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Abstract. Bayesian nonparametric inference is increasingly demanding in statistical
modeling due to incorporating flexible prior processes in complex data analysis. This
paper represents the Pólya urn scheme for the generalized Dirichlet process (GDP). It
utilizes the partition analysis to construct the joint distribution of a random sample from
the GDP as a mixture prior distribution of countable components. Using permutation
theory, we present the components’ weights in a computationally accessible manner
to make the resulting joint prior equation applicable. The advantages of our findings
include tractable algebraic operations that lead to closed-form equations. The paper
recommends the Pólya urn Gibbs sampler algorithm, derive full conditional posterior
distributions, and as an illustration, implement the algorithm for fitting some popular
statistical models in nonparametric Bayesian settings.
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1 Introduction

Bayesian nonparametric models are flexible and robust alternatives to parametric in-
ference. Several data analysis methods have been extensively developed in many
fields, including health, biology, and financial studies. In the Bayesian framework,
incorporating nonparametric priors into the data analysis process allows analysts to
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achieve the most information from an infinite mixture of stochastic priors. For this
purpose, Ferguson (1973) introduces the Dirichlet process (DP) as a class of random
measures wherein any realization of the DP constitutes a probability distribution. The
Dirichlet process mixture model was then presented to facilitate computational aspects
(Antoniak , 1974; Ferguson , 1983; Lo , 1984). Several researchers have developed the
methodology for more practical models (Escobar and West , 1995; Neal , 2000), among
many others.

The discreteness property of the DP was illustrated by Ferguson (1973) using the
gamma representation. Blackwell and MacQueen (1973) drive underlying conditional
distributions through the Pólya urn scheme (PUS). An interesting feature of the DP is the
stick-breaking construction as an infinite series representation (Sethuraman and Tiwari
, 1982; Sethuraman , 1994). Extending the DP to complex models requires knowledge of
partitions, permutations, and modern algebraic operations. Combinatorial structures,
such as Pitman partitions, Gibbs partitions, random trees, and Bell polynomials, need
algebraic computations and are essential knowledge for the so-called combinatorial
stochastic processes. The DP is crucial in revealing the relationship between com-
binatorial stochastic processes and nonparametric Bayesian inference. For a general
overview, see Pitman (2006), Phadia (2016), Ghosal, and Van der Vaart (2017), and
Mano (2018).

The stick-breaking representation demonstrates the Dirichlet measure through the
construction of infinite series. Sethuraman’s construction is the most attractive ap-
proach to developing a collection of nonparametric Bayesian priors (Hjort , 2000; Ish-
waran and Zarepour , 2000; Pitman and Yor , 1997). The generalized Dirichlet process
(GDP) presented by Hjort (2000) as a prior process allows further data analysis flex-
ibility. Hjort (2000) computed theoretically the probability of an event on which all
data points from the GDP were distinct. The beta two-parameter process (BTPP) was
shown to be a particular case of the GDP (Ishwaran and Zarepour , 2000). Rodriguez
and Dunson (2014) studied the clustering property of the GDP. Barcella (2017) dis-
cussed the truncated GDP for the random truncation. Barcella et al. (2018b) introduced
the dependent GDP as a generalization of the dependent DP presented by MacEachern
(1999). For recent applications of the DP, see Barcella et al. (2018a), Molinari, et al.
(2021), and Aghabazaz et al. (2023).

Most applications of traditional statistical models require parametric specifications
of probability distributions. A challenging issue arises if insufficient prior information
involves justifying such parametric assumptions. In this case, Bayesian nonparametric
methods allow adaptable specifications of prior distributions. The Dirichlet process
mixture can be viewed as an infinite dimensional mixture model at the most basic
level. It motivated us to offer a flexible class of priors with an explicit and convenient
prediction rule in nonparametric settings. The class relaxes traditional parametric as-
sumptions and adjusts model fitting, particularly once a generalized Pólya urn mech-
anism characterizes the prior. Mainly, our paper represents the Pólya urn for the GDP
and uses the partition analysis to find the joint distribution of samples from the GDP.
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An advantage of the findings includes tractable closed-form equations for the joint
distribution as a countable mixture of accessible components’ weights.

Bayesian nonparametric models can improve data analysis results in broad ap-
plications of various statistical models, including clustering and latent class analysis,
density estimation, and prior specification when little information is available. An
illustrative example used in this article is about the traditional Binomial/Beta model,
which assumes that each experiment is a Binomial draw with unknown proportions
Xi and known sample sizes ni for i = 1, . . . , k groups, with a conjugate Beta prior for
Xi. However, if the empirical evidence reveals bimodality, a single Beta cannot be a
suitable prior choice. To address this concern, an appropriate method would involve
effectively utilizing a Dirichlet process prior. Since proportions lie between 0 and 1,
a pragmatic choice is a Dirichlet process mixture of Beta distributions. The working
data set here is binary strings from rolls of common thumbtacks (Beckett and Diaconis ,
1994; Liu , 1996). The flicks are presumed independent conditionally on the tack. There
are 320 observations, relating to the thumbtack role, with each tack flipping nine times.
The output variable Yi is the number of times each tack landed point up. We extend
model fitting to the data analysis in Section 6.

Section 2 exhibits preliminaries on the DP and its representations, the GDP, and
the partition analysis. Based on permutation theory, section 3 provides a valuable
expression for the joint distribution of a random sample X1, . . . ,Xn drew from the GDP,
discusses its exchangeability property, and provides a simulation study to illustrate
some properties of the process. Section 4 presents the Pólya urn representation of the
GDP, computes the predictive and conditional distributions, shows the exchangeable
partition probability function, and derives the PUS representation of the BTPP. More-
over, we verify our method for the DP, which matches the findings in the literature.
Section 5 defines the GDP mixture models and offers the Pólya urn Gibbs sampler
to insert the GDP into the nonparametric Bayesian approach. Section 6 analyzes the
thumbtacks data using the Binomial/Beta GDP mixture model. Section 7 includes
concluding remarks.

2 Background on the Dirichlet Process

Let X be a set and F be a nonempty collection of subsets of X, which is a σ−field.
The Dirichlet process DP(ν) with base measure ν is a random probability measure
G on the measurable space (X,F), where the stochastic process (G(A) : A ∈ F) is
indexed by measurable subsets, and sample paths are probability measures with prob-
ability one. It means that G is defined as a distribution over probability measures,
such that for every finite measurable partition A1, . . . ,An of X (i.e., Ai ∈ F for all i,
Ai ∩ A j = ∅ for i , j, and

⋃n
i=1 Ai = X) and base measure ν, the finite-dimensional ran-

dom vector (G(A1), . . . ,G(An)) is distributed as a Dirichlet distribution with parameter
(ν(A1), . . . , ν(An)). Usually, ν is governed by two parameters, ν(·) = bG0(·). G ∼ DP(b,G0)
denotes the DP measure, where the total mass b = ν(X) is the prior precision, and the
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probability measure G0(·) = ν(·)/ν(X) is the center measure. We have E[G(A)] = G0(A)
and Var[G(A)] = G0(A)(1 − G0(A))/(b + 1) for any A ∈ F. Accordingly, G0 and b are
named as the mean and inverse variance of the DP, respectively.

Blackwell and MacQueen (1973) present the generalized PUS representation of
the DP. Through n steps of the PUS, they find the marginal distribution of a set of
a random sample X = {X1, . . . ,Xn} from the DP(b,G0), in which each step 1 ≤ i ≤ n
provides the conditional distribution of Xi given the previous, i.e., Xi|X1, . . . ,Xi−1 ∼

(b + i − 1)−1
(
bG0(·) +

∑i−1
j=1 δX j(·)

)
, where δX(·) denotes a point mass centered at X. Let

X−n = {X1, . . . ,Xn−1} be X excluding Xn, and let X∗m =
{
X∗1, . . . ,X

∗
m

}
be the set of distinct

values among X−n with occurrences n1, . . . ,nm respectively; 1 ≤ m ≤ n and
∑m

r=1 nr =
n − 1. Following is the generalized PUS for the DP(b,G0),

X1 ∼ G0,

Xn | X1, . . . ,Xn−1

{
= X∗r with probability nr

b+n−1
∼ G0 with probability b

b+n−1
. (2.1)

The discreteness property of the DP implies that the new observation Xn can be either
equal to one of the distinct values or take a new value from G0.

2.1 The Generalized Dirichlet Process

Let V1,V2, . . . be a sequence of independent random variates drawn from a distribution
H with support on (0, 1). Consider a sequence of random variates

{
γi
}
i≥1 obtained from

the set {Vi}i≥1, where γ1 = V1, γi = Vi
∏i−1

j=1 V j, i ≥ 2, and V j = 1 − V j. The inequality
0 < γi < 1 holds such that

∑
∞

i=1 γi = 1 a.s., (almost surely). Thus, a random probability
measure G can be defined on (X,F) as

G(·) =
∞∑

i=1

γiδξi (·) , (2.2)

where the random elements ξi are independently and identically distributed (iid)
drawn from the centered measure distribution G0, independent of γi’s. Hjort (2000)
defined (2.2) as the GDP, denoted by G ∼ GDP(H,G0). It is described by the center
measure G0 and the distribution H over (0, 1). Ishwaran and Zarepour (2000) con-
sider H as Beta(a, b) and refer to (2.2) as the beta two-parameter process, denoted by
G ∼ BTPP(a, b,G0). A particular case a = 1 to construct the stick-breaking representa-
tion of the DP (Sethuraman , 1994), denoted by G ∼ DP(b,G0), where b is the precision
parameter.

Let G be a random probability measure of the form (2.2) and A1, . . . ,An be measur-
able sets. Hjort (2000) derived the marginal distribution of a random sample X1, . . . ,Xn
from the GDP, satisfying X1 ∈ A1, . . . ,Xn ∈ An as follows

P (X1 ∈ A1, . . . ,Xn ∈ An) = E
[ n∏

i=1

G(Ai)
]
. (2.3)
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Let Mi, j := E[ViV
j
] =
∫ 1

0 ui(1 − u) jdH(u) and ρk, j = Mk− j, j/(1 −M0,k), where i, j, k are
nonnegative integers with k ≥ j. Applying (2.3) for n = 1, 2,

P(X1 ∈ A1) =
∞∑

i=1

E[γi]E[δξi(A1)] = G0(A1)E
[ ∞∑

i=1

γi

]
= G0(A1).

Therefore, the distribution of one observation is the center measure, i.e., X1 ∼ G0,

P (X1 ∈ A1,X2 ∈ A2) =
[
ρ2,0 2ρ2,1

] [ G0(A1∩A2)

G0(A1)G0(A2)

]
, (2.4)

where P(X1 = X2) = ρ2,0, P(X1 , X2) = 2ρ2,1, and ρ2,0 + 2ρ2,1 = 1. Also, the expression
for disjoint A1, . . . ,An (i.e., the distinct data points) is

E
[ n∏

i=1

G(Ai)
]
= β G0(A1) . . .G0(An) , (2.5)

where β is the probability of drawing distinct data points computed by

β = P(X1 , · · · , Xn) = n!
n−1∏
j=0

ρ j+1, j, (2.6)

One can derive the probability of drawing identical data points from GDP(H,G0) (Ish-
waran and Zarepour , 2000) as

P(X1 = · · · = Xn) =
Mn,0

1 −M0,n
= ρn,0. (2.7)

The following sub-section is devoted to the partition analysis, which helps compute a
random sample’s joint distribution from the GDP.

2.2 Partition Analysis

Combinatorial stochastic processes can be better understood through the use of random
partitions and random permutations. Consider a set Sn = {1, . . . ,n}, and disjoint sets

E1 =
{
e1, . . . , en1

}
, . . . ,Em =

{
en−nm+1, . . . , en

}
, (2.8)

with sizes |E1| = n1, . . . , |Em| = nm, where
∑m

j=1 n j = n, 1 ≤ m ≤ n and each element
e j ∈ Sn; j = 1, . . . ,n. Then E = {E1, . . . ,Em} refers to a collection of nonempty disjoint
sets with

⋃m
i=1 Ei = Sn. The collection E is one partition of Sn, and the sets E1, . . . ,Em

are called blocks of E. We denote n = {n1, . . . ,nm} the block sizes, where
∑m
ι=1 nι = n is

fulfilled. Let P(n) denote the collection of possible partitions of Sn with m blocks and
size set n. The cardinality of P(n) (i.e., the number of partitions in P(n)) is

|P(n)| =
n!∏n

i=1(i!)γiγi!
, (2.9)
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where γi =
∑m

j=1 I(n j=i) is the number of blocks with size i, see Pitman (2006) and
Andrews (1998) for details.

It is essential to recognize that different types of n lead to varying P(n) types.
Let Nn = {{n}, {n − 1, 1}, . . . , {1, . . . , 1}} denotes the collection of all formable types of
n where

∑m
ι=1 nι = n and 1 ≤ m ≤ n. The cardinality of Nn is analogous to the

number of all possible ways of expressing n as a sum of positive integers, denoted by
a(n) = |{n, (n − 1) + 1, . . . , 1 + . . . + 1}|, and called the number of partitions of n, given by

a(n) =
n∑

k=1

λ(k)a(n − k), (2.10)

which depends on Euler’s recurrence relation, where a(0) = 1 and

λ(k) =
{

(−1) j+1 ; k = j(3 j∓1)
2 ; j ∈N+

0 ; o.w.
.

Starting with a(1) = 1, the first few a(n)’s are a(2) = 2, a(3) = 3, a(4) = 5 and a(5) = 7; for
online computation of a(n) see https://oeis.org/A000041. The collection of all partitions
of Sn can now be defined by

P(Sn) =
⋃

n∈Nn

P(n) , (2.11)

with cardinality Bn = |P(Sn)| =
∑

n∈Nn
|P(n)|. In literature, the number of all partitions

is called the Bell number, given by Bn =
∑n−1

k=0 C(n − 1, k)Bk, or by Bn = E
[
Zn
]

where
Z ∼ Poisson(1) and B0 = 1. The first few Bn’s are B1 = 1, B2 = 2, B3 = 5, B4 = 15, and
B5 = 52 (Pitman , 2006; Castellares, Ferrari and Lemonte , 2018). To clarify the above
discussion, we present two cases, n = 3, 4, as follows.

Examples 2.1. Let 12|3 be an abbreviation for the partition {{1, 2}, {3}}, and 12|3 [3] be
an abbreviation for three partitions {12|3, 13|2, 23|1}, and the same for others.

Case n = 3: We have S3 = {1, 2, 3}, a(3) = 3 and N3 = {{3}, {2, 1}, {1, 1, 1}}.

(i) For n = {3}, we have P(n) = S3, with |P(n)| = 3!
3! = 1.

(ii) For n = {2, 1}, we have P(n) = 12|3 [3], with |P(n)| = 3!
2! = 3.

(iii) For n = {1, 1, 1}, we have P(n) = 1|2|3, with |P(n)| = 3!
3! = 1.

Thus, P(S3) =
⋃

n∈N3
P(n) = {S3, 12|3 [3], 1|2|3}, with B3 =

∑
n∈Nn
|P(n)| = 5.

Case n = 4: S4 = {1, 2, 3, 4}, a(4) = 5 and N4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}.

(i) For n = {4}, we have P(n) = S4, with |P(n)| = 4!
4! = 1.

(ii) For n = {3, 1}, we have P(n) = 123|4 [4], with |P(n)| = 4!
3! = 4.

(iii) For n = {2, 2}, we have P(n) = 12|34 [3], with |P(n)| = 4!
(2!)3 = 3.
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(iv) For n = {2, 1, 1}, we have P(n) = 12|3|4 [6], with |P(n)| = 4!
(2!)2 = 6.

(v) For n = {1, 1, 1, 1}, we have P(n) = 1|2|3|4, with |P(n)| = 4!
4! = 1.

Therefore, P(S4) = {S4, 123|4 [4], 12|34 [3], 12|3|4 [6], 1|2|3|4}, with B4 = 15.

We now derive a novel combinatorial formula for the joint distribution of a random
sample from the GDP.

3 The Joint Distribution of GDP Samples

Let X1, . . . ,Xn be a random sample from the GDP, satisfying X1 ∈ A1, . . . ,Xn ∈ An
with arbitrary measurable sets A1, . . . ,An. The joint distribution of the sample from
GDP is obtained by substituting (2.2) in (2.3) and utilizing particular mathematical
combinatorics. We set B1 = {Ae1 , . . . ,Aen1

}, . . ., Bm = {Aen−nm+1 , . . . ,Aen} with {e1, . . . , en} =
{1, . . . ,n}, 1 ≤ m ≤ n. The collection {B1, . . . ,Bm} is a one partition of {A1, . . . ,An} with
sizes n = {n1, . . . ,nm} and

∑m
ι=1 nι = n. For simplicity we replace {A1, . . . ,An} by the

index set Sn = {1, . . . ,n}, and {B1, . . . ,Bm} by the collection of subsets E = {E1, . . . ,Em}

described in (2.8). As mentioned in Section 2.2, the E blocks are formed one partition
of Sn with block sizes n, i.e., E ∈ P(Sn). For each block E of E, let ΨE = G0 (

⋂
e∈E Ae)

and QE =
∏

E∈EΨE. We present the general joint distribution for n observations in the
following Theorem.

Theorem 3.1. Let G follow GDP(H,G0) and A1, . . . ,An be measurable sets. Then

P(X1 ∈ A1, ...,Xn ∈ An) =
∑

E∈P(Sn)

wEQE , (3.1)

where each E ∈ P(Sn) consists of blocks determined by (2.8) and the weight

wE =
∑

i1,..., im
distinct

E
[ m∏
ι=1

γnι
iι

]
. (3.2)

Proof. We know
∏k

i=1 δξ(Ai) = δξ
(⋂k

i=1 Ai

)
; k ≤ n, and

n∏
i=1

G(Ai) =
∑

i1,...,in

n∏
ι=1

γiιδξiι
(Aι) :=

∑
E∈P(Sn)

CE , (3.3)

where
∏n

i=1 G(Ai) is defined as what is on the right-hand side after expanding the sum∑
i1,...,in , and every CE constituted using one partition E ∈ P(Sn) as

CE =
∑

i1,..., im
distinct

m∏
ι=1

γnι
iι
δξiι

(⋂
e∈Eι

Ae

)
. (3.4)
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Each E ∈ P(Sn) contains m blocks {E1, . . . ,Em}; 1 ≤ m ≤ n with sizes |E1| = n1, . . .,
|Em| = nm;

∑m
ι=1 nι = n, and the elements of blocks given in (2.8). The proof is complete

by taking the expectation of both sides of (3.3), where E
[
δξiι

(⋂
e∈Eι Ae

)]
= ΨEι and

E[CE] =
∑

i1,..., im
distinct

E
[ m∏
ι=1

γnι
iι

] m∏
ι=1

ΨEι = wEQE ,

for each partition E ∈ P(Sn) . □

Remark 1. As was mentioned in (3.4), every CE is constituted from one partition E ∈
P(Sn). The weights wE; E ∈ P(n) ⊂ P(Sn) in (3.2) are only related to the number
of blocks m and their sizes n. Therefore, these weights have the same value for all
partitions E ∈ P(n), denoted by w(n) as

w(n) =
∑

i1,...,im
distinct

E
[ m∏
ι=1

γnι
iι

]
, (3.5)

while distributions QE; E ∈ P(n) are different as they relate to each partition’s elements
within blocks (2.8).

