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Abstract. Medical researchers may be interested in disease pro-
cesses that are not directly observable. Imperfect diagnostic tests
may be used repeatedly to monitor the condition of a patient in the
absence of a gold standard. We consider parameter identifiability
and estimability in a Markov model for alternating binary longitudi-
nal responses that may be misclassified. Exactly two distinct sets of
parameter values are shown to generate the distribution for the data
in a common situation and we propose a restriction to distinguishes
the two. Even with the restriction, parameters may not be estimable.
Issues of sampling and correct model specification are discussed.

1 Introduction

Diagnostic tests are often used repeatedly to monitor the condition
of a patient. However, a diagnostic test may not perfectly reflect
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the patient’s true condition. This situation commonly arises in clini-
cal medicine where gold standards may be invasive, expensive and /or
dangerous. For example, individuals may be repeatedly infected with
a parasite and the only way to detect the parasite may be through
an imperfect assay. When such a test is not definitive, researchers
and clinicians cannot be certain of the start or end of infection. This
uncertainty can affect the discovery of the source of infection and the
therapy delivered to the patient. Models need to incorporate this un-
certainty and the identifiability and estimability of model parameters
are important considerations for valid estimation and inference.

This paper focuses on the situation where a subject may alternate
between two states (eg. uninfected /infected, remitting/relapsing) and
each response collected over time may either be correctly classified
or misclassified. The two states of the true process, labelled 0 and 1,
are not directly observable. Instead, data are collected on an observ-
able process thought to be related to the true unobservable process.
The observable process may misclassify the state of the true process.
We assume misclassification can occur in two ways: an observed 0
may truly be a 1 or an observed 1 may truly be a 0. Misclassi-
fication of longitudinal data arising from an alternating binary re-
sponse has been addressed in the literature by Nagelkerke, Chunge
and Kinoti (1990) (hereafter NCK), Cook, Ng and Meade (2000) and
Rosychuk and Thompson (2003). Only one type of misclassification
is allowed in NCK, where underlying true states are assumed to fol-
low a Markov model with constant infection and cure rates. Cook,
Ng and Meade (2000) proposed hidden Markov models for several
diagnostic tests applied repeatedly over time which are discrete-time
first order, second order and time-nonhomogeneous Markov. Rosy-
chuk and Thompson (2003) considered the impact of misclassification
on maximum likelihood transition probability estimates.

Problems in measurement error models and hidden Markov mod-
els include parameter nonidentifiability. Unknown parameters in a
model are nonidentifiable if more than one set of parameter values
gives the same distribution function for the observation. In measure-
ment error problems, normal distributions are generally assumed for
all continuous explanatory variables, leading to nonidentifiability of
the regression parameters (Bekker, 1986). In practice, the problem
of nonidentifiability is solved by incorporating supplementary data
such as validation studies as well as by adding constraints to the pa-
rameters (see for example Corroll and Stefanski, 1990). In hidden
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Markov models, since only a function of the state in a finite state
Markov chain is observed, parameter identifiability is a basic prob-
lem (Ito, Amari and Kobayashi, 1992) and states may be labeled to
correspond with increasing parameter estimates in order to ensure
parameter identifiability. The model proposed by NCK is a special
case of a hidden Markov model.

Identifiability of model parameters is an important consideration
for valid estimation and inference. Inferences cannot be definitively
drawn if two or more explanations of the process are indistinguish-
able. Additionally, estimability of model parameters is crucial for
valid inferences. The related concepts of identifiability and estimabil-
ity are separately described and investigated in the context of misclas-
sified binary longitudinal responses. We propose a model with both
directions of misclassification that includes the model of NCK as a
special case. The model consists of two distinct parts: the misclassi-
fication part specifies probabilities related to supplementary informa-
tion and the unobservable true process is modelled as a continuous-
time Markov chain with covariates. Section 2 describes the model and
Section 3 examines parameter identifiability. A simple restriction per-
mits parameter identifiability; however, parameter estimability is not
assured. Parameter estimability is defined and discussed in Section 4
in conjunction with the sampling interval and model specification. A
parasitic infection data set demonstrates methodology.

