DOI: 10.18869/acadpub.jirss/20170601

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami G. On the Bayesian Sequential Change-Point Detection. JIRSS. 2017; 16 (1) :77-94
On the Bayesian Sequential Change-Point Detection. پژوهشنامه انجمن آمار ایران. 1396; 16 (1) :77-94


چکیده:   (991 مشاهده)
The problems of sequential change-point have several important applications in quality control, signal processing, and failure detection in industry and finance. We discuss a Bayesian approach in the context of statistical process control: at an unknown time  $tau$, the process behavior changes and the distribution of the data changes from p0 to p1. Two cases are considered: (i) p0 and p1 are fully known, (ii) p0 and p1 belong to the same family of distributions with some unknown parameters θ1≠θ2. We present a maximum a posteriori estimate of the change-point which, for the case (i), can be computed in a sequential manner. In addition, we propose the use of the Shiryaev's loss function. Under this assumption, we define a Bayesian stopping rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for the conjugate prior.
نوع مطالعه: Original Paper | موضوع مقاله: 62Jxx: Linear inference, regression
دریافت: ۱۳۹۵/۶/۲۵ | پذیرش: ۱۳۹۵/۶/۲۵ | انتشار: ۱۳۹۵/۶/۲۵

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb