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Abstract. This paper presents two new insurance risk models for analyzing the ruin
probabilities. Firstly, we restrict ourselves to the classical risk model contains heavy-
tailed distribution of individual net losses and changeable premium income rates.
Under certain technical assumptions, some asymptotic expansions and recursive for-
mulas are obtained for the ruin probabilities. In the second risk model, we assume
that the different classes of the portfolio business are dependent and compute the fi-
nite time ruin probability based on the discretization of the distribution function. We
present some numerical examples in the portfolio of business and show that the value
of ruin probability increases as dependence level increases. Moreover, the sensitivity of
the results are investigated with respect to the parameters of Weibull and Exponential
distributions.
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1 Introduction

Ruin theory is concerned with the excess of the income (with respect to a portfolio
of business) over the outgo, or claim paid and ruin probability is a main area in this
field. In the risk theory, work concerning the financial surplus of insurance companies
in continuous time has been proceeding for nearly a century. The evaluation of ruin
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probabilities strongly depends on the distribution of the claim amounts. In its simplest
form, when certain events occur, an insurance contract will provide the policyholder
the right to claim all or a portion of the loss. In exchange for this entitlement, the
policyholder pays a specified amount called the premium and the insurer is obligated
to honor its promises when they come due. In order to ensure that they will be able
to pay its promised obligations, the insurance company sets aside amount called the
reserve or surplus from which they can draw from when claims are due.

Discrete-time risk models themselves are also interesting stochastic models both in
theory and in application, and some continuous time risk models can be approximated
by discrete-time risk models. See, for example, Asmussen (2010) and references therein.
Cai (2002) considered a dependent model for rates of interest, in which the rates are
assumed to have an AR(1) structure. As for asymptotic formulas for ruin probabilities
in risk model, Tang and Tsitsiashvili (2003) derived asymptotic formulas for the finite
time ruin probability when the interest rates are independent and identically distributed
(i.i.d.) random variables and loss distribution is heavy-tailed. Cai and Dickson (2004)
computed the finite and infinite time ruin probabilities in a discrete-time model with
a Markov chain interest model. Chen and Su (2004) obtained a precise asymptotic
estimate for the finite time ruin probability in a discrete-time risk model, in which the
risk model is assumed to be heavy-tailed distribution.

However, such an independent assumption was proposed mainly for the mathe-
matical tractability rather than the practical relevance. Therefore, in recent years, more
and more researchers have started to improve the model through introducing suitable
dependence structures between the insurance risk and the financial risk. Chen (2011)
computed the finite time ruin probability with dependent insurance and financial risks
in a risk model. Yang et al. (2012) considered the discrete-time risk model with
insurance risk and financial risk in some dependence structures to compute the ruin
probabilities. Yang et al. (2014) derived a precise asymptotic formula for the ruin
probabilities in an insurance risk model that both insurance risk and financial risk
are taken into account. Sun and Wei (2014) considered a dependent insurance risk
model in which the insurer makes both risk free and risky investments and obtained
the ruin probabilities. Yang and Konstantinides (2012) derived the precise estimates
for ruin probabilities in a discrete-time insurance risk model with dependent financial
and insurance risks under the assumption that the distribution of insurance risk within
one time period is consistently varying-tailed. Liu and Wang (2016) computed the
ruin probabilities of a discrete-time risk model with dependent insurance and financial
risks. Liu et al. (2018a) computed the finite time ruin probability of a discrete-time risk
model with GARCH discounted factors and dependent risks when the common dis-
tribution of claim sizes is heavy-tailed distribution. Liu et al. (2018b) obtained some
asymptotic estimates for the ruin probabilities of the discrete-time risk model with
dependent claim sizes and dependent relation between insurance risks and financial
risks.

Jig et al. (2020) considered a discrete-time risk model with dependence structures
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and computed the asymptotic estimates for finite time ruin probability with CMC sim-
ulations. Santana and Rincón (2020) obtained the approximations of ruin probability
in a discrete-time risk model. Pachon et al. (2021) investigated the discrete-time risk
model to show the relationships with respect to the continuous time case. Nakade and
Karim (2022) obtained the equilibrium equations on steady-state probability in the
discrete-time Markov process. Bazyari (2022a) derived a recursive expression for the
finite time ruin probability in a generalized dual Binomial risk model where the peri-
odic premium is one. Bazyari (2022b) derived the ruin probabilities in a discrete-time
risk process with homogeneous markov chain and presented some numerical illustra-
tions for the results. Bazyari (2023a) studied the discrete-time risk process with capital
injections and reinsurance to compute the ruin probabilities.

In the present paper, our motivation is to find the more general recursive formulas
for ruin probabilities and we do this by considering the asymptotically independent
property of insurance risk random variables and their density functions. We consider
two constructions of risk models and study the ruin probabilities in these risk models
with assumption of asymptotically independent and dependent classes between the
claim amounts of insurance risks. In the first model, we assume that the individual
net losses belong to a heavy-tailed class of distributions and in the second model the
discrete-time risk model with correlated classes of business is examined.

The remainder of this paper is organized as follows. Section 2 is concerned with
structure of models. Moreover, we give some definitions on heavy-tailed distributions
and the results on the aggregation of dependent random variables. Section 3 deals with
the main theorem and some lemmas for computing the asymptotic ruin probabilities
for the first risk model. In Section 4, we present the proof of main theorem. Also, two
real examples are given to compute the numerical asymptotic ruin probabilities. In
Section 5, we compute the finite time ruin probability and study two dependent class
models in the portfolio of business. In addition, we give the numerical examples for
different statistical distributions to obtain the ruin probabilities. Finally, conclusion is
given in Section 6.

2 Structure of Models: Description and Notations

a) Let u be a positive real number, {Un,n = 1, 2, . . . } be a sequence of random variables
and {rn ≥ 0,n = 1, 2, . . . } be a sequence non-negative real numbers. Consider the
following insurance risk process:

U0 = u, Un = Un−1(rn + 1) − Xn, n = 1, 2, . . . (2.1)

In the context of insurance risk modeling, Un stands for the insurance company’s
surplus at the end of period n, u represents the initial capital at time 0, rn(≥ 0) denotes
the premium income rate during the n th year, and Xn denotes the net loss for the n th
year, which are calculated at the end of n, n = 1, 2, . . . . In fact, Xn captures the insurance
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risk, i.e., the total claim amount minus the total premium incomes, during period n.

The risk model (2.1) is an extension of surplus process of the company which given
in Tang (2004), where he considered the constant r(≥ 0) as a constant interest rate, but
in our paper we have considered it as a general flexible quantity which might change
every year.

Formally, the ruin probability within finite time horizon [0,n] is defined as

ψ(u,n) = P
(

min
0≤i≤n

Ui < 0|U0 = u
)
, u ≥ 0, (2.2)

and the infinite ruin probability and infinite time horizon is defined as

ψ(u) = P
(

min
0≤i≤∞

Ui < 0|U0 = u
)
, u ≥ 0. (2.3)

We note that obviously ψ(u,n) < ψ(u). However, the infinite time ruin probability
may be sometimes also relevant for the finite time case (see Bazyari (2023b) for more
details).

b) Another type of the risk process is presented. The individual model is a natural
construct for a life insurance portfolio or a pension fund. (At a given time, the insureds
of a portfolio and the pension fund’s members are well known.) Their characteristics,
sex, age, face amounts, etc., are also available as are good estimates of the needed bio-
metric functions (probability of death, etc.). However, there is an implicit assumption
underlying the use of an individual model in these contexts: the group is closed. Be-
ginning with an initial surplus u, when time is measured in discrete units, the process
is a discrete one and the surplus at the end of time period n is defined by

Rn = u + cn − Sn, (2.4)

where Sn =
∑n

k=1 Yk is the aggregate claims constitute a compound Poisson process, c is
the annual premium income constant over each period and Yk, k = 1, 2, . . . ,n represents
the claim amount in period k, which is a sequence of independent and identically
distributed (i.i.d.) random variables with E(Yk) − µY < c. The probability distribution
and density function of random variable Yk, k = 1, 2, . . . ,n, are denoted by F(y) and
f (y), respectively.

We can rewrite the process (2.4) as follows:

Rn = u + (c − Y1) + (c − Y2) + · · · + (c − Yn). (2.5)

Let T be the time of ruin defined as T = inf{n : Rn < 0}. If Rn ≥ 0, then T = ∞ for all
k = 1, 2, . . . . Formally, the ruin probability within finite time horizon [0,n] is defined as

ψ′(u, 1,n) = P
(
T ≤ n|R0 = u

)
, u ≥ 0,

where R0 = u stands for the insurance company’s surplus at time n = 0. Also, the
infinite ruin probability and infinite time horizon is defined as

ψ′(u) = P
(
T < ∞|R0 = u

)
, u ≥ 0.
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Note that, the finite and infinite time horizon non-ruin probabilities are given by
ϕ′(u, 1,n) = 1 − ψ′(u, 1,n) and ϕ′(u) = 1 − ψ′(u), respectively. Given equation (2.5), we
have

ϕ′(u, 1,n) = P
(
R1 ≥ 0,R2 ≥ 0, . . . ,Rn ≥ 0

)
=

(
Y1 ≤ u + c,Y1 + Y2 ≤ u + 2c, . . . ,Y1 + Y2 + · · · + Yn ≤ u + nc

)
.

