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Abstract. This paper introduces a new two-stage randomized response model for es-
timating the mean of a sensitive quantitative random variable. The proposed model 
is obtained for both simple and stratified random s ampling. The efficiency of the pro-
posed estimator, under both sampling schemes, is investigated with respect to various 
estimators and it is found to be more efficient. Moreover, a new measure for evaluating 
the performance of any randomized response estimator is introduced. The measure 
considers the relative efficiency of the randomized response estimator, and the privacy 
protection it offers. The performance of the proposed estimator is examined using the 
new measure and it is found to have an overall better performance than its rival esti-
mators. A real data example is also examined using the proposed model and various 
models from literature.
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1 Introduction

The first randomized response model was designed by Warner ( 1965). His aim was 
to encourage truthful responses to sensitive questions such as those relating to tax 
evasion, sexual tendencies, or drug usage. Warner designed his model to estimate 
the percentage of population belonging to a sensitive group, for qualitative binary
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variables.

Shortly after Warner (1965), many researchers extended the randomized response
technique to cover different data types and/or different sampling schemes. Greenberg
et al. (1971) developed a randomized response model to estimate the mean of a quan-
titative random variable using an unrelated question for randomization. Eichhorn and
Hayre (1983) studied the multiplicative model, where the true response is multiplied
by an independent scrambling variable to conceal the true value. Bar-Lev et al. (2004)
used Warner’s (1965) randomization device along with the multiplicative model. Their
model gives a probability p to answering the sensitive question truthfully and 1 − p to
answering with the concealed value of the multiplicative model.

Ryu et al. (2005) suggested a two-stage randomized response model. According to
their model, each respondent in a simple random sample with replacement (SRSWR) of
size n is provided with two random devices R1 and R2. The first randomization device,
R1, has two statements (i) report your true response X for the sensitive question, and (ii)
go to R2, with probabilities p and 1− p, respectively. The second randomization device,
R2, has two statements (i) report your true response X for the sensitive question, and
(ii) report the scrambled response XS, with probabilities t and 1− t, respectively. Given
that X ≥ 0, S > 0, and P(S = 1) = 0, the respondents will never have to report their true
value for the sensitive question. Let µS and σ2

S be the known mean and variance of S,
and let µX and σ2

X be the mean and variance of X, respectively.

Assuming that µS = 1, they obtained an unbiased estimator, µ̂R, of µX with variance
given by:

V(µ̂R) =
µ2

X

n
[C2

X + (1 − p)(1 − t)σ2
S(1 + C2

X)], (1.1)

where CX = σX/µX is the coefficient of variation of X.

They compared their estimator to that of Greenberg et al. (1971) and Gupta et al.
(2002) and found theirs to be more efficient.

They also extended their model to the stratified random sampling under the con-
dition µSh = 1, where h = 1, ..., k. They obtained an unbiased estimator, µ̂S

R, of µX with
variance given by:

V(µ̂S
R) =

k∑
h=1

w2
hµ

2
Xh

nh

[
C2

Xh
+ (1 − ph)(1 − th)σ2

Sh
(1 + C2

Xh
)
]
, (1.2)

where wh = Nh/N is the weight of the hth stratum in the population; Nh is the size of
stratum h; N is the total population size, and C2

Xh
, ph, th, µXh , nh, σ2

Sh
are as defined before

but for stratum h.

They also obtained the following variance in the case of Neyman’s optimal alloca-
tion:

VNey(µ̂S
R) =

1
n

( k∑
h=1

whµXh

√
C2

Xh
+ (1 − ph)(1 − th)σ2

Sh
(1 + C2

Xh
)
)2
. (1.3)
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Singh and Gorey (2019) developed a model whose response is given by:

Z =

X(S − p(µS − 1)), with probability 1 − p,
X((1 − p)µS + p), with probability p.

(1.4)

They obtained an unbiased estimator of µX, µ̂SG, with variance equal to:

V(µ̂SG) =
µ2

X

n

[
C2

X + (C∗S(p) − ψ)(1 + C2
X)

]
, (1.5)

where

C∗S(p) =
p + (1 − p)(µ2

S + σ
2
S)

(p + µS(1 − p))2 − 1, (1.6)

and

ψ =
p(1 − p)(µS − 1)2

[p + (1 − p)µS]2 . (1.7)

They proved that their estimator is more efficient than Odumade and Singh (2009)
estimator. Odumade and Singh (2009) proved that their estimator was more efficient
than that of Bar-Lev et al. (2004).

In the next section, the proposed model for the estimation of the mean of a sensitive
quantitative random variable in case of simple random sampling is introduced and its
estimator’s efficiency is investigated. Particularly, in subsection 2.1, the model and its
estimator are introduced and applied on a real secondary data. In subsection 2.3, Ryu
et al. (2005) model is generalized for the case of µS > 0 and the proposed model proves
to be more efficient for µS > 1. In subsection 2.4, the proposed estimator is shown to
be more efficient than the estimators of Singh and Gorey (2019), Odumade and Singh
(2009), and Bar-Lev et al. (2004) and more efficient than Eichhorn and Hayre (1983)
estimator under an achievable condition.

