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Abstract. In this paper, we stochastically compare Harris family distributions having
random tilt parameter with Harris family distributions having fixed tilt parameter. We
also study certain preservation properties of mixtures of Harris family of distributions
with regards to their baseline distributions. Comparison tools are various types of
orderings, such as the usual, shifted, proportional and shifted proportional stochas-
tic orderings. Several previous findings, regarding Marshall-Olkin family, follow as
special cases of our results. We shall also fit a new Harris model to a real data set to
illustrate the usefulness of our comparisons.
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1 Introduction

Two large classes of general and flexible distributions were introduced in Aly (2011)
and Marshall (1997). They are called Harris and Marshall-Olkin family of distributions,
respectively. Both classes of such distributions are, in particular, useful in reliability
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theory. In such distributions, to cover a wide range of data such as those with high
degrees of skewness and kurtosis, a tilt parameter is added to the model.

The methods of generating Marshall-Olkin and Harris family distributions are as
follows: Let Y1,Y2, ... be a sequence of independently identically distributed (iid) ran-
dom variables (rv’s) with a common distribution function (df) F and survival function
(sf) F̄ = 1 − F. Let X = min{Y1,Y2, ...,YN}, where N is a positive integer valued rv
independent of the Yi ’s with probability generating function (pgf)

PN(t) = E(tN) =
∞∑

n=0

tnP(N = n), t ∈ [0, 1].

The random variable X can be viewed as the lifetime of a series system with iid
component lifetimes Y1,Y2, ...,YN and a random number N of components. The sf H̄ of
X has the representation

H̄(x) =
∞∑

n=0

[F̄(x)]nP(N = n), (1.1)

so that
H̄(x) = PN(F̄(x)). (1.2)

Assuming N is a geometric rv, Marshall (1997) introduced the so-called Marshall-Olkin
distribution with sf

H̄(x;θ) =
θF̄(x)

1 − θ̄F̄(x)
, 0 < θ < ∞, θ̄ = 1 − θ. (1.3)

Harris (1948) introduced the Harris pgf as below:

PN(s;θ, k) =
{ θsk

1 − θ̄sk

}1/k
, k > 0, 0 < θ < 1, θ̄ = 1 − θ, (1.4)

so,

P−1
N (s;θ, k) = PN(s;

1
θ
, k). (1.5)

By applying the Harris pgf, in Eq (1.2), the Harris family with sf

H̄(x;θ, k) =
( θF̄k(x)
1 − θ̄F̄k(x)

)1/k
, k > 0, 0 < θ < ∞, θ̄ = 1 − θ. (1.6)

was generated by Aly (2011). The df F in Eq (1.6) is called the baseline df and θ is called
the tilt parameter. It is easy to see that hazard rates corresponding to F and H(·;θ, k),
namely, rF = f/F̄ and rH(.;θ, k) = h(.;θ, k)/H̄(.;θ, k), are related by

rH(x;θ, k) =
rF(x)

1 − θ̄F̄k(x)
, −∞ < x < ∞, 0 < θ < ∞, k > 0. (1.7)
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Clearly, rH(x;θ, k) exceeds rF(x) when 0 < θ ≤ 1. It is smaller than rF(x) when θ ≥ 1.
They coincide when θ = 1. Clearly, for k = 1, a Harris family distribution reduces to
the Marshall-Olkin distribution.

Recently, another method of constructing Harris family was given by Batsidis and
Lemonte (2015). They exhibit that Harris family is a proportional failure rate model
which is obtained from a modified Marshall-Olkin family. More recently, Abbasi (2016)
and Abbasi (2018) stochastically compared two Harris family distributions having
different and same tilt parameters.