A closed formula for computing the finite time ruin probability will be given in Section
5.

2.1 Ruin probabilities

We will obtain the asymptotic analysis results for finite and infinite ruin probabilities
when it is assumed to incorporate dependence between the individual net losses.
Consider the surplus process given in equation (2.1), we get that

U0 = u, Un = uΠn
k=1(rk + 1) −

n∑
k=1

XkΠ
n
i=k+1(ri + 1), n = 1, 2, . . . ,

for all u ≥ 0. Therefore, we can rewrite equations (2.2) and (2.3) based on the discounted
values of the surplus process as

ψ(u,n) = P
(

min
0≤i≤n

Πi
k=0(rk + 1)−1Ui < 0

)
= P

(
max
0≤i≤n

i∑
k=0

XkΠ
k
j=0(r j + 1)−1 > u

)
, (2.6)

and

ψ(u) = P
(

min
0≤i≤∞

Πi
k=0(rk + 1)−1Ui < 0

)
= P

(
max
0≤i≤∞

i∑
k=0

XkΠ
k
j=0(r j + 1)−1 > u

)
, (2.7)

which we assume that X0 = 0 and r0 = 0. The computation of equations (2.6) and (2.7)
will be given in Section 3.

2.2 Preliminaries and some Definitions

The given definitions in this section will be sufficient to gain an overview of the work
in this paper and to understand the motivation behind the definitions. As such we
shall restrict ourselves in this section to considering non-negative random variables,
with distribution function F supported on the positive real axis [0,∞). In this paper, we
suppose that X1,X2, . . . form a sequence of identically distributed random variables,
upper tail independent with generic random variable X and heavy-tailed common
distribution F(x), for which

lim
x→∞

F(−x)
F̄(x)

= 0, (2.8)
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where F̄(x) = 1 − F(x). For random variable X, the distribution function satisfying
F̄(x) > 0 for all x ∈ (−∞,∞) is called heavy-tailed to the right, or simply heavy-tailed,
if E

(
eτX

)
=

∫
∞

0 eτxF(dx) = ∞ for all τ > 0. Hereafter, all limit relationships hold
for x tending to ∞ unless otherwise stated. For two positive functions A(.) and B(.), if
lim supx→∞

A(x)
B(x) ≤ 1, we write A(x) <∼ B(x), if lim infx→∞

A(x)
B(x) ≥ 1, we write A(x) >∼ B(x),

if both, A(x) ∼ B(x) and lim infx→∞
A(x)
B(x) ≤ lim supx→∞

A(x)
B(x) < ∞, we write A(x) ∼ B(x).

In the risk theory, heavy-tailed distributions are often used to model large claim
amounts and they play a key role in insurance and finance. We will restrict the insurance
risk distribution to some classes of heavy-tailed distributions.

Definition 2.1. A distribution F(x) on (0,∞) belongs to the long-tailed class L if for
some y > 0,

lim
x→∞

F̄(x − y)
F̄(x)

= 1.

One easily sees that, for every distribution F(x) ∈ L, there is a function a(.) such that
a(.) : [0,∞)→ [0,∞) and the followings hold simultaneously

a(x)→∞, a(x) = o(x), F̄(x ∓ a(x)) ∼ F̄(x), (2.9)

where o(x) is a symbol for a function of x that grows slowly than x, x → ∞, i.e.
limx→∞

o(x)
x = 0.

Definition 2.2. The distribution function F(x) on (0,∞) belongs to the subexponential
class S if and only if for some n = 2, 3, , . . . ,

lim
x→∞

F̄∗n(x)
F̄(x)

= n.

where F∗n denotes the n−fold convolution of function F. Subexponential distribution
functions are of interest in the theory of branching processes, and in queueing theory;
see for example, Pakes (1975) and Teugels (1975). Also, a distribution function K on
(−∞,∞) is still said to be subexponential if K(x)I(0≤x<∞) is subexponential, where IA
denotes the indicator function of A.

Definition 2.3. (Embrechts et al. (1997)). The distribution function F(x) on the real
number belongs to the dominatedly varying-tailed class V if F̄(x) = 1 − F(x) and for
some 0 < y < 1,

lim sup
x→∞

F̄(xy)
F̄(x)

< ∞.

Clearly, if F(x) ∈ V, then for every y > 0, we have

0 < lim inf
x→∞

F̄(xy)
F̄(x)

≤ lim sup
x→∞

F̄(xy)
F̄(x)

< ∞. (2.10)
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Definition 2.4. (Embrechts et al. (1997)). The distribution function F(x) belongs to the
consistently varying-tailed class C if and only if

lim
y→1

lim inf
x→∞

F̄(xy)
F̄(x)

= 1, or equivalently lim
y→1

lim sup
x→∞

F̄(xy)
F̄(x)

= 1.

Definition 2.5. (Embrechts et al. (1997)). The distribution function F(x) on the real
number belongs to the regularly varying-tailed class Rα if for all x, F̄(x) > 0, and for all
y > 0,

lim
x→∞

F̄(xy)
F̄(x)

= y−α,

holds for some 0 ≤ α < ∞.

Remark 1. If the distribution of random variable X belongs to class V ∩L, then for any
constant K, the distribution of random variable KX belongs to class V ∩ L.

Let the distribution F(x) be concentrated on (−∞,∞), for any η > 0, we set

F̄1(η) = lim inf
x→∞

F̄(xη)
F̄(x)

, F̄2(η) = lim sup
x→∞

F̄(xη)
F̄(x)

,

and, in the terminology of Bingham et al. (1987), we define two notations J+F and
J−F as the upper and lower index of the non-negative and nondecreasing function

f (x) =
(
F(x)

)−1
, x ≥ 0,

J+F = − lim
η→∞

log F̄1(η)
log(η)

, J−F = − lim
η→∞

log F̄2(η)
log(η)

.

Moreover, we call the notation J±F as the upper/lower index of F(x). From Tang and
Tsitsiashvili (2004), if for some α, such that 0 ≤ α < ∞, F ∈ Rα, then J±F = α; if for some
α and β with 0 ≤ α ≤ β < ∞, then α ≤ J+F ≤ J−F ≤ β, and if F ∈ V, then 0 ≤ J+F ≤ J−F < ∞.
For any distribution F(x) with 0 ≤ J−F ≤ ∞ and 0 < h ≤ J−F , from Proposition 2.2.1 given
in Bingham et al. (1987), there are positive constants r and x0 such that

F̄(xy)
F̄(x)

≤ ry−h, (2.11)

holds for all xy ≥ x ≥ x0.

2.3 Dependence Structure Between the Insurance Risks

We next introduce the dependence between the insurance risks via some restrictions
on their copula function.

Theorem 2.1. (Sklar’s theorem). Let FX1,X2(x1, x2) be the joint distribution function of two
random variables X1 and X2 with marginal distribution functions FX1(x1) and FX2(x2). Then
the dependence structure of two random variables X1 and X2 is determined by a bivariate copula
function C, such that

FX1,X2(x1, x2) = C
(
FX1(x1),FX2(x2)

)
.



172 A. Bazyari

(See Nelsen (2006) to prove this theorem). The copula function links the marginal
distributions together to form the joint distribution. In fact, the Sklar’s theorem allows
us to separate the modelling of the marginal distributions FX1(x1) and FX2(x2) from the
dependence structure, which expressed in C.

Definition 2.6. (Tail dependence). Let X = (X1,X2) be a two dimensional continuous
random vector. We say X is bivariate upper tail dependent if:

λU = lim
ν→1−1

P
(
X1 > F−1

X1
(ν)|X2 > F−1

X2
(ν)

)
> 0,

in case the limit exists. The notatons F−1
1 and F−1

2 denote the generalized inverse
distribution functions of X1 and X2, respectively. Consequently, we say X is bivariate
upper tail independent if λU equals to 0.

The following representation shows that tail dependence is a copula property. Thus,
many copula features transfer to the tail dependence coefficient such as the invariance
under strictly increasing transformations of the margins. For the continuous random
variable X = (X1,X2), straightforward calculation yields:

λU = lim
ν→1−1

1 − 2ν + C(ν, ν)
1 − ν

,

where C is a bivariate copula function (see Joe (1997) for more information).