In section 3, the proposed model is extended to stratified random sampling. Specif-
ically, subsection 3.1 introduces the proposed stratified model in the general case and in
case of Neyman allocation. In subsection 3.2, the stratified Ryu et al. (2005) estimator
is generalized for the case of µSh > 0, and the proposed stratified estimator is shown to
be more efficient at µSh > 1. The proposed stratified estimator is compared to that of
Singh and Gorey (2019) and it is found to be more efficient, in subsection 3.3.

Section 4 presents a new measure of the overall performance of the estimators,
in terms of efficiency and privacy protection. Numerical comparisons between the
proposed estimator and each of its competitors were made once using variations of the
different models’ parameters and another time using real data. The proposed estimator
proves to have better performance than its competitors. Section 5 provides a conclusion
for the effectiveness of the proposed estimator.



92 R. Arafa and R. Mazloum

2 Proposed Model in Case of Simple Random Sampling

2.1 Model Layout and Estimator Properties

The proposed model modifies Singh and Gorey (2019) model using a two-stage quanti-
tative randomized response model. According to the proposed model, each respondent
in a SRSWR of size n is provided with two randomization devices R1 and R2. The first
randomization device, R1, has two statements (i) report the response (Xb), and (ii) go
to R2, with probabilities t and 1− t, respectively. The second randomization device, R2,
has two statements (i) report the response (Xb), and (ii) report the scrambled response
(XY), with probabilities p and 1 − p, respectively. The responses of respondents can be
presented as follows:

Z =


Xb, with probability t,

go to R2, with probability 1 − t,

Xb, with probability p,
XY, with probability 1 − p,

(2.1)

where p, t ∈ (0, 1), and
Y = S − p(µs − 1), (2.2)

is a scrambling variable, independent from the sensitive variable X, with a known
constant mean, b, given by:

b = (1 − p)µS + p. (2.3)

The model reduces to that of Ryu et al. (2005) at µS = 1, to Singh and Gorey (2019)
at p = 0 or t = 0, and to a direct response question at p = 1.

The proposed estimator for the mean of the sensitive variable, µX, is given by:

µ̂P =
Z̄
b
, (2.4)

where Z̄ is the moment estimator of the mean of the responses.

Theorem 2.1. µ̂P, given in Equation 2.4, is an unbiased estimator for µX with variance equal
to:

V(µ̂P) =
µ2

X

n
[C2

X + (1 + C2
X)γ], (2.5)

where

γ =
(1 − t)(1 − p)σ2

S

b2 , (2.6)

and b is as defined in Equation 2.3.

Proof.

E(µ̂P) =
E(Z)

b
=

bµX

b
= µX,

∴ µ̂P is unbiased.
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V(µ̂P) =
V(Z)
nb2 . (2.7)

It is easy to show that:

E(Z2) = E(X2)(b2 + (1 − t)(1 − p)σ2
S).

Consequently,

V(Z) = E(X2)
(
(b2 + (1 − t)(1 − p)σ2

S

)
− b2µ2

X,

= µ2
X

(
(1 + C2

X)[b2 + (1 − t)(1 − p)σ2
S] − b2

)
.

(2.8)

Substituting Equation 2.8 into Equation 2.7, yields the variance in Equation 2.5. □

2.2 Real Data Example

To show that the proposed model is practical, we applied the proposed model on a real
data set from the U.S. Census Bureau’s 2017 Current Population Survey Annual Social
and Economic Supplement (CPS ASEC). Among other variables, the survey contains
information on the annual total wage and salary earnings for individuals (WSAL_VAL),
given as a dollar amount. Questions about finances are usually sensitive in nature and
can illicit untruthful answers. Therefore, the variable WSAL_VAL is treated as our
sensitive variable X.

The survey contains data on 87,689 persons whose sources of earnings are wages
and/or salary. We treated the data from the 87,689 persons as a population with
µX = $51390.83. A SRSWR of size n = 100 was drawn from that population. For the ith

person in the sample, i = 1, ..., 100, the randomized response, zi, based on the proposed
model was generated as follows:

(i) 100 random observations, si, were generated from the F(1, 5) distribution. The
F(1, 5) distribution has mean µS = 5/3.

(ii) 100 observations were generated from two Bernoulli random variables, L and Q,
with probability of success, p = t = 0.5. These two variables mimic the job of the
randomization devices R1 and R2.

L =

1, w.p 1/2,
0, w.p 1/2,

(2.9)

Q =

1, w.p 1/2,
0, w.p 1/2.