2 Model

We first present the notation and model in the absence of covariate
information (Section 2.1). Section 2.2 gives the likelihood function
when transition rates depend on covariates. For certain misclassifica-
tion probabilities, the model does not permit estimation. These cases
are outlined in Section 2.3.

2.1 Misclassification and the True Process

Suppose the two—state process is a homogeneous Markov process and
there are n; observations at discrete times ¢;; < --- < t;,, for subject
i, 1 =1,...,1. Let At;; = t;; —t;;-1, J = 2,...,n;, be the inter-
observation times for subject ¢. The observed state, O;;, takes the
values 0 or 1 depending on the state determined by the observed,
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possibly misclassified, response for subject ¢ at observation j. The
state of the unobservable true process at time ¢ is denoted by &(t)
for subject 7. At observation time ¢;;, the state of the unobservable
true process is labelled &;; = & (t;;).

The observed state is misclassified if it differs from the true state.
Suppose there is some supplementary information, termed misclassifi-
cation predictors, available at each observation time, which may help
clarify the relationship between the observed and true process. The
misclassification predictors could come from an auxiliary series such
as clinical symptoms or other clinical measurements (eg. heart rate,
blood pressure) that are collected at the same discrete observation
times. For notational simplicity, we assume that only one misclassi-
fication predictor is available, taking value C; for subject 7 at time
t;;. We denote the history as 7—[5]) = (0n,Ci,...,0;,C5) and 7—[50)
is defined as the empty set.

The two types of misclassification probabilities are pr(O;; = 1|§&;; =
O,CZ']‘) = vo1 (CZ']‘) and pI’(OiJ‘ = 0|f¢j = 1,02']') = UIO(Cij) with the
‘proper’ classification probabilities defined as voo(Ci;) =1 — vo1(Cij)
and v11(Cy;) = 1 — v10(Cy;). We assume a logistic link between the
misclassification probabilities and predictors,

edotonCi;
vo1 (Cij) R

¢o+07Cs 1)
v10(C')

14 20 telC

with misclassification probability parameters a = (v, 1) and a* =
(o, 7). The misclassification probabilities depend on the misclas-
sification predictor in exactly the same way for all subjects at all
observation times.

Suppose p > 0 and 1 > 0 (p # n) are the rates of transition from
true states 0 to 1 and 1 to 0, respectively. The Markov transition
probabilities for the true process are

) — - N _ o~ Atz (p+n)
POl(AtZ]) _pr(glj =1 |€2,]—1 - 0) = p—|— 7 {1 e J }

= - oy = 1 _ o~ Aty (ptn)
PlO(AtZ]) _pr(glj =0 | gz,]—l — 1) == P i 7 {1 € J }
with Poo(At”) =1- POl(At”) and Pll(At”) =1- Plo(At”) for
J=2,...nt=1,...,1. Let my = pr(&; = 1) = p/(p+ 1) denote
the steady state probability and mg =1 — 7.
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With misclassification, the observed state no longer has the Markov
property. The probability of an observed state depends on the last
observed state, on earlier states through v;; = pr(&; = 1| 7—[5]))7 and
on the transition probabilities P,;(At;;), a,b € {0,1}. The probabil-
ity of observing a 1 conditional on the past observed responses and
misclassification predictors is

pr(0i; = 1| MY, Cyj) =
011(Cig) {(1 = 7ij—1) Por(Atij) + vij—1 Pra(Atyj)}
+ vo1(Cij) {(1 =i j-1) Poo(At;) + vij—1 Pro(Atij)} .

Calculating +;; explicitly is difficult, whereas using Bayes’ rule gives
the recursive form

pr(Og &5 = LAY Cippr(&y = 11 HYTY)
7Ci

Yij = al )
Shoopr(Os ] & = b, HE ™Y, Cogppr(s; = b ")

— 8i5 {v10(Cij )1—0voof0ijj)}+uoo(ci]) if O;; =0

= v11(Ci5) 8i5 " OZ] 1

o055 {v11(Cij) —vo1(Ciz) o (Ciy)

where 52’]’ = Yij-1 {1 — P (Atij) — Plo(Atij)} + Fo1 (Atij) for j =
2,...,n;, and &;; = m1. The model proposed by NCK was based on
constant transition rates and one non-zero misclassification probabil-
ity, v19 > 0. Without covariates and misclassification predictors, our
model reduces to the NCK model if ag is set to —oo.

2.2 Incorporating Covariates

Including covariate information is straightforward. The transition
rates of the last section become p(x;) = exp(x;8,) and 5(x;) =
exp(x;3,) where B, and 3, are vectors of regression parameters and
X; is a vector of baseline covariates for subject 7. The formulas for
Py (At;;), 71, and ;5 all now depend on x;, a,b € {0,1}. The likeli-
hood function is written as

I ng ]
L(©) =] pr(Oir | Cir, x:50) [ pr(Os;] HIY, Cyyxi30)
=2

=1

where © = (o, ", 3,,3,)-
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2.3 Excluded Cases

Information cannot be gained about the transition rates for certain
values of the misclassification probabilities. If vy (Ci;)4v10(Ci5) = 1,
then vgo(Ci;) = vi0(Cy;) and v11(Cy;) = vo1(Cy;). The probability
of the observed state is completely independent of the unobservable
true state and the likelihood is flat with respect to the regression
parameters. We will not consider such cases in the remaining sections.

3 Parameter Identifiability

Unknown parameters in a model are nonidentifiable if more than
one set of parameter values gives the same distribution function for
the observation. Section 3.1 identifies exactly two sets of parameter
values that imply the same distribution. A parameter restriction
given in Section 3.2 provides an easy way to distinguish between the
two sets. The restriction is applied to the NCK data set. Section 3.3
identifies the situations where the restriction is not needed.

3.1 Two Sets of Parameter Values Imply the Same Dis-
tribution

Suppose both transition rates depend on the same set of covariates
and both misclassification probabilities depend on the same set of
misclassification predictors. The distribution for the observed data,
and hence the likelihood function, will be the same for two distinct
sets of parameter values ©; and ©, if

0, :(a7 a*7ﬁp7ﬁ77)

0, :(_a*v _a7ﬁn7ﬁp)‘
These sets of parameter values highlight the model symmetry. If
the state labels are interchanged, then the transition probabilities
switch and misclassification probabilities become proper classification
probabilities under the new state labels. The permutation of state
labels as a source of nonidentifiability is typical of hidden Markov
models (Ito, Amari and Kobayashi, 1992, MacDonald and Zucchini,
1997). In particular, L(©1) = L(©3) and ©, and O, will both be
maximum likelihood estimates for the data. In fact, these two sets

are the only distinct sets that will lead to the same distribution. The
full details of the proof follow in the Appendix.

(2)
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Examining features of the relationships between the misclassifica-
tion predictors and the misclassification probabilities as well as the
covariate and transition probability relationships easily shows (2).
Under the two sets, the misclassification probabilities are

U01(Cz’j§91) :Un(cij;@z)

3
Uoo(Ciﬁ@l) :U10(Cz’j§92)- ( )

The misclassification probabilities under @ become correct classifi-
cation probabilities under ©,. The transition probabilities have the
relationship

Fo1(t,%x4;01) =Pio(t, x;;02)

4
Pio(t,x4;01) =Fo1(t, x:;02) 4)

and m1(x;;01) = 1 — m1(x4;02). Additionally, it follows from (3)
and (4), that v;;(x;;01) = 1 — v;;(x4;02) and

Pf(Oij|%£j_1)7Cij§®1) = Pf(Oij|%£j_1)7Cij§®2)

for all j.

3.2 Parameter Restrictions for Identifiability

One of the two sets in (2) can be eliminated if the misclassification
probabilities are restricted to the interval [0, 0-5). If 0 < vg; (C};;01) <
0-5 and 0 < v10(C4;:01) < 0-5, then 0-5 < v91(C4;;02) < 1 and
0-5 < v10(Ci;;02) < 1. Hence, the misclassification probabilities
under parameter set @y are not admissible. This restriction is com-
mon in error-in-variables problems where the imperfect explanatory
variable is dichotomous (Bekker, Van Montfort and Mooijaart, 1991)
and seems to be a reasonable assumption. The restriction forces
ag + a1 Cy; < 0 and ag + o] C;; < 0. This is a weak assumption if
the observed process has some history of successful use in accessing
the hidden process.