Based on Resnick (2002), the asymptotic independence of two random variables
X1 and X2 is equivalent to the following

lim
x→∞

P
(
X1 > x,X2 > x

)
P(X1 > x)

= 0. (2.12)

In general, for the identically distributed random variables {Xi, i ≥ 1}, and for any i , j
and j ≥ 1, if

lim
x→∞

P
(
Xi > x,X j > x

)
P(Xi > x)

= 0, (2.13)

then we say {Xi, i ≥ 1} is asymptotically independent.

Assumption 2.1. Let X1,X2, . . . ,Xn be n dependent random variables with distri-
butions F1,F2, . . . ,Fn, respectively. We assume that

lim
xi∧x j→∞

P
(
Xi > xi,X j > x j

)
P(X j > x j)

= 0,

where xi ∧ x j = min{Xi,X j}.
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2.4 Some Results on the Aggregation of Dependent Random Variables

For a random variable Y, PY(t) = E(Yt), MY(t) = E(etY) and φ(t) = E(eitY) denote
the probability generating function, moment generating function and characteristic
function, respectively. Then, for random variables Y1,Y2, . . . ,Yk, we have

PY1,Y2,...,Yk(t1, t2, . . . , tk) = E
(
tY1
1 tY2

2 . . . tYk
k

)
,

MY1,Y2,...,Yk(t1, t2, . . . , tk) = E
(
et1Y1+t2Y2+···+tkYk

)
= PY1,Y2,...,Yk(e

t1 , et2 , . . . , etk),

φY1,Y2,...,Yk(t1, t2, . . . , tk) = E
(
ei(t1Y1+t2Y2+···+tkYk)

)
= PY1,Y2,...,Yk(e

it1 , eit2 , . . . , eitk).

Now, for k random variables Y1,Y2, . . . ,Yk, if S = Y1 + Y2 + · · · + Yk, then PS(t), MS(t)
and φS(t) are given as follow:

PS(t) = E(tS) = E
(
tY1
1 tY2

2 . . . tYk
k

)
= PY1,Y2,...,Yk(t, t, . . . , t),

MS(t) = E(etS) = E
(
et(Y1+Y2+···+Yk)

)
=MY1,Y2,...,Yk(t, t, . . . , t),

φS(t) = E(eitS) = E
(
eit(Y1+Y2+···+Yk)

)
= φY1,Y2,...,Yk(t, t, . . . , t).

By inverting φ(t) using the Fast Fourier Transform method, the probability distribution
function of S can be obtained. (see Embrechts et al. (1993) for the application of Fast
Fourier Transform method in insurance mathematics).

For i.i.d random variables Y1,Y2, . . . ,YN, let S = Y1 + Y2 + · · · + YN, then

φS(t) = E(eitS) = E
(
E
(
eit(Y1+Y2+···+Yk)

)
|N

)
= E

((
φS(t)

)N)
= PN

(
φY(t)

)
. (2.14)

This result can be extended to the multivariate case. Let S = S(1) + S(2) + · · · + S(m) and
S( j), j = 1, 2, . . . ,m, be the random sum of N( j) i.id. random variables Y( j)

k , k = 1, 2, . . . ,

i.e. S( j) =
∑N( j)

k=1 Y( j)
k . If the random variables Y( j)

k , j = 1, 2, . . . ,m, be dependent, then

φS(1),S(2),...,S(m)(t, t, . . . , t) = PN(1),N(2),...,N(m)(φY(1)(t1), φY(2)(t2), . . . , φY(m(tm)), (2.15)

and

φS(t) = φS(1),S(2),...,S(m)(t, t, . . . , t). (2.16)

3 Results for First Model

In this section, we present the main theorem and some lemmas associated with com-
puting the asymptotic ruin probabilities with asymptotic independence of individual
net losses. The proof of theorem will be given in Section 4.

Theorem 3.1. Let the individual net losses Xi, i = 1, 2, . . . , be identically distributed as generic
distribution function F(x) belongs to class V ∩ L such that J−F > 0. Using equations (2.8) and
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(2.13), we have

i) The asymptotic finite time ruin probability is given by

ψ(u,n) ∼ P
( n∑

k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
∼ P

( n∑
k=1

XkΠ
k
i=1(ri + 1)−1 > u

)
∼

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
, (3.1)

where X+ = XI(x>0).

ii) If for rk, k = 1, 2, . . . , sk = (rk + 1)−k and for some ζ, 0 < ζ <
J−F

1+J−F
, the conditions

∞∑
k=1

Πk
i=1(ri + 1)−ζ < ∞,

∞∑
k=1

sζk < ∞, (3.2)

hold, then the asymptotic infinite time ruin probability is given by

ψ(u) ∼ P
( ∞∑

k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
∼

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
. (3.3)

Proof. To prove this theorem, we first give the following lemmas.

Lemma 3.1. Suppose that F1(x) and F2(x) are two distribution functions concentrated on
(−∞,∞). Consider the convolution of these distribution functions on (−∞,∞) and let F(x) =
F1 ∗ F2(x). If F1(x) ∈ S and F̄2(x) <∼ cF̄1(x) for some c ≥ 0, then F̄(x) <∼ (1 + c)F̄1(x).

Proof. See Lemma 4.4 of Tang (2004). □

Lemma 3.2. Let {Xi, i ≥ 1} be a sequence of non-negative random variables with distribution
functions Fi(x) ∈ V ∩ L, i = 1, 2, . . . . If Assumption 2.1 holds, then

F1 ∗ · · · ∗ Fn(x) ∈ V ∩ L,

and for any fixed integer n ≥ 1, we have

P
( n∑

k=1

Xi > u
)
∼

n∑
i=1

P
(
Xi > u

)
. (3.4)
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Proof. To prove the first part, combine the Lemma 4.2 of Ng et al. (2002) and Lemma
1 of Geluk (2004). First, we prove equation (3.4) for two random variables X1 and X2
with distribution functions F1(x) and F2(x), respectively. By Assumption 2.1, we have

P
(
X1 + X2 > x

)
≥ F̄1(x) + F̄2(x) − P

(
X1 > x,X2 > x

)
∼ F̄1(x) + F̄2(x).

On the other hand, recalling the function a(.) in Section 2, by using equations (2.9) and
(2.10) and Assumption 2.1, we have

P
(
X1 + X2 > x

)
≤ F̄1(x − a(x)) + F̄2(x − a(x)) + P

(
X1 > a(x),X2 >

x
2

)
+ P

(
X1 >

x
2
,X2 > a(x)

)
∼ F̄1(x) + F̄2(x),

therefore, equation (3.4) is proved for two random variables. Now, to prove Equation
(3.4) for a sequence of non-negative random variables {Xi, i ≥ 1}, we can apply the same
method. □

Lemma 3.3. Let {Xi, i ≥ 1} be identically distributed as a generic distribution function F ∈
V ∩ L, such that J−F > 0. If equation (4.7) of Tang (2004) holds, then we have

lim
n→∞

lim
x→∞

sup
P
(∑
∞

k=n X+kΠ
k
i=1(ri + 1)−1 > u

)
P
(
X1(r1 + 1)−1 > u

) = 0, (3.5)

and

lim
n→∞

lim
x→∞

sup

∑
∞

k=n P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
P
(
X1(r1 + 1)−1 > u

) = 0. (3.6)

Proof. To prove this lemma, choose h1 such that h1 ∈
(
ζ, 1 − ζ

J−F

)
. Hence by condition

(3.2), it holds that
∑
∞

k=1 sh1
k < ∞, for all large n such that

∞∑
k=n

sh1
k < 1, and s1sh1−1

k > 1 f or all k ≥ n.

Then using the above inequalities and well-known Boole’s inequality, we have

P
( ∞∑

k=n

skX+k > u
)
≤ P

( ∞∑
k=n

skX+k >
∞∑

k=n

sh1
k u

)
≤ P

(
∪
∞

k=n

(
skX+k > sh1

k u
))

≤

∞∑
k=n

P
(
skX+k > s1sh1−1

k u
)
, (3.7)
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since
∑
∞

k=n sh1
k < 1, so that by multiplying u on both sides of the inequality, we get∑

∞

k=n sh1
k u < u, then for the first inequality P

(∑
∞

k=n skX+k > u
)
≤ P

(∑
∞

k=n skX+k >
∑
∞

k=n sh1
k u

)
.

Also we choose h1 > 0 such that h2 ∈
(

ζ
1−h1

, J−F
)
. Using equation (2.11) with h = h2 to

the right hand side of equation (3.7), for all large x > 0, we have

∞∑
k=n

P
(
skX+k > s1sh1−1

k u
)
≤ A1

∞∑
k=n

(
s1sh1−1

k

)h2
P
(
s1X1 > u

)
. (3.8)

Since the inequality (1 − h1)h2 > ζ holds, then by condition (3.2),
∑
∞

k=1

(
s1sh1−1

k

)−h2
< ∞.

Therefore, the inequalities (3.7) and (3.8) give the relation (3.5).