Representation (3.5) is useful for explaining the exchangeability property, as will be
seen later. For each n ∈ Nn, letQ(n) denote the collection of distributions corresponding
to partitions in P(n), and Q(Sn) =

⋃
n∈Nn
Q(n). Using Remark 1, we can write the joint

distribution in (3.1) as

P(X1 ∈ A1, . . . ,Xn ∈ An) =
∑

n∈Nn

w(n)Q(n), (3.6)

where Q(n) =
∑

Q∈Q(n) Q. Theorem 3.1 shows that∑
E∈P(Sn)

wE =
∑

n∈Nn

|P(n)|w(n) = 1, (3.7)

and the joint distribution of a random sample from the GDP is a mixture distribution of
countable components. There is a one-to-one correspondence between components and
partitions. Accordingly, this mixture’s number of components equals the Bell number
Bn. Now, we rewrite (3.5) without infinite summations using permutation theory to
be computationally applicable for performance-enhancing. Initially, we propose the
following lemma.

Lemma 3.1. Let m,n1, . . . ,nm be positive integers, then

Σm :=
∑

i1>···>im

m∏
ι=1

Mζι0,ηι
=

m∏
ι=1

1
1 −M0,ηι

, (3.8)

where ηι =
∑ι

r=1 nr, ζι = iι − iι+1 − 1, and im+1 = 0.
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Proof. By induction, for m = 1, Σ1 =
∑
∞

i1=1 Mi1−1
0,n1
= 1/(1 −M0,n1). Suppose (3.8) holds

for m = k, we prove it for m = k + 1,

Σk+1 =
∑

i1>···>ik+1

k+1∏
ι=1

Mζι0,ηι
=
∑

i1>···>ik

k−1∏
ι=1

Mζι0,ηι
Mik−2

0,ηk

ik−2∑
ik+1=0

ρik+1

=
∑

i1>···>ik

k−1∏
ι=1

Mζι0,ηι
Mik−2

0,ηk

1 − ρik−1

1 − ρ
= c

∑
i1>···>ik

k−1∏
ι=1

Mζι0,ηι
(Mik−1

0,ηk
−Mik−1

0,ηk+1
)

= c(Σk − Σ
∗

k) =
k+1∏
ι=1

1
1 −M0,ηι

,

where ρ =M0,ηk+1/M0,ηk , 1, the third equality comes from the sum of first ik − 1 terms
of a geometric series, c = 1/(M0,ηk −M0,ηk+1), and Σ∗k is (3.8) with nk := nk + nk+1. □

The following theorem reveals that (3.5) can be derived without infinite summation.

Theorem 3.2. For n ∈ Nn, let P(n) ⊂ P(Sn) be the collection of partitions with m blocks and
sizes n, and let perm(n) be the set of all m−permutations of n. Then

w(n) =
∑

perm(n)

m∏
ι=1

ρηι,ηι−1 , (3.9)

where ηι =
∑ι

j=0 nσ( j), nσ(0) = 0, and (nσ(1), . . . ,nσ(m)) is a one permutation from perm(n) and
|perm(n)| = m! .

Proof. Since the sequences V1,V2, . . . are independent, for i , j, variables Vi and V j are
independent. The indices i1, . . . , im are distinct, and each permutation (σ(1), . . . , σ(m))
of the set {1, . . . ,m} can make one order as iσ(1) > · · · > iσ(m), and all orders cover (3.5).
Calculating the expectation based on one order i1 > · · · > im is

∑
i1>···>im

E
[ m∏
ι=1

γnι
iι

]
=
∑

i1>···>im

E
[ m∏
ι=1

Vnι
iι

V
ηι−1
iι

m∏
ι=1

iι−1∏
j=iι+1+1

V
ηι
j

]
=

m∏
ι=1

Mnι,ηι−1

∑
i1>···>im

m∏
ι=1

Mζι0,ηι

=

m∏
ι=1

ρηι,ηι−1 ,

where γnι
iι
= Vnι

iι

∏iι−1
j=1 V

nι
j , n0 = 0, ηι =

∑ι
r=0 nr, ζι = iι − iι+1 − 1, im+1 = 0, and the last

equation comes from Lemma 3.1. Note that the result for each order iσ(1) > · · · > iσ(m)
is related to one permutation (nσ(1), . . . ,nσ(m)) ∈ perm(n). Thus, the weight w(n) can be
derived by summation over all m! permutations. □
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When the number of blocks m is large, |perm(n)| will be massive, and the weight
w(n) is more challenging to compute. Therefore, it is necessary to reduce the num-
ber of operations by carrying out the calculations only on the distinct permutations.
Following this, we multiply each result by frequencies to get the weight, as explained
below.

Proposition 3.1. Let d be the number of distinct elements in {n1, . . . ,nm}, and the frequency
of each one be ri; i = 1, . . . , d. Then, w(n) reduces to

w(n) =
d∏

i=1

ri!
∑

words(n)

m∏
ι=1

ρηι,ηι−1 , (3.10)

where words(n) is just the set of all distinct permutations on {n1, . . . ,nm}, and the cardinality
reduces to |words(n)| = m!/

∏d
i=1 ri!.

Proof. Imagine that each ni; i = 1, . . . ,m is analogous to a letter and that identical ni’s
share the same letter. Each permutation corresponds to m letters that form a word. Let
words(n) be the set of words with or without meaning that can be formed from these
letters. This set is analogous to the distinct permutation set. In permutations theory, the
cardinality of words(n) is m!/

∏d
i=1 ri! , and each comes from

∏d
i=1 ri! permutations. □

The following example shows the joint distribution of random samples from
GDP(H,G0) in two cases, n = 3, 4.

Examples 3.1. Let Q12|3 = Ψ{1,2}Ψ{3} be the distribution when E = {{1, 2}, {3}}, and
Q12|3 [3] be an abbreviation for three distributions

{
Q12|3,Q13|2,Q23|1

}
, and the same for

others. Applying Theorem 3.1 and Proposition 3.1 and using Example 2.1, only the
selection of all partitions is required.

Case n = 3: We have S3 = {1, 2, 3} and N3 = {{3}, {2, 1}, {1, 1, 1}}.

(i) For n = {3}, we have Q(n) = QS3 and words(n) = {3}, then using (3.10);
w(n) = P(X1 = X2 = X3) = ρ3,0.

(ii) For n = {2, 1}, we have Q(n) = Q12|3 [3] and words(n) = {(2, 1), (1, 2)}, then
w(n) = P(Xe = Xk , Xl) = ρ2,0ρ3,2 + ρ3,1 ; e, k, l ∈ S3.