Table 1 shows the results when the constraint is applied to the par-
asitic infection data provided in NCK. This data set contains weekly
diagnostic tests for the presence (O;; = 1) or absence (O;; = 0)
of Giardia lamblia in I = 58 Kenyan children. Each child had be-
tween 10 and 44 weekly observations (median=14), At;; = 7 days,
j=2,...,n;, t=1,...,58. The diagnostic test was based on direct
stool smears. The states, uninfected (&;; = 0) and infected (§;; = 1)
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by the parasite, are not directly observable and are first assumed to
follow a continuous-time Markov process. Jackknife standard errors
are provided where subjects are dropped from the data set one at a
time (see page 154 of Wolter, 1985).

By taking the reciprocal of the transition rates, the average time
spent in the uninfected and infected states are estimated to be 67
and 56 days, respectively. Both misclassification probabilities are
estimated to be about 10% and both are significantly different than
zero. Note that including both types of misclassification is provided
here for illustration only: wg; = 0 based on the NCK’s description
that parasites cannot be detected in the stool smear if the subject is
uninfected.

Table 1: Parasitic infection data under a restricted model.

Estimates (se) Estimates
Boo  -4-169 (0-306)  p 0-015
Bpo  -4:013 (0-300)  p 0-018
ag  -2:071 (0-253)  woy 0-112
ap  -2:202 (0-327)  we  0-100

log-likelihood:  -545-547

All calculations are performed by a C program (Rosychuk, 1999)
using the linear algebra package developed by Stuber (1997) and a
direction set (Powell’s) method provided in Press et al. (1992) for
derivative-free maximization. The algorithm is started at several
different starting conditions and is stopped when the log-likelihood
function fails to increase by more than 10~% on one iteration.

3.3 When Parameter Restrictions are Unnecessary

The key to parameter nonidentifiability was the relationships iden-
tified in (3) and (4). These relationships do not hold if one of the
misclassification probabilities is zero, if the misclassification proba-
bilities depend on different sets of misclassification predictors or if
the transition rates depend on different sets of covariates. Hence, for
these cases parameter restrictions will not be required for parameter
identifiability.
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4 Data Considerations for Parameter Estima-
bility

If the observed data does not provide enough information to distin-
guish parameter values under the model, then the likelihood function
will be close to flat as the parameter values vary. We say unknown
parameters are estimable if in the region of largest likelihood values,
the likelihood function is not flat in any direction of the allowable
parameter values.

The importance of the sampling interval is illustrated by a simula-
tion study in Section 4.1. In particular, it is seen that with sufficiently
frequent sampling all of the parameters are estimable, with data gen-
erated from the assumed model. In Section 4.2, a simulated data set
provides an example which suggests how problems with parameter
estimability may signal problems with the model. (Of course, pa-
rameter estimability does not guarantee correct model specification.)
The last section focuses on the situations where estimability is likely.

4.1 Sampling Interval

If the sampling interval is too long relative to the sojourn times of
the true states, and even if the misclassification probabilities are
constrained for parameter identifiability, not all parameters are es-
timable.

If the sampling times are far apart with respect to the state transi-
tion rates, observations 2, ..., n; are like observations from Bernoulli
trials when stationarity is assumed. When covariate and misclassifi-
cation predictor variables are not available to supplement the data,
the probability the observed state is 1 becomes w1v11 + Toug1. Since
the number of subjects and observations are fixed, only one degree
of freedom is available. Hence, the function 7 = w1v11 + wovoy is
estimable but individually 7y, vg; and vg are not. Individual param-
eters are nonestimable even when one of the misclassification proba-
bilities is zero. When covariates and misclassification predictors are
available, the situation is similar.

A small simulation study, without covariates and misclassification
predictors, was performed to investigate the behaviour of estimates
with different state sojourn times. We generated data with the same
number of subjects and visit times as the NCK data set. The state so-
journ times were generated from exponential distributions with means
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of 4, 7, 14, 21 or 42 days and misclassification probabilities were set as
either 0-02 or 0-10. These sojourn times corresponded to about 0-57,
1, 2, 3 and 6 times the length of the seven days between observations.
The data sets were simulated in two separate parts: exponential so-
journ times were randomly generated to form the subject histories
and the true states were then misclassified according to a random
number generator.