On the other hand, it is clear that for all x > 0, 0 < sk < 1 and all n such that k ≥ n,
we have the inequality:

P
( ∞∑

k=n

skXk > u
)
≤

∞∑
k=n

P
(
s1X+k > s1sh1−1

k u
)
.

The relation (3.6) is a consequence of inequality (3.8) and the convergence of the series∑
∞

k=1

(
s1sh1−1

k

)−h2
and this completes the proof. □

4 Proof of Theorem 3.1.

i) We know that {rn ≥ 0,n = 1, 2, . . . }, then for n ≥ 1, the inequality

n∑
k=1

XkΠ
k
i=1(ri + 1)−1

≤ max
1≤k≤n

k∑
i=1

XiΠ
i
j=1(r j + 1)−1

≤

n∑
k=1

X+j Π
k
i=1(ri + 1)−1,

holds. Thus, to prove the given asymptotic finite time ruin probability in equation
(3.1), we should prove that, for n ≥ 1, the two following relations

P
( n∑

k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
∼

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
, (4.1)

and

P
( n∑

k=1

XkΠ
k
i=1(ri + 1)−1 > u

)
>∼

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
, (4.2)

hold. It is clear that for u ≥ 0 and k ≥ 1, the equality

P
(
X+kΠ

k
i=1(ri + 1)−1 > u

)
= P

(
XkΠ

k
i=1(ri + 1)−1 > u

)
, (4.3)
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holds. Using equation (4.3) and Lemma 3.2, the approximation (4.1) holds.

Now, we prove the relation (4.2). By equation (4.9) of Tang (2004), it is clear that
F ∈ L. Thus there exists a function g, such that g(u) → ∞ and the following relation
holds

P
(
XkΠ

k
i=1(ri + 1)−1 > u + g(u)

)
∼ P

(
XkΠ

k
i=1(ri + 1)−1 > u

)
.

If Dk = Π
k
i=1(ri + 1)−1, then we have the following inequality

P
( n∑

k=1

XkΠ
k
i=1(ri + 1)−1 > u

)
≥

n∑
k=1

P
( n∑

k=1

XkΠ
k
i=1(ri + 1)−1 > u,XkDk > u + g(u)

)
−

∑
1≤i≤ j≤n

P
(
XiDi > u + g(u),X jD j > u + g(u)

)
.

From equations (2.8) and (2.13) we have∑
1≤i≤ j≤n

P
(
XiDi > u + g(u),X jD j > u + g(u)

)
= o

( n∑
k=1

F̄
( u
Dk

))
,

and
n∑

k=1

P
( n∑

k=1

XkΠ
k
i=1(ri + 1)−1 > u,XkDk > u + g(u)

)
≥

n∑
k=1

P
(
XkDk > u + g(u)

)
−o

( n∑
k=1

F̄
(u + g(u)

Dk

))
∼

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
.

Therefore, this completes the proof of the relation (4.2). □

ii) We will prove the given asymptotic infinite time ruin probability in equation
(3.3). To prove this part, it is enough to show that

ψ(u) ∼
∞∑

k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
,

and

P
( ∞∑

k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
∼

∞∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
.

By Lemma 3.3, for any 0 < ϵ < 1, there are some u0 = u0(ϵ), and some t = t(ϵ) = 1, 2, . . . ,
such that for all u > u0(1 + r1) and all n ≥ t, the two following inequalities hold:

P
( ∞∑

k=n

X+kΠ
k
i=1(ri + 1)−1 > u

)
≤ ϵP

(
X1(r1 + 1)−1 > u

)
,
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and

P
( ∞∑

k=n

XkΠ
k
i=1(ri + 1)−1 > u

)
≤ ϵP

(
X1(r1 + 1)−1 > u

)
.

Applying the first part of Theorem 3.1 to ψ(u,n) with t = t(ϵ) and u > u0, then with
considering attention to the inequality

max
1≤n<∞

n∑
k=1

XkΠ
k
i=1(ri + 1)−1

≥ max
1≤n<t

n∑
k=1

XkΠ
k
i=1(ri + 1)−1,

we have

ψ(u) ≥ ψ(u,n) ≥ (1 − ϵ)
( ∞∑

k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
−

∞∑
k=t+1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

))
≥ (1 − ϵ)2

( ∞∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
. (4.4)

Also, using Lemma 3.1, we have the inequality

ψ(u) ≤ P
( ∞∑

k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
≤ (1 + ϵ)P

( n∑
k=1

X+kΠ
k
i=1(ri + 1)−1 > u

)
≤ (1 + ϵ)2

n∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
≤ (1 + ϵ)2

∞∑
k=1

P
(
XkΠ

k
i=1(ri + 1)−1 > u

)
, (4.5)

therefore, by equations (4.4) and (4.5), the relation (3.3) holds for any arbitrary ϵ > 0.

4.1 Examples

In this subsection, we give two real examples for the Danish fire insurance and Swedish
fire insurance and compute the value of asymptotic ruin probabilities for different
values of the premium income rates and initial capitals (in Euro currency).

Examples 4.1. (Embrechts et al. (1997)). The sample consists of 500 large claims from
1st January 1980 till 31st December 1990. The unit is millions of Danish Kroner (1985
prices). The goodness of fit test is done on the data at significance level α = 0.05. The
p − value = 0.2891 for the goodness of fit test is reported. The result indicates evidence
for the null hypothesis that the date comes from Pareto distribution. Moreover, the
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histogram (some claims are far out) and the mean residual life function (which is
clearly increasing) in Figure 1 indicate that the distribution function is heavy-tailed.
Most likely the larger claims follow a Pareto distribution. The empirical mean residual
life function is first decreasing and after that linearly increasing. We consider the
linear trend ri = 299 + 10i, i = 1, 2, 3, . . . , for the premium income rate for computing
the ruin probabilities using (3.1) and (3.3). After estimating the parameters of Pareto
distribution with maximum likelihood method, the asymptotic ruin probabilities are
computed and the results are given in Tables 1 and 2, respectively.

Figure 1: The histogram and the mean residual life function

Table 1: The asymptotic finite time ruin probabilities ψ(u,n)
n 3 5 7 10 15 18 20 25 30

u
0 0.375 0.426 0.495 0.528 0.580 0.614 0.643 0.677 0.694

20000 0.346 0.382 0.435 0.476 0.505 0.530 0.560 0.588 0.607
30000 0.283 0.323 0.377 0.407 0.445 0.481 0.502 0.521 0.538
50000 0.262 0.306 0.354 0.380 0.422 0.446 0.463 0.480 0.495
70000 0.244 0.275 0.311 0.358 0.386 0.404 0.425 0.439 0.448
100000 0.229 0.267 0.294 0.325 0.351 0.371 0.391 0.418 0.429
150000 0.218 0.234 0.270 0.310 0.336 0.357 0.369 0.383 0.395

Table 2: The asymptotic infinite time ruin probabilities with d = 1000
u 0 20d 30d 50d 70d 100d 150d 200d 300d

ψ(u) 0.720 0.631 0.576 0.533 0.470 0.456 0.427 0.402 0.388

From these two tables, we result that with decreasing the initial surplus, the ruin
probability will be increased. Also, for each value of initial surplus with increasing the
time, the ruin probability will be increased. We conclude that the insurance company
should be more careful when the heavy-tailed claims accrue in the risk model.

Examples 4.2. (Asmussen (2010)). The sample consists of 218 claims for 1982 in
units of Millions of Swedish kroner. The goodness of fit test is done on the data
at significance level α = 0.05. The p − value = 0.6325 for the goodness of fit test is
reported. The result indicates evidence for the null hypothesis that the date comes
from Lognormal distribution. Also, the histogram (some claims are far out) and the
mean residual life function (which is clearly increasing) in Figure 2 indicate that the
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distribution function is heavy-tailed. The empirical mean residual life function is first
decreasing and after that linearly increasing and this indicates the larger claims follow
a Lognormal distribution. Similar to Example 1, we consider the linear trend ri = 299+
10i, i = 1, 2, 3, . . . , for the premium income rate for computing the ruin probabilities.
After estimating the parameters of Lognormal distribution with maximum likelihood
method, the asymptotic ruin probabilities are computed and the results are given in
Tables 3 and 4, respectively.

Figure 2: The histogram and the mean residual life function

Table 3: The asymptotic finite time ruin probabilities ψ(u,n)
n 3 5 7 10 15 18 20 25 30

u
0 0.415 0.455 0.491 0.538 0.596 0.621 0.633 0.751 0.768

20000 0.355 0.374 0.422 0.461 0.493 0.525 0.541 0.570 0.595
30000 0.310 0.343 0.381 0.412 0.457 0.474 0.497 0.542 0.578
50000 0.276 0.305 0.345 0.378 0.406 0.427 0.443 0.471 0.499
70000 0.242 0.296 0.318 0.341 0.370 0.395 0.418 0.442 0.490

100000 0.215 0.250 0.234 0.257 0.291 0.330 0.352 0.383 0.416
150000 0.184 0.216 0.239 0.258 0.281 0.307 0.319 0.341 0.372

Table 4: The asymptotic infinite time ruin probabilities with d = 1000
u 0 20 d 30d 50d 70d 100d 150d 200d 300d

ψ(u) 0.794 0.624 0.593 0.530 0.524 0.448 0.407 0.387 0.364

Similar to Example 1, since the Lognormal distribution is a subclass of heavy-tailed
distributions, therefore these claims are also dangerous for the insurance company.