(iii) For n = {1, 1, 1}, we have Q(n) = Q1|2|3 and words(n) = {(1, 1, 1)}, then
w(n) = P(X1 , X2 , X3) = 3!ρ2,1ρ3,2 .

Therefore, Q(S3) =
⋃

n∈N3
Q(n) =

{
QS3 ,Q12|3 [3],Q1|2|3

}
. Substitute the above

results into (3.1) or (3.6) to get the joint distribution P(X1 ∈ A1,X2 ∈ A2,X3 ∈ A3).
According to (3.7), the equality ρ3,0 + 3(ρ2,0ρ3,2 +ρ3,1)+ 3!ρ2,1ρ3,2 = 1 always holds.

Case n = 4: S4 = {1, 2, 3, 4} and N4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}.

(i) For n = {4}, we have Q(n) = QS4 and words(n) = {4}, then using (3.10);
w(n) = P(X1 = X2 = X3 = X4) = ρ4,0.
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(ii) For n = {3, 1}, we have Q(n) = Q123|4 [4] and words(n) = {(3, 1), (1, 3)}, then
w(n) = P(Xe = Xk = Xl , Xr) = ρ3,0ρ4,3 + ρ4,1 ; e, k, l, r ∈ S4.

(iii) For n = {2, 2}, we have Q(n) = Q12|34 [3] and words(n) = {(2, 2)}, then
w(n) = P(Xe = Xk , Xl = Xr) = 2ρ2,0ρ4,2.

(iv) For n = {2, 1, 1}, Q(n) = Q12|3|4 [6] and words(n) = {(2, 1, 1), (1, 2, 1), (1, 1, 2)};
w(n) = P(Xe = Xk , Xl , Xr) = 2(ρ2,0ρ3,2ρ4,3 + ρ3,1ρ4,3 + ρ2,1ρ4,2).

(v) For n = {1, 1, 1, 1}, we have Q(n) = Q1|2|3|4 and words(n) = {(1, 1, 1, 1)}, then
w(n) = P(X1 , X2 , X3 , X4) = 4!ρ2,1ρ3,2ρ4,3.

Thus, Q(S4) =
{
QS4 ,Q123|4 [4],Q12|34 [3],Q12|3|4 [6],Q1|2|3|4

}
. Substitute the results

into (3.1) or (3.6) to get the joint distributionP(X1 ∈ A1,X2 ∈ A2,X3 ∈ A3,X4 ∈ A4).
According to (3.7), the equality

∑
n∈N4
|P(n)|w(n) = 1 is always true.

Note that, to calculate w(n), for example, when n = {1, 1, 1, 1}, instead of applying (3.9)
over 4! permutations, we used (3.10) over one word and multiplied it by replications.

A particular case of the GDP, when the distribution H is Beta(a, b), is BTPP(a, b,G0),
which is an extension of the DP. Ishwaran and Zarepour (2000) obtained the probability
of drawing a sample of identical data points as ρn,0 = a⌈n⌉ξ−1

n , where ξn = (a+b)⌈n⌉−b⌈n⌉;
a⌈n⌉ = a(a + 1) . . . (a + n − 1) and a⌈0⌉ = 1. We are applying Theorem 3.1 to get the BTPP
joint distribution, where Mi, j = Γ(a + b)Γ(a)−1Γ(b)−1Γ(a + b + i + j)−1Γ(a + i)Γ(b + j) =
a⌈i⌉b⌈ j⌉/(a + b)⌈i+ j⌉ and ρn, j = a⌈n− j⌉b⌈ j⌉ξ−1

n . According to Proposition 3.1, each E ∈ P(n) is
weighted as

w(n) =
bm

b⌈n⌉

m∏
ι=1

a⌈nι−1⌉τa,b
m (n) , (3.11)

where by letting f (k) = (b + 1)⌈k−1⌉ ξ−1
k and ηι =

∑ι
j=1 nσ( j),

τa,b
m (n) =

m∏
ι=1

(nι + a − 1)
d∏

i=1

ri!
∑

words(n)

m∏
ι=1

f (ηι) .

For the DP with a = 1, we have a⌈k⌉ = k!, f (k) = k−1. Using Lemma 3.1 in Miller (2019),∏d
i=1 ri!

∑
words(n)

∏m
ι=1 η

−1
ι =

∏m
ι=1 n−1

ι . Thus, τ1,b
m (n) = 1 and

w(n) =
bm

b⌈n⌉

m∏
ι=1

(nι − 1)! . (3.12)

The weight (3.12) coincides with that presented by Blackwell and MacQueen (1973)
and the Blackwell-MacQueen joint distribution can then be obtained as a particular
case of Theorem 3.1.
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Examples 3.2. Using Example 3.1 for n = 3, we can obtain the BTPP joint distribution.
According to (3.11), w({3}) = a⌈3⌉ξ−1

3 , w({2, 1}) = ab(a+1)(ab+ξ2)ξ−1
2 ξ
−1
3 , and w({1, 1, 1}) =

3!a2b2(b + 1)ξ−1
2 ξ
−1
3 , while (3.12) gives the DP weights w({3}) = 2(b + 1)−1(b + 2)−1,

w({2, 1}) = b(b + 1)−1(b + 2)−1, and w({1, 1, 1}) = b2(b + 1)−1(b + 2)−1.

Remark 2 (Moments). Let Kn be the number of distinct values among a sample of size n
from the GDP. According to the literature on the GDP, only the probability of distinct
and identical observations has been studied (see (2.6) and (2.7)). In general, we can
present the probability of appearing Kn = m; 1 ≤ m ≤ n as

P(Kn = m) =
∑

n∈Nn;|n|=m

|P(n)|w(n). (3.13)

Therefore, E[Kn] =
∑n

m=1 mP(Kn = m) gives the expectation of the number of distinct
values. Also, for every n, the raw moment E[Gn(·)] is E[Gn(·)] =

∑n
m=1P(Kn = m)Gm

0 (·).
Consequently, E[G(·)] = P(K1 = 1)G0(·) = G0(·), and

Var(G(·)) = ρ2,0G0(·)(1 − G0(·)) , (3.14)

where P(K2 = 1) = 1 − P(K2 = 2) = ρ2,0.

