>
=
< 1

k+1 .

The result (ii) is, of course, to be expected in view of the alternative
description via the addition rule, where (k + 1)−1 is the proportion
of white balls added. Since E[πn] = τ−1

n E[ωn], equation (3) also
provides an exact formula for the average number of white balls after
n draws. This takes a simple asymptotic form, namely

E[ωn] =
n + τ0

k + 1
+ O

( 1
nk+1

)
.

For the immune system Sc, guaranteed to be tenable, we have
τn = τ0 + cn, and

E[ωn] = c +
(
1− k

τn−1

)
E[ωn−1],

leading, after some manipulation, to

E
[
πn −

c

k + c

]
=

τn−k−1

τn

(
E[πn−1]−

c

k + c

)
, (4)

where τn−k−1 = τ0 + c(n− k − 1). Finally,

(i) ∣∣∣E[πn]− c

k + c

∣∣∣ ≤ ∣∣∣π0 −
c

k + c

∣∣∣,
with equality holding only when π0 = c

k+c ;

(ii) limn→∞E[πn] = c
k+c ;

(iii) E[πn]
>
=
< c

k+c for all n according as π0

>
=
< c

k+c .

Again, the result (ii) is to be expected, since Sc is equivalent to replac-
ing the chosen balls by c white and k red balls—namely a proportion
of c/(k + c) white balls. Curiously, if we take c = k2, we obtain
limn→∞E[πn] = 1 − 1

k+1 , thus reversing the limiting proportions of
white and red balls as given in the case c = 1.
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170 Johnson et al.

3 Variance of the number of white balls

As was already mentioned, the results for the mean hold whether
the sampling is with or without replacement. This is because even
though the conditional sampling distributions are not the same, they
possess the same expected value. However, to construct a formula
for the variance of ωn, we need the conditional variance of Wn−1

(given ωn−1). These conditional variances are not the same for both
sampling procedures. Indeed, these conditional variances are

kπn−1(1− πn−1) for sampling with replacement, (5)

and

kπn−1(1− πn−1)
τn−1 − k

τn−1 − 1
for sampling without replacement.

(6)
We employ the standard conditional variance formula

Var[ωn] = E
[
Var[ωn |ωn−1]

]
+ Var

[
E[ωn |ωn−1]

]
.

Now
Var[ωn |ωn−1] = kθnπn−1(1− πn−1),

where, by the formulas (5) and (6), we have

θn =


1, for sampling with replacement;

τn−1−k
τn−1−1 , for sampling without replacement,

and by (2)

Var
[
E[ωn |ωn−1]

]
= Var

[
1 +

(
1− k

τn−1

)
ωn−1

]
=

(
1− k

τn−1

)2
Var[ωn−1].

So,

Var[ωn] = kθnE[πn−1(1− πn−1)] +
(
1− k

τn−1

)2
Var[ωn−1],

or equivalently,

Var[πn] =
kθn

τ2
n

E[πn−1(1− πn−1)] +
(τn−1 − k)2

τ2
n

Var[πn−1]
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Urns with Multiple Drawings 171

=
kθn

τ2
n

E[πn−1](1−E[πn−1])

+
(τn−1 − k)2 − kθn

τ2
n

Var[πn−1].

The first term in the last equation is O(n−2). Consequently,

Var[πn] = O
( 1
n

)
.

The orders of magnitude of the mean and variance give us a concen-
tration law:

P
(
|πn −E[πn]| ≥ ε

)
≤ Var[πn]

ε2
= O

( 1
n

)
,

for any fixed ε > 0. In other words,

πn →
1

k + 1
, in probability.

4 A recursion formula for the distribution

In this section we assume tenability. For convenience we use the
abbreviation

Pn(ω) := P (ωn = ω).

The event {ωn = ω} can arise in the following mutually exclusive
ways:

{ωn−1 = ω + j − 1} ∩ {Wn = j}, for j = 0, 1, . . . , k.

Hence,

Pn(ω) =
k∑

j=0

Pn−1(ω + j − 1) P (Wn = j |ωn−1 = ω + j − 1)

=
k∑

j=0

aj(ω)Pn−1(ω + j − 1), (7)

where in the case of sampling with replacement

aj(ω) =

(
k

j

)( ω + j − 1
τ0 + n− 1

)(
1− ω + j − 1

τ0 + n− 1

)
,
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172 Johnson et al.

while in the case of sampling without replacement

aj(ω) =

(
k

j

)
(ω + j − 1)(j)(τ0 + n− ω − j)(k−j)

(τ0 + n− 1)(k)
.

The recurrence is to be solved under the boundary condition

P0(ω) =
{

1, for ω = ω0;
0, oherwise.

Note that for the scheme S1, if ωn−1 = 0, then necessarily ωn = 1
(for the system Sc, ωn = c). Explicit values of Pn(ω) can be obtained
from (7), in specific cases, by straightforward numerical calculation.

5 Multivariate extensions

A direct multivariate extension of the urn model described in this
paper arises when there are balls of several (say p) different colors
originally in the urn and the replacement set also contains balls of
these (and possibly other) colors. Each drawing is affected by taking
a random sample of size k from the urn, and adding a replacement set
containing γi balls of color i, for i = 1, . . . , p. The replacement set is
of course of total size γ :=

∑p
i=1 γi that is no less than k. A modified

form of equation (4) and the three consequent properties (i)–(iii) will
apply to any particular color (though now τn = τ0 + (γ − k)n). An
interesting track to pursue is determining the joint distribution of the
number of balls of different colors.

Another possibility envisions a series (cascade) of urns in which
the selected random sample from an urn is discarded in the next
urn in the series, with each urn having its own replacement set. (A
“circular” cascade can be constructed by having the random sample
from the last urn in the series be deposited in the first.) So, other
variants of the model presented are possible, but this is for another
time!
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