(2.10)

In real surveys, the two randomization devices can be as simple as a fair coin.

(iii) The constant b = p + (1 − p)µS = 0.5 + 0.5(5/3) = 4/3.
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(iv) The observations of the scrambling variable Y were calculated, as in Equation 2.2.

(v) The response for the ith person was obtained as:

zi = qi xib + (1 − qi)
(
li xib + (1 − li) xi yi

)
. (2.11)

Using Equation 2.4, the estimate of the mean of the sensitive variable, WSAL_VAL, is
µ̂P = $53506.4.

2.3 Efficiency Comparison with Generalized Ryu et al. Estimator

As mentioned before, Ryu et al. (2005) obtained their estimator and its variance for the
case of µS = 1 only. The proposed model reduces to that of Ryu et al. (2005) for µS = 1.
To compare the efficiency of the proposed estimator to that of Ryu et al. (2005) in the
general case, we obtain their estimator for any µS > 0 along with its variance. We call
the estimator in this case generalized Ryu et al. and denote it by µ̂∗R.

The variance of the generalized Ryu et al. estimator is:

V(µ̂∗R) =
µ2

X

n
[C2

X + (1 + C2
X)C2

S,p,t], (2.12)

where

C2
S,p,t =

p + (1 − p)t + (1 − p)(1 − t)(µ2
S + σ

2
S)

c2 − 1, (2.13)

and
c = p + (1 − p)t + (1 − p)(1 − t)µS. (2.14)

Theorem 2.2. The proposed estimator is more efficient than that of the generalized Ryu et al.
estimator for µS > 1.

Proof. The difference between the variance of the generalized Ryu et al. estimator,
given in Equation 2.12, and the variance of the proposed estimator, given in Equation
2.5, is as follows:

V(µ̂∗R) − V(µ̂P) =
µ2

X(1 + C2
X)

n
[C2

S,p,t − γ], (2.15)

where C2
S,p,t is as given in Equation 2.13 and γ is as defined in Equation 2.6. It suffices

to show that C2
S,p,t − γ > 0 for µS > 1 as follows:

C2
S,p,t − γ =

p + (1 − p)t + (1 − p)(1 − t)(µ2
S + σ

2
S)

c2 − 1 −
(1 − p)(1 − t)σ2

S

b2

=
(1 − p)(1 − t)

[
σ2

S + (1 − µS)2(p + (1 − p)t)
]

c2 −
(1 − p)(1 − t)σ2

S

b2

=(1 − p)(1 − t)σ2
S

[ 1
c2 −

1
b2

]
+

(1 − p)(1 − t)σ2
S(1 − µS)2(p + (1 − p)t)

c2

=(1 − p)(1 − t)σ2
S

[ (1 − p)t(µS − 1)(b + c)
c2b2

]
+

(1 − p)(1 − t)σ2
S(1 − µS)2(p + (1 − p)t)

c2 ,
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where c and b are as defined in Equation 2.14 and Equation 2.3. Therefore, the difference
is guaranteed to be positive for µS > 1 and it is zero for µS = 1. □

The behavior for µS < 1 was investigated through numerical calculations. We
considered the case where p = t; µS and CS both range between 0.1 and 0.9 with a step
of 0.2, i.e., µS and CS ∈ {0.1, (0.2), 0.9}.
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Figure 1: The difference C2
S,p,t − γ versus the mean of the scrambling variable S, µS, and

p, at different values of CS.

Figure 1 shows the calculated differences C2
S,p,t − γ. The differences are positive at

the start with CS = 0.1 and 0.3. For CS = 0.5, the differences are mostly positive except
for values of µS > 0.8 where we observe negative values that are very close to 0. On
the other hand, for CS = 0.7 and 0.9, we observe negative values for µS as little as 0.55.
However, these negative values are very small and can be seen, in italics, in Table 2. As
µS approaches 1, the differences converge to 0, which is expected since the difference
at µS = 1 is 0.
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2.4 Efficiency Comparison with Singh and Gorey (2019) Estimator

As noted, the proposed model reduces to the Singh and Gorey (2019) model at t = 0,
and to a direct response question at t = 1. Therefore, to show that the proposed
estimator is more efficient than that of Singh and Gorey (2019) it is sufficient to prove
that V(µ̂P) is a decreasing function in t for t ∈ (0, 1). To do so we show that the first
derivative with respect to t of V(µ̂P) is negative for all t ∈ (0, 1). Consequently, we have
the following theorem:

Theorem 2.3. The proposed estimator is more efficient than that of Singh and Gorey (2019).