5 Ruin probability for Second Insurance Risk Model

In this section, we give a formula for computing the finite time ruin probability of second
risk model and present two dependent class models in the portfolio of business.

Theorem 5.1. Suppose that Yk, k = 1, 2, . . . ,n, be a sequence of i.i.d. random variables. Then
the finite time non-ruin probability is

φ′(u, 1,n) =
∫ u+c

0
φ′

(
u + c − y, 1,n − 1

)
dFY(y). (5.1)
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Proof. From the probability theory, we have

φ′(u, 1,n) =
∫ u+c

0
φ′

(
u + c − y, 2,n

)
dFY(y),

where

φ′(q, l,n) = P
(
Yl ≤ q + c,Yl + Yl+1 ≤ q + 2c, . . . ,Yl + Yl+1 + · · · + Yn−l ≤ q + c(n − l)

)
.

Since Yk, k = 1, 2, . . . ,n, are a sequence of i.i.d. random variables, then φ′(q, 2,n) =
φ′(q, 1,n − 1) and this completes the proof. □

From equation (5.1) the computation of non-ruin is not easy. To compute the
approximation ofφ′(q, 1,n), an algorithm in Theorem 5.2 is presented. In this algorithm
the discretization of the distribution function FY is used. Discretization methods are
given in Toth and Houtte (1992), Klugman et al. (1998) and Campos (2014).

Let FỸ be the discretization distribution function derived by one of these methods
and Ỹ be the discrete random variable. If P(Ỹ = d) = fd, d = 0, 1, . . . ,M, then

FỸ(d) = P(Ỹ = d) =
d∑

j=0

f j,

where f j is the mass probability.

Let the constant integers p and k denote the premium income and initial surplus
respectively, and the surplus process takes only integer values. Also the notationsψ′k,1,n
and φ′k,1,n denote the finite time ruin and finite time non-ruin probabilities computed
using the discretization of the distribution function FY over the interval [1,n].

Theorem 5.2. For constant integers p, j and k, the finite time non-ruin probability can be
calculated from the following recursive formula

φ′k,1,n =

min(k+p,M)∑
j=0

φ′k+p− j,1,n−1 f j, n = 2, 3, . . . , (5.2)

where

φ′k,1,1 = Fmin(k+p,M) =

min(k+p,M)∑
j=0

f j, n = 2, 3, . . . , (5.3)

Proof. The proof of this theorem comes from Theorem 5.1. □

Using the Fast Fourier Transform method, an approximation for the discretiza-
tion distribution function FY will be obtained. The computed function FỸ is used in
equations (5.2) and (5.3) for the estimation of the non-ruin probability.
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5.1 Two Dependent Class Models in the Portfolio of Business

In this section, the Poisson model and Negative Binomial model with common compo-
nent and dependent class in the portfolio of business are considered. In these models,
it is assumed that the structure of the models is consisted of m dependent classes of
business and the total claim amount of business in period i, i = 1, 2, . . . , is given by

Yi = Yi,1 + Yi,2 + · · · + Yi,m,

where Yi, j denotes the total claim amounts for the jth class of business in the period i
and for any i , ν, Yi and Yν are i.i.d. For a fixed period i, i = 1, 2, . . . , different classes
of business are assumed to be dependent. For the class of business j, j = 1, 2, . . . ,m, in
the period i, the notations Yi, j,k and Ni, j denote the kth individual claim and number of

claims, respectively. Then Yi, j =
∑Ni, j

k=1 Yi, j,k. For j fixed, with FY( j)(0) = 0, denotes the
common distribution function of i.i.d. random variables Yi, j,k, i, k = 1, 2, . . . ,Ni, j. We
denote by Y( j) a random variable with distribution function FY( j)(y). The nth moment
of FY( j)(y) is denoted by µ( j)

n with µ( j)
1 = µ

( j).

Also for j fixed, Ni, j, i = 1, 2, . . . , are identically distributed random variables and
denoted by N( j) a random variable with their distribution function. Similarly, for j
fixed, Yi, j, i = 1, 2, . . . , are identically distributed random variables and denotes by Y0( j)

a random variable with this distribution function. It is supposed that N( j) and Y( j) are
independent random variables. For the class of business, for j fixed with positive risk
margin γ j and any period i, i = 1, 2, . . . , the premium income is

c j = E
(
Y0( j)

)
(1 + γ j) = µ( j)E

(
N( j)

)
(1 + γ j), j = 1, 2, . . . ,m.

Therefore, the premium income for the business in the period i, i = 1, 2, . . . , is c =
c1 + c2 + · · · + cm.

5.2 Poisson Distribution with Dependent Classes

In this subsection, Poisson distribution with m dependent classes of business is con-
sidered. Suppose that for any fixed period i, i = 1, 2, . . . , the random variables Ni,1, Ni,2
and Ni,3 are identically distributed and define N( j), j = 1, 2, 3, as follows:

N(1) = N(11) +N(12) +N(13) +N(123),

N(2) = N(22) +N(12) +N(23) +N(123),

N(3) = N(33) +N(13) +N(23) +N(123),

where for a, b = 1, 2, 3, the random variables N(ab) and N(123) are distributed as Poisson(λab)
and Poisson(λ123), respectively. Now, since the distribution of sum of n independent
Poisson random variables Y1,Y2, . . . ,Yn with parameters λ1, λ2, . . . , λn respectively, is
distributed as Poisson distribution with parameter

∑n
i=1 λi, then we get that the random
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variable N(p), p = 1, 2, 3, is distributed as Poisson distribution with parameter λp, where
for any fixed p, the parameters λ1, λ2 and λ3 are defined by

λ1 = λ11 + λ12 + λ13 + λ123,

λ2 = λ22 + λ12 + λ23 + λ123,

λ3 = λ33 + λ13 + λ23 + λ123.

Also, for any a , b the covariance between two random variables N(a) and N(b) is
defined by

Cov
(
N(a),N(b)

)
= Var

(
N(ab)

)
+ Var

(
N(123)

)
.

The joint probability generating function of random variables
(
N(1),N(2),N(3)

)
is

PN(1),N(2),N(3)(t1, t2, t3) = E
(
t

(
N(11)+N(12)+N(13)+N(123)

)
1 t

(
N(22)+N(12)+N(23)+N(123)

)
2 t

(
N(33)+N(13)+N(23)+N(123)

)
3

)
=

{
Π3

j=1E
(
tN( j j)

j

)}
E
(
(t1t2)N(12))

E
(
(t1t3)N(13))

E
(
(t2t3)N(23))

E
(
(t1t2t3)N(123))

= exp
( 3∑

j=1

(λ j jt j − 1)
)
+ exp

(∑
j<k

(t jtk − 1)
)
+ exp

(
λ123(t1t2t3 − 1)

)
.

Given equation (2.15), the characteristic function of random variables
(
Y(1),Y(2),Y(3)

)
is

φY1,Y2,Y3(t1, t2, t3) = PN(1),N(2),N(3)

(
φY(1)(t1), φY(2)(t2), φY(3)(t3)

)
= exp

(
A1 + A2 + A3

)
,

where

A1 =

3∑
j=1

λ j j(φY( j)(t j) − 1), A2 =
∑
j<k

λ jk

(
φY( j)(t j)φY(k)(tk) − 1

)
,

and

A3 = λ123

(
φY(1)(t1)φY(2)(t2)φY(3)(t3) − 1

)
.

Using equations (2.14) and (5.4), we have

φY(t) = φY(1),Y(2),Y(3)(t, t, t) = exp
(
λφY(t) − 1

)
, (5.4)

where λ1 = λ11 + λ22 + λ33 + λ12 + λ13 + λ23 + λ123, and

φY(t) =
λ11

λ
φY(1)(t) +

λ22

λ
φY(2)(t) +

λ33

λ
φY(3)(t) +

λ12

λ
φY(1)+Y(2)(t)

+
λ13

λ
φY(1)+Y(3)(t) +

λ23

λ
φY(2)+Y(3)(t) +

λ123

λ
φY(1)+Y(2)+Y(3)(t),
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where φY+Z(t) = φY(t)φZ(t).