Selected results for vy and v1g appear in Table 2. These results
give the average maximum likelihood estimates for 20 simulated data
sets per simulation setting combination with standard errors in paren-
theses. The constraint proposed in Section 3.1 is used here.

Table 2: Average estimated mean times (EMTs) and misclassification
probability estimates for simulations of 20 full realizations generated
with specified mean times (MTs) and misclassification probabilities.
Standard errors for the average are in parentheses.

Setting Estimate(se)
MT0O MTI o1 w10 EMTO EMTT o1 1o
7 7 0.02 0.02 14.450 (2.757)  14.563 (3.235)  0.111 (0.030) _ 0,102 (0.031)
7 7 002 0.10 14.361 (2.836)  12.895 (4.999)  0.124 (0.029)  0.080 (0.031)
7 7 010 0.10 81.399(44.235)  41.748(16.276)  0.241 (0.038)  0.127 (0.040)
7 14 002 002 8.639 (0.639)  18.908 (1.945)  0.059 (0.024)  0.043 (0.014)
7 14 002 0.10 9.815 (1.322)  15.209 (1.944)  0.100 (0.031)  0.085 (0.025)
7 14 010 0.10 13.303 (2.136)  26.859 (4.972)  0.176 (0.039)  0.110 (0.025)
7 21 002 002 8.543 (0.489)  26.377 (1.926)  0.056 (0.023)  0.033 (0.008)
7 21 002 0.10 9.870 (1.461)  26.195 (3.861)  0.093 (0.032)  0.079 (0.017)
7 21 010 0.10 10.433 (1.013)  29.901 (5.534)  0.176 (0.040)  0.079 (0.019)
7 42 002 002 8.954 (0.545)  47.034 (3.846)  0.118 (0.033)  0.019 (0.005)
7 42 002 0.10 8.530 (1.085)  36.362 (7.122)  0.124 (0.038)  0.048 (0.013)
7 42 010 0.10 12.821 (3.405)  59.078(18.011)  0.203 (0.045)  0.069 (0.012)
14 14 002  0.02 15.064 (0.574)  15.042 (0.569)  0.029 (0.009)  0.027 (0.007)
14 14 002 0.10 18.789 (1.383)  17.143 (1.279)  0.057 (0.014)  0.092 (0.018)
14 14 010 0.10 16.736 (1.370)  15.305 (1.353)  0.126 (0.018)  0.080 (0.019)
14 21 002 0.02 15.113 (0.523)  21.586 (0.801)  0.034 (0.010)  0.022 (0.006)
14 21 002 0.10 15.348 (0.760)  20.996 (1.428)  0.049 (0.012)  0.079 (0.014)
14 21 010 0.10 14.238 (0.842)  19.686 (1.173)  0.091 (0.016)  0.066 (0.010)
14 42 002  0.02 13.407 (0.826)  39.170 (3.008)  0.041 (0.025)  0.018 (0.005)
14 42 002  0.10 14.597 (0.677)  40.435 (2.852)  0.063 (0.017)  0.077 (0.008)
14 42 010  0.10 12.587 (0.751)  42.007 (4.171)  0.054 (0.015)  0.086 (0.012)
21 21 0.02 0.02 20.715 (0.614)  21.724 (0.756)  0.023 (0.005)  0.022 (0.007)
21 21 0.02 0.10 21.794 (1.061) 21.104 (1.012)  0.026 (0.008)  0.090 (0.013)
21 21 0.10 0.10 20.508 (1.044)  21.215 (1.077)  0.074 (0.010)  0.109 (0.010)
21 42 0.02  0.02 23.107 (0.967)  44.967 (2.969)  0.032 (0.007)  0.021 (0.004)
21 42 0.02 0.10 22,117 (0.879)  43.664 (2.737)  0.025 (0.005)  0.097 (0.005)
21 42 0.10 0.10 21.995 (1.304)  44.930 (3.392)  0.098 (0.013)  0.091 (0.008)
42 42 0.02  0.02 46.060 (1.424)  43.559 (1.371)  0.022 (0.004)  0.027 (0.003)
42 42 0.02  0.10 40.861 (1.464)  40.767 (1.644)  0.024 (0.003)  0.103 (0.007)
42 42 010 0.10 44.848 (2.139)  43.964 (2.080)  0.096 (0.007)  0.105 (0.008)