Proof. The first derivative of V(µ̂P), given in Equation 2.5, with respect to t reduces to:

dγ
dt
=

d
dt

( (1 − t)(1 − p)σ2
S

b2

)
=
−(1 − p)σ2

S

b2 , (2.16)

which is negative for all t ∈ (0, 1) and p ∈ (0, 1). □

Since the proposed estimator is more efficient than that of Singh and Gorey (2019),
it is, consequently, more efficient than those of Bar-Lev et al. (2004) and Odumade
and Singh (2009). Moreover, Bar-Lev et al. (2004) proved that their estimator is
more efficient than that of Eichhorn and Hayre (1983) under an achievable condition.
Therefore, it can be concluded that the proposed estimator is more efficient than all
previously discussed estimators.

3 Proposed Model under Stratified Random Sampling

3.1 Model Layout and Estimator Properties

Suppose that a population, of size N, is divided into k non-overlapping strata, each of
size Nh, where h = 1, 2, ..., k, and

∑
Nh = N. A simple random sample with replacement

of size nh, is independently selected from each stratum, where
∑k

h=1 nh = n is the total
sample size. The respondent’s response from the hth stratum is given by:

Zh =


Xhbh, with probability th,

go to R2h , with probability 1 − th,

Xhbh, with probability ph,

XhYh, with probability 1 − ph,

(3.1)

where ph, th ∈ (0, 1) and
Yh = Sh − ph(µSh − 1), (3.2)

is a scrambling variable independent from the sensitive variable and

bh = (1 − ph)µSh + ph, (3.3)

is its known mean.
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Following the line of argument used in the case of simple random sampling, we
get the following unbiased estimator for the mean of the sensitive variable in stratum
h, µXh :

µ̂Ph =
Zh

bh
, (3.4)

where Zh is the moment estimator of the mean of the responses in the hth stratum, with
variance equal to:

V(µ̂Ph) =
µ2

Xh

nh
[C2

Xh
+ (1 + C2

Xh
)γh], (3.5)

where for stratum h,

γh =
(1 − ph)(1 − th)σ2

Sh

b2
h

, (3.6)

CXh is the coefficient of variation of the sensitive variable, σ2
Sh

is the variance of the
scrambling variable, and bh is as defined in Equation 3.3.

Consider the following estimator for the mean of the sensitive variable for the whole
population, µX:

µ̂s
P =

k∑
h=1

whµ̂Ph , (3.7)

where wh = Nh/N, such that
∑k

h=1 wh = 1.

Theorem 3.1. µ̂s
P is an unbiased estimator for µX with variance equal to

V(µ̂s
P) =

k∑
h=1

w2
hµ

2
Xh

nh
[C2

Xh
+ (1 + C2

Xh
)γh], (3.8)

where γh is as defined in Equation 3.6.

Proof.

E(µ̂s
P) = E

( k∑
h=1

whµ̂Ph

)
=

k∑
h=1

wh
E(Zh)

bh
=

k∑
h=1

wh
bhµXh

bh
= µX,

∴ µ̂s
P is unbiased.

Using the assumption that the selections in different strata are made independently
and substituting V(µ̂Ph) from Equation 3.5, we get:

V(µ̂s
P) = V

( k∑
h=1

whµ̂Ph

)
=

k∑
h=1

w2
hV(µ̂Ph) =

k∑
h=1

w2
hµ

2
Xh

nh
[C2

Xh
+ (1 + C2

Xh
)γh].

□
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Under Neyman’s allocation, nh is taken as nh = n whsh∑
whsh

, where sh is the standard
deviation of the responses in the hth stratum. The variance of µ̂s

P in this case is given as:

VNey(µ̂s
P) =

k∑
h=1

w2
hV(Zh)

nhbh
(3.9)

=
1
n

k∑
h=1

wh
√

V(Zh)
bh

k∑
h=1

wh
√

V(Zh), (3.10)

where
V(Zh) = µ2

Xh
b2

h[C2
Xh
+ (1 + C2

Xh
γh)]. (3.11)

3.2 Efficiency Comparison with Generalized Stratified Ryu et al. Estimator

The proposed estimator under stratified random sampling reduces to that of Ryu et
al. (2005) at µSh = 1 for all h = 1, ..., k. For a more comprehensive comparison, we
extend the stratified Ryu et al. (2005) to the case of µSh > 0. We call the estimator
the generalized stratified Ryu et al. estimator and denote it by µ̂∗sR . Its variance is as
follows:

V(µ̂∗sR ) =
k∑

h=1

w2
hµ

2
Xh

nh
[C2

Xh
+ (1 + C2

Xh
)C2

Sh,ph,th
], (3.12)

where wh = Nh/N, such that
∑k

h=1 wh = 1, and

C2
Sh,ph,th

=
ph + (1 − ph)th + (1 − ph)(1 − th(µ2

Sh
+ σ2

Sh
))

c2
h

− 1, (3.13)

ch = ph + (1 − ph)th + (1 − ph)(1 − th)µSh . (3.14)

Comparing the variance of the proposed stratified estimator for each stratum, µ̂Ph ,
to that of the generalized stratified Ryu et al. estimator gives us the following theorem:

Theorem 3.2. The proposed stratified estimator is more efficient than that of the generalized
stratified Ryu et al. estimator for µSh > 1, h = 1, ..., k.