For correlated compound Poisson random variables Y(1),Y(2),Y(3), the random vari-
able Y =

∑3
i=1 Y(i) has a compound Poisson distribution, as for the independent case

mentioned in the Appendix, but with different parameter λ and different claim size
characteristic function φY(t), which is associated to the distribution function

FY(t) =
λ11

λ
FY(1)(t) +

λ22

λ
FY(2)(t) +

F33

λ
FY(3)(t) +

λ12

λ
FY(1)+Y(2)(t)

+
λ13

λ
FY(1)+Y(3)(t) +

λ23

λ
FY(2)+Y(3)(t) +

λ123

λ
FY(1)+Y(2)+Y(3)(t),

with

µ =
λ11

λ
µ(1) +

λ22

λ
µ(2) +

F33

λ
µ(3) +

λ12

λ

(
µ(1) + µ(2)

)
+
λ13

λ

(
µ(1) + µ(3)

)
+
λ23

λ

(
µ(2) + µ(3)

)
+
λ123

λ

(
µ(1) + µ(2) + µ(3)

)
=

1
λ

(
λ1µ

(1) + λ2µ
(2) + λ3µ

(3)
)
.

5.3 Negative Binomial Model with Common Component

For Poisson random variable, modelling the number of claims N means that the variance
Var(N) is equal to E(N). But from Panjer and Willmot (1992), sometimes in practice
may be the inequality Var(N) > E(N) establishes. The Negative Binomial distribution is
used to model claim numbers in such situations. For random variable N, the probability
function of Negative Binomial is

P(N = n) =
(
n + α − 1
α − 1

)( 1
α + β

)α( β

α + β

)n
, α, β > 0, n = 0, 1, 2, . . . .

Besides, for Negative Binomial distribution, the probability generating function is(
1 − β(t − 1)

)−α
.

As similar to the Poisson distribution, we consider m dependent classes of business.
Assume that for the jth, j = 1, 2, 3, class of business the number of claim sizes is the
sum of two random variables. The notation N( j j) denotes for the first random variable,
which is specific to each class and is independent of the specific random variables of
the other classes. For any fixed i, the random variables N( j), j = 1, 2, 3, are independent.
The notation N( j0) denotes for the second random variable. It is assumed that, there is
a dependence structure between the second random variables of the different classes.

The random variables N( j0), j = 1, 2, 3, are dependent and if the random variable Θ
is distributed as Gamma(α0, 1), then N( j0), j = 1, 2, 3, are distributed as Poisson Gamma
mixture distribution N( j0)

|Θ = θ ∼ Poisson(θβ j), where N( j0)
|Θ = θ, j = 1, 2, 3, are
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independent random variables. (See Kocherlakota and Kocherlakota, (1992), for more
details).

For any fixed j, j = 1, 2, 3, the random variable N( j), is defined by

N( j) = N( j j) +N( j0),

where the random variables N( j j) and N( j0) are distributed as Negative Binomial dis-
tribution NB(α j j, β j) and NB(α0, β j), respectively. Therefore, the random variable N( j),
j = 1, 2, 3, is distributed as Negative Binomial distribution NB(α j, β j), whereα j = α j j+α0.

The joint probability distribution function of random variables
(
N(10),N(20),N(30)

)
is

as follows

PN(10),N(20),N(30)(t1, t2, t3) = E
(
E
(
tN(10)

1 tN(20)

2 tN(30)

3

))
= MΘ

(
β1(t1 − 1) + β2(t2 − 1) + β3(t3 − 1)

)
=

(
1 − β1(t1 − 1)

)
− β2(t2 − 1) − β3(t3 − 1)

)−α0
.

Therefore, the probability generating function of
(
N(1),N(2),N(3)

)
is

PN(1),N(2),N(3)(t1, t2, t3) = E
(
t

(
N(11)+N(10)

)
1 t

(
N(22)+N(20)

)
2 t

(
N(33)+N(30)

)
3

)
= E

(
t

(
N(11)

)
1

)
E
(
t

(
N(22)

)
2

)
E
(
t

(
N(33)

)
3

)
E
(
tN10
1 tN20

2 tN30
3

)
= Π3

j=1

(
1 − β j(t j − 1)

)−α j j
PN(10),N(20),N(30)(t1, t2, t3)

= Π3
j=1

(
1 − β j(t j − 1)

)−α j j
(
1 −

3∑
k=1

β j(t j − 1)
)−α0

.

Also, for any a , b, the covariance between two random variables N(a) and N(b) is
defined by

Cov
(
N(a),N(b)

)
= Cov

(
N(aa) +N(a0),N(bb) +N(b0)

)
= Cov

(
E
(
N(a0)

|Θ
)
,E

(
N(b0)

|Θ
))
+ E

(
Cov

(
N(a0),N(b0)

)
|Θ

)
= βaβbVar(Θ) = α0βaβb,

where N( j0)
|Θ = θ, j = 1, 2, 3, are independent random variables. The marginal dis-

tribution of random variable W( j), j = 1, 2, 3, is a compound Negative Binomial with
parameter α j, λ j and FX( j) . The characteristic function of W( j) is φW( j)(t) ans is obtained
as

φW( j)(t) =
(
1 − β j(φX( j)(t j) − 1)

)−α j j
(
1 − β j(φX( j)(t j) − 1)

)−α0

=
(
1 − β j(φX( j)(t j) − 1)

)−α j
.
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By (2.15), the characteristic function
(
W(1),W(2),W(3)

)
is given by

PW(1),W(2),W(3)(t1, t2, t3) = PN(1),N(2),N(3)(φY(1)(t1), φY(2)(t2), φY(3)(t3)
)

= Π3
j=1

(
1 − β j(φY( j)(t j) − 1)

)−α j j

×

(
1 − β1

(
φY(1)(t1) − 1

)
− β2

(
φY(2)(t2) − 1

)
− β3

(
φY(3)(t3) − 1

))−α0
.

Using equation (2.14), we have

φW(t) = φW(1),W(2),W(3)(t, t, t). (5.5)

Taking inverse of equation (5.5) and using the Fast Fourier Transform method, the
probability distribution FY of Y will be obtained.

5.4 The Approximation of Function FY

In both models, the non-ruin probability can be computed using FȲ, which is obtained
by the Fast Fourier Transform method applied to φW(t). First discretize the function
F( j)

Y , j = 1, 2, . . . ,m, to take their Fourier Transform (see for example, Panjer and Willmot
(1992)). These Fourier Transforms are inverted in either equation (5.4) or (5.5). The
obtained results are inverted with the Fast Fourier Transform method produces the
vector of mass probabilities defining the probability distribution function FȲ. This
approximation of FY is used in equations (5.2) and (5.3) in the computation of φ′k,1,n.

5.5 Numerical Examples

In this subsection, two examples having Poisson model and Negative Binomial model
with common component distributions with two class of business are presented. In
both examples, the random variables Y( j), j = 1, 2,are distributed as Weibull distribution
and N( j), j = 1, 2, are distributed as Poisson and Negative Binomial distributions. For
n = 10, 20, the finite time ruin probabilities ψ′u,1,n and moments of random variables are
computed.

Examples 5.1. In this example, we assume that the random variables Y(1) and Y(2) are
distributed with Weibull(0.5, 1, 1.25) and Exponential(2.25) distributions, respectively.
Also, the random variables N( j), j = 1, 2, are distributed as Poisson(4). The moments of
random variables Y(i), N(i) and Y0(i) are computed and the results are given in Table 5.
The values of covariances and correlations are given in Table 6. Also, the numerical
results for the finite time ruin probabilities are presented in Tables 7 and 8 with different
initial surplus.
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Table 5: The moment values of random variables Y(i), N(i) and Y0(i)

Moment First class of business Second class of business
E
(
Y(i)

)
1.125 1.125

E
(
Y(i)2

)
2.531 2.531

E
(
N(i)

)
4.00 4.00

Var
(
N(i)

)
4.00 4.00

E
(
Y0(i)

)
4.50 4.50

Var
(
Y0(i)

)
10.125 30.375

Table 6: The values of covariance and correlation
ρ
(
N(1),N(2)

)
= 0 ρ

(
N(1),N(2)

)
= 0.25 ρ

(
N(1),N(2)

)
= 0.75

λ0 0 1.00 3.00
Cov

(
N(1),N(2)

)
0 1.00 3.00

Cov
(
Y0(1),Y0(2)

)
0 1.265 3.796

ρ
(
Y0(1),Y0(2)

)
0 0.072 0.216

Table 7: The finite time ruin probability ψ′(u, 1, 10)
u ψ′(u, 1, 10, 0) ψ′(u, 1, 10, 0.25) ψ′(u, 1, 10, 0.75)