When one of the sojourn times has a mean of 4 days, the mean
times and misclassification probabilities are poorly estimated. When
the sampling interval is larger than the mean of the state sojourn
time, the estimates are quite variable from one simulated data set to
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another and maximum likelihood estimates can be difficult to obtain.
For simulations when the mean times are at least 21 days in each
state, both state EMTs and the misclassification probabilities are
well estimated. When one of the mean times is 14 days and the
other is at least 14 days, the misclassification probabilities are not
necessarily well estimated even if the state EMTs are. Since all of
the inter-observation times are seven days, the results suggest that
collecting data a minimum of three times during the occupancy of
each state seems to enable estimation of the state rates as well as
estimation of small misclassification probabilities for the simulation
settings considered here. However, if point estimates close to the true
mean times are preferred, more frequent sampling is required.

4.2 Misspecified Models

Problems with parameter estimability can indicate model misspecifi-
cation. A simulated data set with the same observation times as the
PI data set provides illustration of the estimability problems which
can arise when the model is misspecified.

We generated data in a similar manner as described in Section 4.1
with gamma sojourn times instead of exponential. To simulate het-
erogeneous subjects, three different sojourn time distributions were
used to represent a missed important covariate. All subjects had the
same scales for each distribution, 0.01, but the shapes were allowed
to differ to provide mean times of 10, 14 or 18 days. The three distri-
butions and subsets were: subjects 1=1,3-17,19 had shapes 0.14 and
0.14, subjects 20-37 had shapes 0.14 and 0.18, and subjects 41-58 had
shapes 0.14 and 0.10 for states 0 and 1, respectively. Additionally,
we set all observed states to be 0 for subjects 38-40 and all observed
states to be 1 for subjects 2 and 18. The simulation misclassification
probabilities were vg; = 0.1 and v1g = 0.2. Clearly, the generation of
gamma distributed sojourn times and the heterogeneity violate the
Markov specification of the true process.

We consider the results from one simulated data set which was
relatively difficult for estimation. Applying the restricted model de-
scribed in Section 3.2 yields estimates p = 0.0022, # = 0.0030,
g1 = 0.1276 and 019 = 0.2211 with a log-likelihood of -511.634.
These results give estimated mean times of 453.9 and 334.4 days for
states 0 and 1, respectively. Since half of the subjects are on study
for 98 days or less, these results exceed the study times and suggest
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that most subjects would not have transitioned during the study.
Estimates such as these would indicate to an investigator a param-
eter estimability problem. Despite the relatively frequent sampling,
the likelihood is indeed almost flat in one direction in the parameter
space. See Figure 1. Additionally, the observed and expected transi-
tion counts could highlight a model misspecification. For this partic-
ular simulated data the observed (expected) counts are 434 (328.2),
118 (224.3), 117 (224.3) and 261 (153.2) for the 0to 0,0 to 1, 1 to 0
and 1 to 1 transitions, respectively.

ﬁpO

Figure 1: Log-likelihood contours for 3,0 and 3,0 when vg; = 0.1276
and vig = 0.2211 for a simulated data set. Each contour represents
a drop of 1 in the log-likelihood function from the MLE(*).
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4.3 Properly Sampled and Specified Models

We shift our focus to situations when estimability is likely. Data
reduction does not seem possible in the model proposed here. The
transition counts are not sufficient statistics as in the case of Markov
models, although we can consider these counts. The history and co-
variates will classify subjects into distinct groups and provided that
these groups number at least one more than the number of parame-
ters, estimability should not be a problem. A fortiori, if the transi-
tion counts together with the misclassification predictor pair counts
and covariates themselves provide enough information for parame-
ter estimability, then certainly the entire data set contains enough
information to estimate all parameters.