Proof. The difference between the variance of the generalized stratified Ryu et al. es-
timator, given in Equation 3.12, and the variance of the proposed stratified estimator
given in Equation 3.8, is given by:

V(µ̂∗sR ) − V(µ̂s
P) =

k∑
h=1

w2
hµ

2
Xh

nh
(1 + C2

Xh
)[C2

Sh,ph,th
− γh], (3.15)
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where C2
Sh,ph,th

and γh are as defined in Equations 3.13 and 3.6, respectively. It suffices

to show that C2
Sh,ph,th

− γh > 0 for µSh > 1 as follows:

C2
Sh,ph,th

− γh =
ph + (1 − ph)t + (1 − ph)(1 − th)(µ2

Sh
+ σ2

Sh
)

c2
h

− 1 −
(1 − ph)(1 − th)σ2

Sh

b2
h

=
(1 − ph)(1 − th)

[
σ2

Sh
+ (1 − µSh)2(ph + (1 − ph)th)

]
c2

h

−

(1 − ph)(1 − th)σ2
Sh

b2
h

=(1 − ph)(1 − th)σ2
Sh

[ 1
c2

h

−
1
b2

h

]
+

(1 − ph)(1 − th)σ2
Sh

(1 − µSh)2(ph + (1 − ph)th)

c2
h

=(1 − ph)(1 − th)σ2
Sh

[ (1 − ph)th(µSh − 1)(bh + ch)

c2
hb2

h

]
+

(1 − ph)(1 − th)σ2
Sh

(1 − µSh)2(ph + (1 − ph)th)

c2
h

,

where ch and bh are as defined in Equation 3.14 and Equation 3.3.

Therefore, the difference is guaranteed to be positive for µSh > 1, h = 1, ..., k. □

3.3 Efficiency Comparison with Singh and Gorey (2019) Estimator

The variance of the Singh and Gorey (2019) estimator under stratified random sampling
is given by:

V(µ̂s
SG) =

k∑
h=1

w2
hµ

2
Xh

nh

(
C2

Xh
+ (1 + C2

Xh
)(C∗Sh

(ph) − ψh)
)
, (3.16)

where C∗Sh
(ph) and ψh are as defined in Equation 1.6 and Equation 1.7 but for stratum h.

Conducting a similar analogy to that of the simple random sample case, the variance
of the proposed estimator reduces to that of Singh and Gorey (2019) at th = 0 for all
h = 1, ..., k, and reduces to that of a direct questioning at th = 1 for all h = 1, ..., k.
Therefore, it is only important to show that the variance of the proposed estimator is a
decreasing function in th for th ∈ (0, 1). Hence, we have the following theorem:

Theorem 3.3. The proposed estimator is more efficient than that of Singh and Gorey (2019).

Proof. The first derivative of V(µ̂Ph) with respect to th, h = 1, ..., k, is always negative as
it reduces to the following:

dγh

dth
=

d
dth

( (1 − th)(1 − ph)σ2
Sh

b2
h

)
=
−(1 − ph)σ2

Sh

b2
h

, (3.17)

where bh is as defined in Equation 3.3, and ph ∈ (0, 1). □
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4 Privacy and Protection

The main goal of randomized response models is to provide the respondents with the
needed privacy necessary for them to cooperate and provide truthful answers. Many
measures have been proposed to quantify the privacy of randomized response models.
In this paper, the measure τ = 1 − ρ2

x,z, suggested by Diana and Perri (2011), is used to
measure the privacy of the models, where ρx,z is the coefficient of correlation between
the true response X and the randomized response Z. The advantage of this measure is
that it ranges between 0 and 1.

Diana and Perri (2011) noted that the measure τ reduces to a ratio of variances as
follows:

τ = 1 − ρ2
x,z = 1 −

V(x̄)
V(µ̂)

= 1 −
1

R.E(x̄, µ̂)
, (4.1)

where µ̂ is any randomized response model unbiased estimator of µX.

Therefore, as the relative efficiency of the direct response estimator, x̄, to the ran-
domized response estimator, µ̂, increases, the privacy protection increases. Hence, it
is not necessary to calculate the measure τ to know that the most efficient randomized
response estimator has the least protection.

4.1 Measure of Performance

To study the overall performance of the randomized response estimators considering
their efficiency and protection degree at the same time, we propose using a new measure
of performance, Λ, which is given by:

Λ =
R.E.(x̄, µ̂)

τ
. (4.2)

The smaller the value of Λ the better the overall performance of the estimator whether
due to small relative efficiency of x̄ over it or the greater privacy it provides.