We can evaluate the quantity and expectations of distinct values by conducting
a simulation experiment for GDP samples. The graphical representation in Figure 1
shows cases with significant variations in expectations across different distribution
types of H. Figure 1 shows that the number of distinct values increases with sample
sizes, which is influenced by the ρ2,0 values in variance. A small ρ2,0 implies that G
closely aligns with its mean G0, presenting many distinct values. A closer examination
of histograms reveals the convergence of G towards the central measure G0 as ρ2,0
decreases.
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Figure 1: Histograms of samples from GDP with different types of H: the green histograms:
H=Uniform(0,1) with ρ2,0 = 0.5; the black histograms: the truncated normal distribution over (0, 1) with
mean 0 and standard deviation 0.2, i.e., H=TN(0, 0.2) withρ2,0 = 0.143; the blue histograms: H=Beta(0.1,72)
with ρ2,0 = 0.008. (Above) The center measures are the standard normal distributions; the red lines are
their densities. (Below) The center measures are the standard uniform distributions; the red lines are their
densities. (Left above) The expectation of the number of distinct values. (Left below) The number of
distinct values in large samples from the GDP.

4 Generalized Pólya urn Mechanism for the GDP

Let X−n = {X1, . . . ,Xn−1} be a set of a random sample of size n−1 from GDP(H,G0) with
the nonatomic G0. Since P(Xi = X j) , 0 for i , j, the GDP exhibits discreteness, i.e.,
by drawing a sample from the process, repetition of observations is expected, and only
some distinct values will appear in X−n. Let X∗m =

{
X∗1, . . . ,X

∗
m

}
be the set of distinct

values among X−n, and #X∗r = nr be the number of repetitions of X∗r;
∑m

r=1 nr = n − 1.
Distinct values with repetitions are analogous to a partition E ∈ P(n) ⊂ P(Sn−1) with
blocks

E1 =
{
e1, . . . , en1

}
, . . . ,Em =

{
en−nm , . . . , en−1

}
, (4.1)

where sizes n = {n1, . . . ,nm}. Each block Eι in (4.1) contains precisely the repetition
indices for X∗ι . For example, block E1, contains indices of draws Xe1 , . . . ,Xen1

, which
share a single distinct value, X∗1.

The GDP can be characterized by a generalized PUS mechanism using the above
knowledge and the concept of conditional probabilities. Suppose X−n has been drawn
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from the GDP(H,G0). A newly drawn observation Xn, is equal to one element of X∗m
or drawing from the center measure G0 as a new distinct value denoted by X∗m+1. Our
approach to these two cases will be as follows:

(i) For Xn ∈ X∗m, such as Xn = X∗r; r ≤ m, we have a sample X = {X1, . . . ,Xn} and a set
of distinct values X∗m with iterations nr = {n1, . . . ,nr + 1, . . . ,nm}. The new state is
precisely analogous to one partition of P(nr) ⊂ P(Sn), with probability

w(nr) =
∑

i1,..., im
distinct

E
[
γir

m∏
ι=1

γnι
iι

]
. (4.2)

(ii) For Xn < X∗m, it takes on a new distinct value drawn from G0 denoted by X∗m+1.
Thus, we have a sample X = {X1, . . . ,Xn} and a set of distinct values X∗m+1 =
X∗m ∪ {X∗m+1} = {X

∗

1, . . . ,X
∗
m,X∗m+1} with iterations n+ = {n1, . . . ,nm, 1}. The new

state is precisely analogous to one partition of P(n+) ⊂ P(Sn), with probability

w(n+) =
∑

i1,...,im+1
distinct

E
[
γim+1

m∏
ι=1

γnι
iι

]
. (4.3)

The weights (4.2) and (4.3) can be calculated immediately by (3.10). Since
∑
∞

j=1 γ j = 1
a.s., then 1−

∑m
r=1 γir =

∑
j<I γ j a.s., where I = {i1, . . . , im} is a set of distinct indices. Thus,

w(n) = E
∑

i1,...,im
distinct

m∏
ι=1

γnι
iι

(
m∑

r=1

γir + 1 −
m∑

r=1

γir) =
m∑

r=1

w(nr) +w(n+). (4.4)

Based on Pitman’s terminology, w(n) is an exchangeable partition probability function
(EPPF), a symmetric function of n. Now, as with the generalized PUS representations
for the DP and the Pitman-Yor process (Pitman , 1995, 1996), we form the generalized
PUS for the GDP as follows,

X1 ∼ G0;

Xn | X1, . . . ,Xn−1

= X∗r with probability w(nr)
w(n)

∼ G0 with probability w(n+)
w(n)

. (4.5)

In particular, for BTPP(a, b,G0) we derive the PUS by (4.5) where

w(nr)
w(n) =

nr+a−1
b+n−1

τa,b
m (nr)
τa,b

m (n)
, w(n+)

w(n) =
b

b+n−1
τa,b

m+1(n+)

τa,b
m (n)

.

Accordingly, the Blackwell-MacQueen urn scheme (2.1) is accurately reflected for a = 1,
whereas we have τ1,b

m (n) = τ1,b
m (nr) = τ1,b

m+1 (n+) = 1 using Lemma 3.1 in Miller (2019).
By (4.5), the GDP predictive distribution is emanated as

P(Xn ∈ · | X1, . . . ,Xn−1) =
w(n+) G0(·) +

∑m
r=1 w(nr) δX∗r (·)

w(n)
. (4.6)
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Moreover, we can obtain the joint marginal distribution (3.1) by multiplying n succes-
sive conditional distributions (4.6) as

P(X1 ∈ A1, ...,Xn ∈ An) =
n∏

i=1

P(Xi ∈ Ai | X1, . . . ,Xi−1) . (4.7)

Let X−i = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn} be X excluding Xi, with |X−i| = n−1 for i = 1, . . . ,n,
and denote its set of distinct values by X∗m = {X∗1, . . . ,X

∗
m}with iterations n = {n1, . . . ,nm},

where
∑m
ι=1 nι = n−1. The state of X−i (i.e., its distinct values and iterations) is analogous

to one partition of P(n). The above discussion is relevant since the weight only relates
to the number of blocks m and their sizes n (see Remark 1). Assume that X−i is taken
into account. The observation Xi will either be equal to one element X∗r ∈ X∗m; r ≤ m
with the state probability (4.2) or drawn from G0 and treated as a new distinct value
denoted by X∗m+1 with the state probability (4.3). Thus, the conditional distribution of
Xi given X−i is represented by

P(Xi ∈ · | X−i) = P (Xn ∈ · | X1, . . . ,Xn−1) . (4.8)

According to Theorem 3.1, the joint distribution of a random sample from the GDP is
a countable mixture of distributions QE’s over each E ∈ P(Sn) with weights wE’s, and
(3.7) has to be satisfied. For n ∈ Nn, let E ∈ P(n) be one partition of Sn defined in (2.8)
with m blocks. Component QE can be rewritten as

∏m
ι=1 G0

(
X∗ι
)∏

j∈Eι δX∗ι (X j) based on
the above discussion. In addition, the drawing mechanism from QE can be represented
as

{{X∗ι ∼ G0,X j = X∗ι ; j ∈ Eι}; ι = 1, . . . ,m}.