Table 3: Expected counts for the misclassification predictor (MP) and
observed process pairs under a stationarity assumption for z = zq.

Observed Process
MP 0-0 0-1 1-0 1-1 Total
0-0 Noopi1 Noopiz  Noopiz Noopia  Noo
0-1 Noipar Noipaz  Noipas  Noiwpaa Nog
1-0 Niop21 Niop2s  Niop2z Niop2a  Nio
1-1 Niipyan Nupas Nupsr Nupas  Nn

Suppose we have only one covariate and a binary misclassifica-
tion predictor. If we let N,; be the number of misclassification pairs
where C;;_1=a, C;;=b and © = xq, then the expected counts can
be determined as in Table 3, a,b € {0,1}. Under a stationarity as-
sumption, the probabilities of the observed pairs and misclassification
pairs for a subject with covariate value © = x¢ can be easily calcu-
lated. The probabilities involve the cases when both observations are
correctly classified, both observations are misclassified or only one of
the observations is correctly classified and the other is misclassified.
We denote these probabilities by pg., d,e = 1,2,3,4. Many of these
probabilities are not distinct because

7To($0)P01 (t, $0) =T ($0)P10(t7 $0)

in the Markov model. Table 3 incorporates the identities among

the pge. Specifically, ps1 = par, psa = pa4, P13 = P12, P33z = P22
and p43 = p4gp. Since 2221 pge = 1 for d = 1,2,3,4, the number
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of independent expected counts in the table is 7 and the number of
(functionally independent) observed counts will be at least as large if
all Noo, No1, N1g and Ny are large enough. If the covariate has two
levels, then the number of independent components of data available
to estimate 8 parameters is 14. The parameters should be estimable
in this case as well as other cases with more covariates and misclas-
sification predictors.

Several steps can be taken to gain some insight if parameters are
not estimable. Different parameterizations, such as x in an earlier
example, can be considered which may be estimable for a particu-
lar data set. Prior assumptions or ranges or prior distributions on
some parameters may allow estimation of the remaining parameters.
As Section 4.2 emphasized, attempting to fit an adequate model to
describe the data is an important step in achieving estimability. Fur-
ther, if calculating partial derivatives of the likelihood function is not
prohibitive, a positive-definite Hessian matrix would support param-
eter estimability.

5 Discussion

Parameter identifiability and estimability issues have been investi-
gated in a latent Markov model for possibly misclassified binary data.
The transition rates and misclassification probabilities were allowed
to differ for different covariate and misclassification predictor values,
respectively. We proved that when the misclassification probabilities
depend on the same set (possibly empty) of misclassification predic-
tors and the transition probabilities depend on the same set of co-
variates, there are exactly two distinct sets of parameter values which
vield the same distribution for the observations. These two sets arise
from the symmetry of the model. If the labels for the states are inter-
changed, then the transition probabilities are interchanged and the
misclassification probabilities become proper classification probabil-
ities under the new state labels. Parameter identifiability, however,
does not guarantee parameter estimability. We have also verified in a
simulation example that all misclassification and transition probabil-
ity parameters should be estimable as long as the model specification
is correct, the sampling interval is frequent enough and simple range
restrictions are reasonable.

We have considered identifiability as a property of the parameter-
ization and estimability as a property of both the parameterization
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and a particular data set. Establishing both parameter identifiability
and estimability are crucial for drawing valid inferences.
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Appendix: Exactly Two Distinct Sets of Pa-
rameter Values Imply the Same Distribution

By using characteristic functions, we can show that exactly the two
distinct parameter sets given in (2) generate the same distribution
for the data when the transition probabilities are not equal to 0 or 1.

Suppose that more than one set of parameter values gives the
same distribution for the data. Let two distinct sets of parameter
values, ©; = (a,a”,3,,8,) and O, = (&,&*,Emﬁn), generate the
same distribution. The characteristic function for one subject with n
observations is

Gul(50301) = 3 1Ot rtisnOn
Kn

% pr(01|C1,x:0y) [ pr(0; /Y™, €y x:01)
7j=2

where K, is the set of all possible binary sequences of length n,
L= (—1)% and s, = (s1,...,8,). If ©,(5.;01) = @n(s,;03), then
L(©1) = L(©3) for each possible sequence of the observed states.