0 0.7420 0.7821 0.8120
5 0.5031 0.5216 0.5633

10 0.3948 0.4250 0.4476
15 0.2851 0.2974 0.3204
20 0.2104 0.2592 0.2891
25 0.1569 0.1958 0.2570
30 0.0843 0.1435 0.2089
35 0.0472 0.0820 0.1225
40 0.0390 0.0561 0.0843
45 0.0285 0.0343 0.0460
50 0.0137 0.0205 0.0255
60 0.0085 0.0108 0.0174
70 0.0052 0.0067 0.0081
80 0.0031 0.0042 0.0065
90 0.0019 0.0023 0.0052
100 0.0007 0.0010 0.0021
110 0.0004 0.0006 0.0014
120 0.0002 0.0003 0.0008
130 0.0001 0.0001 0.0004
140 0.0000 0.0000 0.0002
150 0.0000 0.0000 0.0001
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Table 8: The finite time ruin probability ψ′(u, 1, 20)
u ψ′(u, 1, 20, 0) ψ′(u, 1, 20, 0.25) ψ′(u, 1, 20, 0.75)

0 0.6451 0.6791 0.7105
5 0.5620 0.5860 0.6229
10 0.5237 0.5387 0.5611
15 0.4486 0.4610 0.4945
20 0.3171 0.3400 0.4260
25 0.2709 0.2904 0.3827
30 0.2230 0.2515 0.2700
35 0.1384 0.1533 0.2267
40 0.0733 0.1206 0.1805
45 0.0305 0.0811 0.1352
50 0.0278 0.0450 0.0960
60 0.0104 0.0298 0.0437
70 0.0085 0.0100 0.0254
80 0.0025 0.0066 0.0081
90 0.0010 0.0023 0.0057

100 0.0007 0.0009 0.0021
110 0.0004 0.0006 0.0008
120 0.0002 0.0005 0.0007
130 0.0002 0.0003 0.0004
140 0.0000 0.0001 0.0002
150 0.0000 0.0000 0.0001

Examples 5.2. In this example, we assume that the random variables Y(1) and Y(2) are
distributed with Weibull(0.5, 1, 1.25) and Exponential(2.25) distributions, respectively,
and the random variables N( j), j = 1, 2, are distributed as Negative Binomial(1, 4). The
moments of random variables Y(i), N(i) and Y0(i) are computed and the results given
in Table 9. The values of covariances and correlations are given in Table 10. Also,
the numerical results for the finite time ruin probabilities are presented in Tables 11
and 12 with different initial surplus. It is clear that, in both models the value of ruin
probability increases as dependence level increases. This result is similar forψ′(u, 1, 10)
and ψ′(u, 1, 20). Also, the ruin probability decreases as the initial surplus increase.

Table 9: The moment values of random variables Y(i), N(i) and Y0(i)

Moment First class of business Second class of business
E
(
Y(i)

)
1.125 1.125

E
(
Y(i)2

)
2.531 2.531

E
(
N(i)

)
4.00 4.00

Var
(
N(i)

)
20.00 20.00

E
(
Y0(i)

)
4.50 4.50

Var
(
Y0(i)

)
28.125 48.375

Table 10: The values of covariance and correlation
ρ
(
N(1),N(2)

)
= 0 ρ

(
N(1),N(2)

)
= 0.25 ρ

(
N(1),N(2)

)
= 0.75

α0 0 0.3125 0.9375
Cov

(
N(1),N(2)

)
0 5.000 15.000

Cov
(
Y0(1),Y0(2)

)
0 6.328 18.984

ρ
(
Y0(1),Y0(2)

)
0 0.1716 0.5147
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Table 11: The finite time ruin probability ψ′(u, 1, 10)
u ψ′(u, 1, 10, 0) ψ′(u, 1, 10, 0.25) ψ′(u, 1, 10, 0.75)

0 0.7803 0.7948 0.8125
5 0.6245 0.6502 0.6840

10 0.5902 0.6031 0.6192
15 0.5531 0.5619 0.5955
20 0.4694 0.4820 0.5303
25 0.3900 0.4106 0.4211
30 0.2821 0.3492 0.3509
35 0.2305 0.2701 0.3155
40 0.1558 0.2353 0.2908
45 0.0736 0.1944 0.2330
50 0.0354 0.1200 0.2041
60 0.0267 0.0871 0.1725
70 0.0113 0.0329 0.1288
80 0.0067 0.0176 0.0650
90 0.0033 0.0094 0.0361
100 0.0020 0.0053 0.0097
110 0.0008 0.0022 0.0063
120 0.0006 0.0010 0.0045
130 0.0004 0.0008 0.0021
140 0.0002 0.0005 0.0007
150 0.0001 0.0002 0.0004

Table 12: The finite time ruin probability ψ′(u, 1, 20)
u ψ′(u, 1, 20, 0) ψ′(u, 1, 20, 0.25) ψ′(u, 1, 20, 0.75)

0 0.6925 0.7212 0.7302
5 0.6431 0.6504 0.6640

10 0.6042 0.5601 0.5812
15 0.5884 0.5530 0.5681
20 0.5239 0.5319 0.5490
25 0.4740 0.4900 0.5007
30 0.3115 0.4377 0.4423
35 0.2968 0.3645 0.3815
40 0.2471 0.2816 0.3130
45 0.2093 0.2017 0.2495
50 0.1745 0.1854 0.2001
60 0.0762 0.1205 0.1476
70 0.0253 0.0891 0.1254
80 0.0104 0.0575 0.0715
90 0.0082 0.0288 0.0433
100 0.0054 0.0094 0.0120
110 0.0021 0.0075 0.0082
120 0.0009 0.0021 0.0045
130 0.0006 0.0008 0.0016
140 0.0005 0.0006 0.0007
150 0.0003 0.0005 0.0006

5.6 Sensitivity of the Results with Respect to the Parameters

In this subsection, special consideration is given to the finite time ruin probability within
the parameter of distributions. The sensitivity of the obtained results in Examples 3
and 4 are investigated with respect to the parameters of Weibull and Exponential
distributions. Firstly, in Example 3 for Weibull distribution with the second parameter
k = 1.125 and Y(2) distributed as Exponential(2.25), we suppose that the first parameter of
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Weibull distribution, δ, takes the values 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 10, 15, 20, then
the finite time ruin probabilities are computed and results are presented in Table 13. The
results show that the finite time ruin probabilities increase as parameter δ, increases.
The Graph of ruin probabilities are shown in Figure 3 for some of the parameters. The
similar results will be held for any constant k and also we get the similar results for
Example 4 when we apply the above changes.

The sensitivity of the results is quite evident with respect to the parameter of Expo-
nential distribution. In this case, when the random variables Y(1) and Y(2) are distributed
with Weibull(0.5, 1, 1.125) and Exponential(η), η = 0.025, 0.5, 0.1, 1.5, 2.25, 3, 5, 10 distribu-
tions, respectively, the values of finite time ruin probabilities are computed and results
are presented in Table 14. Ruin probabilities increase as the parameter of Exponential
distribution increases. The Graph of ruin probabilities are shown in Figure 4 for some
of the parameters.

Figure 3: Finite time ruin probabilities with respect to parameter δ

Figure 4: Finite time ruin probabilities with respect to parameter η
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Table 13: The finite time ruin probability ψ′(u, 1, 10) for k = 1.125
u δ = 0.025 δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.5 δ = 1
0 0.3290 0.3864 0.4352 0.5271 0.7420 0.8513
5 0.3118 0.3512 0.4027 0.4483 0.5031 0.6856
10 0.2820 0.3077 0.3149 0.3309 0.3948 0.5611
15 0.2107 0.2360 0.2504 0.2720 0.2851 0.3320
20 0.1391 0.1433 0.1630 0.1872 0.2104 0.2891
25 0.0854 0.0965 0.1095 0.1245 0.1569 0.2104
30 0.0300 0.0481 0.0554 0.0661 0.0843 0.1833
35 0.0097 0.0132 0.0296 0.0305 0.0472 0.1295
40 0.0062 0.0075 0.0094 0.0194 0.0390 0.1027
45 0.0041 0.0051 0.0071 0.0088 0.0285 0.0744
50 0.0008 0.0032 0.0042 0.0054 0.0137 0.0635
60 0.0007 0.0009 0.0014 0.0029 0.0085 0.0290
70 0.0005 0.0006 0.0008 0.0011 0.0052 0.0093
80 0.0004 0.0005 0.0007 0.0006 0.0031 0.0067
90 0.0001 0.0003 0.0004 0.0005 0.0019 0.0035

100 0.0000 0.0000 0.0001 0.0003 0.0007 0.0010
110 0.0000 0.0000 0.0000 0.0001 0.0004 0.0008
120 0.0000 0.0000 0.0000 0.0000 0.0002 0.0006
130 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004
140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

u δ = 2 δ = 3 δ = 4 δ = 10 δ = 15 δ = 20
0 0.8824 0.8902 0.9112 0.9256 0.9301 0.9524
5 0.7735 0.7894 0.8145 0.8401 0.8627 0.8730
10 0.6881 0.7130 0.7720 0.8032 0.8145 0.8201
15 0.5507 0.6240 0.6934 0.7455 0.7619 0.7922
20 0.4112 0.5822 0.6523 0.6811 0.6933 0.7105
25 0.3645 0.5075 0.5725 0.6052 0.6341 0.6436
30 0.2952 0.4411 0.5103 0.5378 0.5760 0.5925
35 0.2360 0.4060 0.4760 0.5115 0.5270 0.5557
40 0.2021 0.3731 0.4118 0.4500 0.4736 0.5021
45 0.1879 0.3209 0.3670 0.4192 0.4579 0.4894
50 0.1250 0.2817 0.3209 0.3811 0.3991 0.4231
60 0.0984 0.2500 0.2911 0.3546 0.3600 0.3775
70 0.0465 0.2188 0.2282 0.3091 0.3185 0.3250
80 0.0221 0.1716 0.1930 0.2865 0.2922 0.3001
90 0.0090 0.1240 0.1477 0.2540 0.2768 0.2895