Therefore, observations are classified into m clusters

{{Xe1 , . . . ,Xen1
}, . . . , {Xen−nm+1 , . . . ,Xen}}, (4.9)

which share X∗m with iterations n. All QE; E ∈ P(n) make the same number of distinct
values, iterations, and the weight w(n) = P

(
#X∗1 = n1, ..., #X∗m = nm

)
, but observations

are classified into different indices. The exchangeability property for the GDP is re-
inforced by (4.7) and (4.8), where the sequence of observations from GDP(H,G0) is
infinitely exchangeable. That is, for every n, the joint distribution of the original order
is the same as that of (Xσ(1), . . . ,Xσ(n)) for any permutation (σ(1), . . . , σ(n)) of Sn, as

P(X1 ∈ A1, . . . ,Xn ∈ An) = P(Xσ(1) ∈ A1, . . . ,Xσ(n) ∈ An) . (4.10)

Alternatively, the de Finetti representation of infinitely exchangeable sequences can be
derived directly from (2.3) as

P(X1 ∈ A1, . . . ,Xn ∈ An) =
∫ n∏

i=1

G(Ai) G(dG) ,
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in which the probability distribution G := GDP(H,G0) exists, serves as a prior measure
for G, and is often known as the de Finetti measure such that

Xi | G
iid
∼ G, i = 1, . . . ,n

G ∼ GDP(H,G0), (4.11)

which makes (4.11) a nonparametric Bayesian model for X1, . . . ,Xn.

5 Pólya urn Gibbs Sampler

Let Y = {Y1, . . . ,Yn} be a conditionally independent data set distributed by f (Yi | Xi),
which is parametrized by X from the model (4.11), and let yi and xi be the observed
values of Yi and Xi, respectively. The model then specifies hierarchically as

Yi | Xi = xi
ind
∼ f (yi | xi), i = 1, . . . ,n

Xi | G
iid
∼ G

G | H,G0 ∼ GDP(H,G0), (5.1)

representing a GDP mixture model (MacEachern and Müller , 1998). Based on the gen-
eralized PUS (4.5), the following theorem offers the conditional posterior distribution
of Xi given X−i and Y and displays the Gibbs sampling scheme.

Theorem 5.1. For i ∈ Sn, the conditional posterior distribution of Xi | X−i,Y is

Xi | X−i,Y ∼ q∗0Gi(·) +
m∑

r=1

q∗rδX∗r (·) . (5.2)

Here, Gi(·) = f (Yi | Xi)G0(dXi)/
∫

f (Yi | Xi)G0(dXi), q∗0 = cw(n+)
∫

f (Yi | Xi)G0(dXi), and
q∗r = cw(nr) f (Yi | X∗r), where c is subject to the constraint

∑m
r=0 q∗r = 1.

Proof. We have f (Y | X) =
∏n

j=1 f (Y j | X j), and f (X) = f (X−i) f (Xi | X−i), where
f (Xi | X−i) is based on the generalized PUS in (4.8). Therefore,

f (Xi | X−i,Y) =
f (X) f (Y | X)

f (X−i,Y)
=

f (Yi | Xi) f (Xi | X−i)∫
f (Yi | Xi)d f (Xi | X−i)

=
w(n+) f (Yi | Xi)G0(dXi) +

∑m
r=1 w(nr) f (Yi | X∗r)δX∗r (dXi)

w(n+)
∫

f (Yi | Xi)G0(dXi) +
∑m

r=1 w(nr) f (Yi | X∗r)
.

The proof is complete, where the constant c−1 is the denominator of the last equation. □

Remark 3. Let

Yi | Xi ∼ f ; Xi ∼ G0 , (5.3)
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and

Yi | Xi ∼ f ; Xi ∼ δX∗r , (5.4)

be two Bayesian models. The posterior distribution (5.2) is a mixture of distributions:

(i) The baseline measure Gi(·) is the posterior distribution of Xi given the observation
Yi if the prior of Xi is the center measure G0, i.e., Gi(·) is the posterior distribution
of Xi | Yi in (5.3). The weight q∗0 is proportional to the marginal distribution of Yi
in (5.3) multiplied by the resulting state probability of X in (4.3).

(ii) The point mass measure δX∗r (·) is the posterior distribution of Xi given Yi if the
prior of Xi is the point mass on X∗r, i.e., δX∗r (·) is the posterior distribution of Xi | Yi
in (5.4). The weight q∗r is proportional to the marginal distribution of Yi in (5.4)
multiplied by the resulting state probability of X in (4.2).

Similar to Ishwaran and James (2001), we first insert the GDP into the Bayesian
approach through the following basic Gibbs sampling algorithm:

Algorithm.

Step 1. Start by choosing the initial values of X. Usually, we sample X(0)
i , i = 1, . . . ,n

individually from the posterior distribution Gi(·) shown above.

Step 2. Sample X by drawing sequentially from the conditional posterior distribution of
(Xi | X−i,Y) in (5.2) for i = 1, then i = 2, and so on up to i = n. At each stage of the
drawing, the X−i contains the most recent values of elements.

Step 3. Return to step 2 until convergence.

The algorithm is a straightforward posterior sampler with the convergence discus-
sion in Escobar (1994) and Escobar and West (1995). We slightly generalize the Gibbs
sampler algorithm to conform to the semiparametric hierarchical model

Yi | Xi = xi, φ
ind
∼ f (yi | xi, φ), i = 1, . . . ,n

Xi | G
iid
∼ G

φ ∼ π

G | H,G0 ∼ GDP(H,G0). (5.5)

Here the model depends on an additional finite-dimensional parameter φ distributed
by π(φ). The conditional posterior distributions of Xi and φ are given by

Xi | X−i, φ,Y ∼ q∗0Gi(·) +
m∑

r=1

q∗rδX∗r (·) , (5.6)
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and

φ | X,Y ∼ ςπ(·)
n∏

i=1

f (Yi | Xi, φ) , (5.7)

where Gi(·) = f (Yi | Xi, φ)G0(·)/
∫

f (Yi | Xi, φ)G0(dXi), q∗0 = cw(n+)
∫

f (Yi | Xi, φ)G0(dXi),
q∗r = cw(nr) f (Yi | X∗r, φ),

∑m
r=0 q∗r = 1, and ς−1 =

∫ ∏n
i=1 f (Yi | Xi, φ)π(φ)dφ. The Gibbs

sampler for the semiparametric model (5.5) may be modified by Step 2 to

Step 2′. Sample X by drawing from (Xi | X−i, φ,Y) in (5.6) for i = 1, then i = 2, and so on
up to i = n. At each stage, the X−i contains the most recent values of elements.