Consider the simple case when vg1 (Cy;) = exp(a)/{1+exp(a)} =
vo1 and v19(Cy;) = exp(ag) /{1+exp(ag)} = vip and only the first two
observations are examined. A symbolic manipulator such as Maple
(Waterloo Maple Inc., 1996) can be used to solve for p(x) and 7(x) in
©2(52;01) = p2(s2;03) as a function of the unknowns vy, v10, Vo1,
U10, p(x), and 77(x). The solutions are

0 = [l { T E 5 ] 0 ) )]

p(x)(us + ua — us 1(x) (uz + ug — us)

uy 77(x) + us p(x) ug (%) + us p(x) (5)
(6~ 1) (30) 1 7)) 03 v
and
px) = M) T2 plo) (6)

ur 77(x) + uz p(x)

where uy = vgy U1, Uy = v10—V10, Uz = V1o+vo1—1, Ug = Vo1 +v10—1
and Us = Vo1 + U110 — 1.

Solutions of ¢, (5,;01) = ¢, (s,;O2) are also solutions of ;(s;;01)
= ¢;(5;:03) for any j € {1,...,n — 1}. The only distinct parameter
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sets satisfying ¢s(s3;01) = ¢3(s3;03) are

vor = 1 =010 p(x) = 7(x)
U190 = 1-— 501 77(X) = ﬁ(X) (7)

which can be found in an iterative manner by substituting (5) and (6)
into ps(s3;01) = ¢3(s3;03), solving for vg; and vyg, and then substi-
tuting these functions back into (5) and (6). Since (7) must be true for
asubject with any value of the covariates, then @y =(—-a*, —a, 3,, 3,)
which is exactly the solution given in (2).

Now consider the case of non-constant misclassification probabil-
ities given in (1). For notational simplicity, assume that only one
misclassification predictor is available and has value C; at time ¢;,
Jj =1,...,n. Under the two sets of parameter values, ¢;(s1;01) =
¢1(s1;03) if and only if

771 (X) :u3(01) Tl(x) + Uy (Cl) {1 — 7z-l(x)} % {1 - (X)} (8)
u2(Ch) T1(x) + ua(C1) {1 = 71 (%)}
where the u’s are the same as defined above except they now depend
on (.

Since the left-hand side of (8) does not depend on Cf, the right-

hand side must also be independent of Cy. In particular, it must be
the case that

u3(C) T1 (%) + wa (C1) {1 — 71 (x) }
= ~ = w(x 9
(O A1) a0 {1 - )y ) ¥
where w(x) does not depend on Cy. Suppose the misclassification
predictor has at least two levels, where ¢ and d are two of these

levels. Since (9) is independent of the value of the misclassification
predictor,

uz(c) T1(x) +ui(e) {1 =71 (x)} _ us(d) F1(x) + ui(d) {1 — 71 (x)}
uz(c) 71 (x) +ua(e) {1 = F1(x)}  ua(d) 7i(x) + ua(d) {1 = 71(x)}

Provided that x is not a constant, the terms involving the powers of
71(x) can be equated to give the two equations

{1 —To1(c) — Vrole) } {1 — vor(d —U10(d)}
= {1—?101 ) — B1o(d) } {1 — vo1(c) — vio(c) }
(10)
{1 — vio(d) — Do1(d) } {To1(c) — voi(c) }
= {1 — vio(c) — To1(c) } {o1(d) — vor(d) }.
(11)
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Certainly, these equations are satisfied with the distinct solution given
in (2). We wish to consider what other values of the parameters yield
equality. Solving (11) for vg;(c) gives

{1=701(c) —vio(e) Jvoi (d) + {1 =v10(d) } o1 (¢) = {1 —wi0(c) } P01 (d)
1— Ulo(d) —501 (d)

(12)

in terms of the other unknowns. Substituting (12) for voy(c) in (10)
and solving for vy (d) gives

Vo1 (d) =1- Ulo(d)

using Maple. This solution implies vg1(C1) 4 v10(C1) = 1, which is
not an admissible case as mentioned in Section 2.3. Thus, the only
distinct solutions are given in (2).
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