100 0.0053 0.0840 0.1161 0.2141 0.2407 0.2686
150 0.0002 0.0008 0.0084 0.0643 0.0833 0.1134

Also, in Example 3, for Weibull distribution with δ = 0.5 we suppose that the second
parameter, k, takes the values 0.025, 0.05, 0.5, 1, 1.125, 2, 5, and Y(2) is distributed with
Exponential(2.25), then the finite time ruin probabilities are computed and the results are
presented in Table 15. The results show that the finite time ruin probabilities decrease
when k increases in the interval [0, 0.5] but the probabilities increase when k increases in
the interval (0.5,∞]. These results will be held for any constant δ, which in this case the
ruin probabilities decrease when k increases in the interval (0, δ], and the probabilities
increase when k increases in the interval (δ,∞). The similar results will be held for
example 4 when we consider Weibull distribution with constant δ for different values
of parameter δ. Therefore, it doesn’t matter if the random variables N( j), j = 1, 2, are
distributed as Poisson or Negative Binomial distribution.
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Table 14: The finite time ruin probability ψ′(u, 1, 10) for different parameters of Expo-
nential distribution

u η = 0.025 η = 0.5 η = 1 η = 1.5 η = 2.25 η = 3 η = 5 η = 10
0 0.5908 0.6430 0.6844 0.7036 0.7420 0.7931 0.8524 0.9152
5 0.3703 0.3916 0.4297 0.4532 0.5031 0.5304 0.6117 0.7231

10 0.2625 0.2811 0.3121 0.3407 0.3948 0.4177 0.4630 0.5494
15 0.2161 0.2330 0.2505 0.2610 0.2851 0.2900 0.3508 0.4260
20 0.1570 0.1600 0.1833 0.1955 0.2104 0.2261 0.2691 0.3418
25 0.0620 0.0752 0.1080 0.1172 0.1569 0.1683 0.2280 0.2900
30 0.0174 0.0330 0.0475 0.0590 0.0843 0.0902 0.1405 0.2193
35 0.0050 0.0086 0.0163 0.0244 0.0472 0.0546 0.0715 0.1305
40 0.0010 0.0030 0.0077 0.0096 0.0390 0.0447 0.0533 0.0987
45 0.0008 0.0011 0.0041 0.0083 0.0285 0.0298 0.0314 0.0730
50 0.0002 0.0007 0.0018 0.0052 0.0137 0.0185 0.0278 0.0428
60 0.0000 0.0002 0.0008 0.0020 0.0085 0.0097 0.0151 0.0301
70 0.0000 0.0000 0.0004 0.0013 0.0052 0.0069 0.0081 0.0151
80 0.0000 0.0000 0.0001 0.0007 0.0031 0.0037 0.0055 0.0083
90 0.0000 0.0000 0.0000 0.0003 0.0019 0.0022 0.0030 0.0055
100 0.0000 0.0000 0.0000 0.0001 0.0007 0.0007 0.0009 0.0020
110 0.0000 0.0000 0.0000 0.0000 0.0004 0.0005 0.0007 0.0009
120 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0004 0.0007
130 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0005
140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 15: The finite time ruin probability ψ′(u, 1, 10) for δ = 0.5
u k = 0.025 k = 0.05 k = 0.5 k = 1 k = 1.125 k = 2 k = 5
0 0.4863 0.3714 0.2810 0.6128 0.7420 0.8160 0.9235
5 0.3230 0.2798 0.2472 0.4772 0.5031 0.7643 0.8720
10 0.2828 0.2339 0.1961 0.3516 0.3948 0.6252 0.8216
15 0.2251 0.2100 0.1557 0.2645 0.2851 0.5372 0.7630
20 0.1702 0.1124 0.0879 0.1990 0.2104 0.4600 0.6602
25 0.1135 0.0950 0.0720 0.1255 0.1769 0.3818 0.5734
30 0.0840 0.0402 0.0319 0.0761 0.0843 0.3304 0.5001
35 0.0677 0.0215 0.0127 0.0320 0.0472 0.2991 0.4638
40 0.0300 0.0090 0.0081 0.0144 0.0390 0.2550 0.4122
45 0.0110 0.0072 0.0055 0.0085 0.0285 0.2263 0.3790
50 0.0085 0.0034 0.0010 0.0061 0.0137 0.1815 0.3284
60 0.0064 0.0008 0.0006 0.0045 0.0085 0.1260 0.2915
70 0.0040 0.0003 0.0002 0.0018 0.0052 0.0757 0.2509
80 0.0012 0.0001 0.0000 0.0008 0.0031 0.0485 0.2031
90 0.0008 0.0000 0.0000 0.0006 0.0019 0.0114 0.1716

100 0.0005 0.0000 0.0000 0.0005 0.0007 0.0082 0.1200
110 0.0001 0.0000 0.0000 0.0002 0.0004 0.0039 0.0974
120 0.0000 0.0000 0.0000 0.0001 0.0002 0.0008 0.0633
130 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0351
140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0153
150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009

6 Conclusion

In the present paper, we firstly considered the construction of discrete-time risk model
where the long-tailed and dominatedly varying-tailed of the net losses Xi, i = 1, 2, . . . ,
are asymptotically independent random variables with distribution function F(x). The
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asymptotic ruin probability problem in the finite and infinite horizon cases studied
using convolution of distribution functions with other assumptions. For two real ex-
amples with Pareto and Lognormal distributions, which the goodness of fit tests are
done on the data at significance level 0.05, the numerical asymptotic ruin probabilities
estimated. It must be emphasized that the results show that when the distribution
function is heavy-tailed, the insurance company is likely to go ruin. In the second
dependent discrete-time risk model, the finite time ruin probability computed based
on the discretization of the distribution function. We studied the impact on the ruin
probability of a dependence relation between two classes of insurance business. In the
first example, we considered the aggregation of the classes of business via a common
shock model and in the second one, the aggregation is made via the Negative Binomial
model with common component. We observed that the increase in the ruin probability
ψ′(u, 1, 10) with the introduction of a relation of dependence is more important in the
Negative Binomial model than in the Poisson model. The similar results have been
obtained for ruin ψ′(u, 1, 20). We concluded that in the presence of the large values of
parameters in Exponential and Weibull distributions will lead to large ruin probabil-
ities.. Also, increasing or decreasing the ruin probabilities for constant δ depends on
the value of k. In this case, for k ≤ δ, the ruin probability decreases with increasing k
and for k > δ, the ruin probability increases with increasing k.

For the future research, we propose to consider the first model with capital injections
and reinsurance. Moreover, there is a limitation with the proposed approach for the
second risk model, when the model contains a heavy-tailed distribution and it can be
the potential directions for future research.
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Appendix

The result for independent class of a compound Poisson distribution is presented. Sup-
pose that three random variables Y(1), Y(2) and Y(3) are independent compound Poisson
distribution with parameter λ. Given N( j)

∼ Poisson(λ j), where N( j), j = 1, 2, 3, are inde-
pendent random variables, the joint probability generating function of

(
N(1),N(2),N(3)

)
is

PN(1),N(2),N(3)(t1, t2, t3) = Π3
j=1PN( j)(t j).

With equation (2.15), the joint characteristic function of
(
W(1),W(2),W(3)

)
is

φW(1),W(2),W(3)(t1, t2, t3) = Π3
j=1PN( j)

(
φY( j)(t j)

)
,

which by equation (2.16) leads to

φW(t) = φW(1),W(2),W(3)(t, t, t) = exp
(
λφY(t) − 1

)
,

where λ = λ1 + λ2 + λ3 and

φY(t) =
1
λ

(
λ1φY(1)(t) + λ2φY(2)(t) + λ3φY(3)(t)

)
.

The random variable W =
∑3

i=1 W(i) has a compound Poisson distribution, with param-
eter λ and claim size characteristic functionφY(t) which is associated to the distribution
function

FY(t) =
1
λ

(
λ1FY(1)(t) + λ2FY(2)(t) + λ3FY(3)(t)

)
,

where µY(t) = 1
λ

(
λ1µY(1)(t) + λ2µY(2)(t) + λ3µY(3)(t)

)
.