In the following subsection we carried out numerical comparison, in terms of Λ,
between the proposed estimator and its competitors. The comparisons were made once
using variations of the different models parameters and another time using real data.

4.2 Performance Comparisons

To carry out the numerical comparisons between the proposed estimator and its com-
petitors, some assumptions were imposed. First, we considered the case p = t where
p ∈ {0.1, (0.1), 0.9}. It is easy to imagine that we can have as much liberty in the second
stage of the model as we have in the first stage. Second, the F(1, 5) distribution was
used for the scrambling variable S. Consequently, µS = 5/3, σ2

S = 200/9, and CS = 2
√

2.
This distribution satisfies Bar-Lev et al. (2004)’s condition that guarantees their es-
timator’s efficiency over that of Eichhorn and Hayre (1983). Third, to compare the
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proposed estimator to that of Singh and Gorey (2019), the same values of CX that were
suggested in their paper were used, mainly CX ∈ {0.1, (0.1), 1}. Fourth, to include Ryu
et al. (2005) in the comparison, we used the generalized form obtained in subsection
2.3. The variances for the estimators of Eichhorn and Hayre (1983), Bar-Lev et al.
(2004), and Odumade and Singh (2009) used in the comparison are given respectively
as follows:

V(µ̂E) =
µ2

X

n

[
C2

X + C2
S(1 + C2

X)
]
, (4.3)

V(µ̂B) =
µ2

X

n

[
C2

X + C∗S(p)(1 + C2
X)

]
, (4.4)

V(µ̂OS) =
µX

n

[
C2

X + (1 + C2
X)C∗S(p) − ψ

]
. (4.5)

Figures 2 and 3 showcase the comparison between the different estimators, in terms
of Λ, for various combinations of parameters.

cx: 0.1 cx: 0.2 cx: 0.3 cx: 0.4 cx: 0.5

0.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.9
0.5

1.0
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b
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Bar−lev et al.

Eichhorn and Hayre

Generalized Ryu et al.

Odumade and Singh

Proposed

Singh and Gorey

Figure 2: Calculated log(Λ) for the different estimators, at CX ∈ {0.1, (0.1), 0.5}.



102 R. Arafa and R. Mazloum

cx: 0.6 cx: 0.7 cx: 0.8 cx: 0.9 cx: 1

0.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.90.1 0.3 0.5 0.7 0.9
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Bar−lev et al.

Eichhorn and Hayre
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Odumade and Singh

Proposed

Singh and Gorey

Figure 3: Calculated Λ for the different estimators, for CX ∈ {0.6, (0.1), 1}.

As we can see in Figure 2, the proposed estimator has the lowest value of log(Λ) for
all levels of p and CX ∈ {0.1, (0.1), 0.5}. Additionally, all the estimators perform better
at higher values of p and CX. The differences between the estimators seem to decrease
as CX increases. Note that the graph shows log(Λ) for better readability of the data.

Figure 3 shows that the proposed estimator has the lowest Λ for CX ∈ {0.6, (0.1), 1}
and p , 0.9. For p = 0.9, the generalized Ryu et al. estimator has the best performance.
However, it is important to note that it will be hard to carry out a two-stage random-
ization model with p = t at values of p as high as 0.9 since it will not earn the confidence
of the respondent.

The values of Λ are provided in Table 3 in the Appendix where the values in bold
refer to the smallest value of Λ in each row.

4.3 Real Data Performance Comparison

The same secondary data set used in subsection 2.1, 2017 CPS ASEC, was used to obtain
estimated values of Λ for the proposed estimator and its competitors. Ten thousand
samples each of size n = 100 were obtained from the observations of the study variable
WSAL_VAL whose CX = 1.35. We restricted the simulation to reasonable values of
p = t, mainly p = t ∈ {0.3, (0.1), 0.7}. The response, zi, of the ith person was obtained
under each of the competing randomized response models. To do so, we adopted a
similar procedure to the one used in subsection 2.1 to obtain zi for the proposed model,
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in the real data example, to each of the models under study.

After obtaining the responses, the estimators of the different models were obtained
for each of the 10,000 samples. The variance was then calculated for each estimator and
for x̄, and the relative efficiencies, RE(x̄, µ̂), were obtained. Finally, Λwas calculated as
in Equation 4.2.

The results are presented in Table 1. The proposed model obtained the lowest
values ofΛ, in bold, for all the values of p = t considered. This shows that the proposed
estimator retained the best performance even for CX = 1.35, which is greater than the
maximum value of CX used in the previous numerical comparisons.