Step 2′′. Sample φ by drawing from the conditional distribution of (φ | X,Y) in (5.7).

The computation of weights q∗0, q
∗

1, . . . , q
∗
m and drawing samples from Gi(·) are di-

rect. The Gibbs sampler can be implemented easier with the conjugacy of (5.3). It
requires only computing the weights and determining the posterior distribution Gi(·),
as illustrated in the following GDP mixture models.

(i) Binomial/Beta GDP Mixture Model:
Let Yi | Xi ∼ Bin (Li,Xi) (i = 1, . . . ,n) and G0 = Beta(a, b) in the nonparametric
Bayesian model (5.1), where the parameters Li and Xi denote the number of
Bernoulli trials and the probability of success for the i-th binomial observation,
respectively. Using Remark 3, for the Gibbs sampler implementation, we obtain
Gi(·) = Beta(a + Yi, b + Li − Yi), q∗0 = cw(n+)B−1(a, b)B(a + Yi, b + Li − Yi), and

q∗r = cw(nr)X∗r
Yi(1 − X∗r)Li−Yi , with c−1 =

∑m
j=0 c−1q∗j and B(a, b) =

∫ 1
0 ta−1(1 − t)b−1dt.

(ii) Poisson/Gamma GDP mixture models:
Let Yi | Xi ∼ Poi (Xi) with the mean parameter Xi (i = 1, . . . ,n), and G0 =
Gamma(a, b). For the Gibbs sampler, we drive the baseline posterior Gi(·) =
Gamma(Yi+a, 1+b), q∗0 = cw(n+)Γ(Yi+a)Γ−1(a)ba(b+1)−Yi−a and q∗r = cw(nr)X∗r

Yie−X∗r ,
with c−1 =

∑m
j=0 c−1q∗j.

(iii) Normal/Normal GDP mixture models:
Let Yi | Xi, τ ∼ Nor (Xi, τ) (i = 1, . . . ,n), G0 = Nor

(
µ0, τ0

)
, and τ ∼ Gamma (a, b) in

(5.5), where the parameters Xi and τ denote the mean and the inverse-variance of
the normal distribution, respectively, and µ0, τ0, a, b are known. To implement the
Gibbs sampler, we obtain Gi(·) = N(µ′, τ′), q∗0 = cw(n+)τ1/2

1 exp(−0.5τ1(Yi − µ0)2),
and q∗r = cw(nr)τ1/2exp(−0.5τ(Yi −X∗r)2), with c−1 =

∑m
j=0 c−1q∗j, µ

′ = τ′(τYi + τ0µ0),

τ′ = (τ + τ0)−1, τ−1
1 = (τ−1 + τ−1

0 ). Also, the posterior distribution of τ is given by
τ | X,Y ∼ Gamma(a + n/2, b +

∑
(Yi − Xi)/2).

6 An Empirical Study for Binomial Data

As mentioned, the Binomial/Beta model assumes that each experiment is a Binomial
draw with unknown proportions and fixed sample sizes for several groups. An illus-
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trative example to fit this model is a study conducted by Beckett and Diaconis (1994).
The data set is binary strings generated by rolling thumbtacks. The flicks are presumed
independent conditionally on the tack. There are 320 thumbtacks flicked 9 times each.
The data set is available in Table 1 of Liu (1996), showing the observations Yi for
i = 1, . . . , 320. The output variable Yi is the number of times each tack landed point
up. A Binomial/Beta model was fitted to analyze the data set by employing a Dirichlet
process prior, with G0 to be a standard uniform center distribution. Several precision
parameter values were tested, revealing that the approximate posterior mean displayed
bimodality for some precision parameter options, although with less pronounced bi-
modality for others. One can find the posterior densities of the Binomial/Beta GDP
mixture model, where Yi | Xi ∼ Bin (9,Xi) and G0 = Beta(1, 1). In which Gi(·) , q∗0, and q∗r
are reduced to Beta(1 + Yi, 10 − Yi), cw(n+)B(1 + Yi, 10 − Yi), and cw(nr)X∗r

Yi(1 −X∗r)9−Yi ,
respectively.

We performed a sensitivity analysis by incorporating various H forms with supports
on (0, 1). Our study noticed a significant difference in examining the estimated marginal
posteriors for each Xi, where i = 1, . . . ,n. As illustrated in Figure 2, the observed
bimodality is more pronounced for higher values of ρ2,0 = 0.5 (i.e., H=uniform(0, 1)
shown in Figure 1), suggesting a limited number of distinct values. The bimodality
reduces as ρ2,0 decreases, and the number of distinct values increases. This trend
continues to improve as ρ2,0 = 0.143 (i.e., H=TN(0, 0.2) shown in Figure 1), as the
updated posterior distributions show agreement and have moved from bimodal to
unimodal.

Figure 2: Posterior densities of Xi of the Binomial/Beta GDP mixture model, where G0 = Beta(1, 1); The
red lines: X50; the black lines: X100; the blue lines: X200. (Left): H=uniform(0, 1); (Right): H=TN(0, 0.2).

7 Concluding Remarks

The partition analysis offers an adaptable strategy for constructing the joint distribution
of a random sample from the GDP process. Representing the Pólya urn scheme for
the GDP makes the process more beneficial for nonparametric Bayesian purposes.
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The distribution can be formed as a mixture distribution of countable components,
and it is thus straightforward to implement in most applications. The construction
delivers the probability of appearing any number of distinct values among a sample
from the process. The expectation of this number is accessible. As a particular case,
we find the distribution for the beta two-parameter process and discuss it for the DP,
which gives the Blackwell-MacQueen urn scheme. To highlight the theoretical parts
of modeling topics, examples of the Gibbs sampler implementation were presented for
Binomial/Beta, Poisson/Gamma, and Normal/Normal GDP mixture models. The paper
represented the Hjort path through the Sethuraman random probability measure for
the GDP. Future studies are demanding to give directions in increasing distributions’
flexibility, in particular, extensions on the stick-breaking construction since the sequence
V1,V2, . . . can be selected from any prior having support over (0,1), not restricted only
to the Beta distribution. Further features of our proposed distribution need more work
which is the aim of future study.
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