Table 1: Λ for the different estimators
n p ΛE ΛB Λ∗R ΛOS ΛSG ΛP

100 0.3 8.971 8.227 6.847 8.227 8.222 5.794
100 0.4 8.918 8.011 6.413 8.011 7.974 5.227
100 0.5 8.283 6.584 5.355 6.584 6.570 4.325
100 0.6 8.703 6.822 4.470 6.822 6.743 3.605
100 0.7 8.886 5.644 3.210 5.644 5.589 2.707

5 Conclusion

In this paper, we introduced a new randomized response model for estimating the mean
of a sensitive quantitative random variable. An unbiased estimator for the mean of the
sensitive variable was obtained and its efficiency was compared to different randomized
response estimators. Through our analysis, the proposed estimator proved to be more
efficient than Eichhorn and Hayre (1983), Bar-Lev et al. (2004), Odumade and Singh
(2009), and Singh and Gorey (2019) estimators. The model was applied on a real
secondary data set to showcase how the model can be applied in practice.

Additionally, Ryu et al. (2005) estimator can be considered as a special case of
the proposed estimator when µS = 1. We obtained a generalized form of Ryu et al.
(2005) estimator for µS > 0. The proposed estimator was more efficient than that of
generalized Ryu et al. for µS > 1. For µS ∈ (0, 1), the efficiency was investigated
numerically at different values of CS, µS, and at p = t. The results were in favor of
the proposed estimator in most cases. Therefore, the proposed estimator is more (or
equally as) efficient than all the previously discussed estimators.

The proposed model was extended to the stratified random sampling with replace-
ment and an unbiased estimator of µX was obtained. The resulting stratified estimator
reduces to that of Ryu et al. (2005) at µSh = 1 for all h = 1, ..., k. In case of the general-
ized stratified Ryu et al. model, the proposed stratified estimator is more efficient for
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µSh > 1 ∀ h = 1, .., k . When compared to the stratified estimator of Singh and Gorey
(2019), the proposed estimator was more efficient.

In terms of privacy and efficiency, the performance of the proposed estimator was
examined using the proposed measure of performanceΛ. The proposed estimator had
a better performance than the rival estimators at p = t and S ∼ F(1, 5), for all values
of p and CX ∈ {0.1, (0.1), 0.6}. For CX ∈ {0.7, (0.1), 1}, the proposed estimator had the
best performance for all values of p except 0.9. It is worth mentioning that p = 0.9
is not a good choice for the randomization device since it raises the suspicion of the
respondents. Also, it is clear from Table 3 that the loss in performance does not exceed
0.27 for all cases. Therefore, the increased efficiency offsets the decrease in privacy
protection for almost all values of p and CX ≤ 1.

A real secondary data set was used to implement the model and compare its per-
formance to the rest of the considered estimators. The 2017 CPS ASEC data were used
with the variable of study being the total wage and salary earnings for individuals
(WSAL_VAL). The proposed estimator had the best performance in terms of Λ for
values of p = t ∈ {0.3, (0.1), 0.7}, and for CX = 1.35 (>1).
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Table 3: Λ at S ∼ F(1, 5)

CX p µ̂E µ̂B µ̂∗R µ̂OS µ̂SG µ̂P
0.10 0.10 810.00 792.64 771.49 791.08 791.06 712.16

0.20 810.00 768.76 712.82 765.74 765.71 612.97
0.30 810.00 736.76 633.23 732.42 732.37 513.26
0.40 810.00 694.57 534.22 689.13 689.08 414.25
0.50 810.00 639.56 420.43 633.31 633.25 317.63
0.60 810.00 568.27 300.15 561.63 561.56 225.83
0.70 810.00 476.14 185.06 469.66 469.59 142.28
0.80 810.00 357.08 88.82 351.54 351.48 71.91
0.90 810.00 202.82 24.63 199.31 199.27 21.78

0.20 0.10 210.00 205.54 200.09 205.15 205.13 184.82
0.20 210.00 199.39 184.99 198.63 198.60 159.28
0.30 210.00 191.15 164.50 190.07 190.02 133.62
0.40 210.00 180.29 139.01 178.93 178.88 108.13
0.50 210.00 166.13 109.72 164.57 164.51 83.26
0.60 210.00 147.78 78.76 146.12 146.05 59.64
0.70 210.00 124.06 49.14 122.44 122.38 38.14
0.80 210.00 93.42 24.39 92.03 91.98 20.05
0.90 210.00 53.71 7.99 52.84 52.80 7.28

0.30 0.10 98.90 96.82 94.28 96.64 96.63 87.17
0.20 98.90 93.95 87.25 93.62 93.59 75.28
0.30 98.90 90.12 77.71 89.64 89.59 63.32
0.40 98.90 85.06 65.84 84.46 84.40 51.45
0.50 98.90 78.46 52.19 77.77 77.71 39.87
0.60 98.90 69.92 37.78 69.18 69.11 28.88
0.70 98.90 58.87 24.00 58.15 58.09 18.88
0.80 98.90 44.60 12.51 43.99 43.93 10.50
0.90 98.90 26.12 5.08 25.73 25.70 4.79

0.40 0.10 60.02 58.77 57.25 58.67 58.66 53.00
0.20 60.02 57.06 53.04 56.87 56.84 45.88
0.30 60.02 54.76 47.33 54.49 54.45 38.73
0.40 60.02 51.73 40.23 51.39 51.34 31.63
0.50 60.02 47.79 32.07 47.40 47.33 24.70
0.60 60.02 42.67 23.45 42.26 42.19 18.13
0.70 60.02 36.06 15.22 35.66 35.59 12.17
0.80 60.02 27.53 8.39 27.18 27.13 7.22
0.90 60.02 16.48 4.24 16.27 16.23 4.12

0.50 0.10 42.03 41.17 40.12 41.10 41.09 37.18
0.20 42.03 39.98 37.22 39.86 39.83 32.28
0.30 42.03 38.40 33.28 38.23 38.18 27.35
0.40 42.03 36.31 28.39 36.10 36.04 22.46

continued . . .
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. . . continued
CX p µ̂E µ̂B µ̂R µ̂OS µ̂SG µ̂P

0.50 42.03 33.59 22.76 33.34 33.28 17.69
0.60 42.03 30.07 16.83 29.80 29.74 13.17
0.70 42.03 25.51 11.17 25.26 25.19 9.09
0.80 42.03 19.63 6.53 19.41 19.36 5.75
0.90 42.03 12.04 4.01 11.90 11.87 4.00

0.60 0.10 32.26 31.61 30.82 31.56 31.55 28.60
0.20 32.26 30.71 28.62 30.63 30.60 24.90
0.30 32.26 29.52 25.65 29.40 29.36 21.18
0.40 32.26 27.94 21.96 27.79 27.74 17.48
0.50 32.26 25.89 17.71 25.72 25.65 13.89
0.60 32.26 23.23 13.24 23.04 22.98 10.49
0.70 32.26 19.79 8.99 19.61 19.55 7.44
0.80 32.26 15.36 5.55 15.20 15.15 5.00
0.90 32.26 9.64 4.03 9.55 9.51 4.09

0.70 0.10 26.37 25.85 25.21 25.81 25.80 23.43
0.20 26.37 25.13 23.45 25.07 25.04 20.45
0.30 26.37 24.17 21.06 24.08 24.03 17.46
0.40 26.37 22.90 18.09 22.79 22.73 14.49
0.50 26.37 21.25 14.68 21.12 21.06 11.61
0.60 26.37 19.11 11.09 18.97 18.91 8.89
0.70 26.37 16.34 7.69 16.21 16.15 6.46
0.80 26.37 12.78 5.00 12.67 12.62 4.58
0.90 26.37 8.21 4.15 8.14 8.11 4.28

0.80 0.10 22.55 22.11 21.57 22.09 22.07 20.07
0.20 22.55 21.51 20.09 21.46 21.43 17.57
0.30 22.55 20.70 18.08 20.63 20.58 15.05
0.40 22.55 19.63 15.58 19.54 19.49 12.55
0.50 22.55 18.24 12.71 18.14 18.08 10.13
0.60 22.55 16.44 9.70 16.33 16.27 7.85
0.70 22.55 14.11 6.86 14.01 13.95 5.84
0.80 22.55 11.12 4.66 11.03 10.98 4.34
0.90 22.55 7.29 4.32 7.24 7.20 4.50

0.90 0.10 19.93 19.55 19.08 19.53 19.51 17.78
0.20 19.93 19.02 17.79 18.99 18.96 15.59
0.30 19.93 18.32 16.04 18.26 18.22 13.40
0.40 19.93 17.39 13.86 17.32 17.27 11.23
0.50 19.93 16.18 11.37 16.10 16.04 9.13
0.60 19.93 14.61 8.75 14.53 14.46 7.15
0.70 19.93 12.59 6.30 12.51 12.44 5.43
0.80 19.93 9.98 4.44 9.92 9.86 4.19

continued . . .
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. . . continued
CX p µ̂E µ̂B µ̂R µ̂OS µ̂SG µ̂P

0.90 19.93 6.67 4.50 6.63 6.59 4.73
1.00 0.10 18.06 17.72 17.30 17.70 17.69 16.13

0.20 18.06 17.25 16.15 17.22 17.19 14.18
0.30 18.06 16.62 14.58 16.58 16.53 12.22
0.40 18.06 15.79 12.63 15.73 15.68 10.29
0.50 18.06 14.70 10.41 14.64 14.58 8.41
0.60 18.06 13.30 8.07 13.24 13.17 6.66
0.70 18.06 11.50 5.90 11.43 11.37 5.14
0.80 18.06 9.17 4.30 9.12 9.06 4.11
0.90 18.06 6.23 4.68 6.20 6.16 4.95

Note: The values in bold represent the smallest value for Λ for each row. The smaller
the value of Λ, the better the quality of the estimator.