Many financial and economical events have distributions with wide tails and sharp
peaks, which indicate the existence of pessimism and excessive optimism that investors
have shown in the market. Due to the fact that Many well-knowns distributions always
underestimate the values that occur rarely, they are not suitable for cases where such
observations are of great importance and may have serious consequences for asset
allocation and risk management or lead to a deficit in payment or even bankruptcy. In
such cases, it will be very important to develop the model so that the new model has
more flexibility on real data. Therefore, one of the ways to develop the model is to use
the Harris distribution family. Now, in the selection of the tilt parameter, stochastic
orderings can play a very important role in order to enable us to choose the best tilt
parameter space and power factor in order to achieve the desired utility. Of course,
one of the other merits of this distribution is the control of the hazard rate by adding
the tilt parameter and the power coefficient parameter in its hazard rate function.

Due to various reasons, in many practical situations the tilt parameter may not be
constant and the occurrence of heterogeneity is sometimes unpredictable and cannot
be explained. But often it may not be possible to ignore this type of heterogeneity.
For instance, survival analysis is mainly concerned with investigating the hazard of
death at any time when an individual patient is involved in a clinical trial or other
medical study. Due to the difference between individuals in their susceptibility to
causes of death or disease, response to treatment, and influence of various risk factors,
the observed covariate, such as demographic, physiological, or lifestyle characteristics,
are taken into account. Nevertheless, heterogeneity unexplained by observed covariate
usually plays an important role because it sometimes leads to a misleading conclusion
(cf. Li (2011)). In the analysis of survival of a patient with recently metastasized cancer,
the number of involved organs is not fixed but it randomly changes from patient to
patient. It is possible that in one patient only one organ is involved, in another person
two organs are involved, and in another person n organs are involved in cancer cells.

Therefore, it is important to inspect the unobserved random factors’ influence on
the random variable. Considering this fact, we need to study the mixture of the family
of distributions. Mixture distributions are often used in mixture models, which are
used to express probabilities of sub-populations within a larger population. A mixture
model can accommodate the historically observed data in that sense and offers a flexible
solution for different distributional forms. Recently, Aghababaei (2010), Aghababaei
(2011) and Alamatsaz (2008) were concerned with stochastic comparison of certain



220 S. Abbasi and M. H. Alamatsaz

distributions with their mixtures. Also, Abbasi (2019) provided some bounds related
to mixture of Harris family of distributions.

Stochastic orderings have phenomenal performance in comparing probability dis-
tributions. They have an important role in reliability, survival snalysis, economic and
insurance. For instance, recently Payandeh Najafabadi (2016) used stochastic order-
ings to compare Series and Parallel Systems with Heterogeneous Extended Generalized
Exponential Components. Batsidis and Lemonte (2015) were concerned with the be-
havior of the failure rate function and some stochastic order relations in the Harris
family. Here, we are dealing with stochastic comparison of mixtures of Harris family
distributions when the tilt parameter is a rv. Our tools in comparisons are various
types of stochastic orderings such as usual, shifted, proportional and shifted propor-
tional stochastic orderings.

In Harris family distribution, there is no theoretical basis for choosing the baseline
distribution and the distribution of its tilt parameter; when tilt parameter is a rv.
Therefore, it is important to see how a Harris family rv responds to the change of its
baseline distribution and tilt parameter. This paper, mainly investigates how stochastic
orders between tilt parameters affect the corresponding Harris family distributions with
fixed and randomized tilt parameters. Considering the utility desired, we are able to
select a fix or rv tilt parameter. We shall also fit a new Harris model (denoted by HXTG)
to a real data set and illustrate the usefulness of our comparisons.

Our results enfold all findings on stochastic orderings of Nanda (2012), as special
cases, who stochastically compared members of the Marshall-Olkin family. We shall
use the terms increasing in place of non-decreasing and decreasing in place of non-
increasing. In Section 2, we state acronyms and useful relations among stochastic
orderings to be used in the sequel. In Section 3, we discuss stochastic comparisons of
Harris family distributions with their tilt-mixtures. At first, without any restriction on
the baseline distribution, we compare Harris family distributions with their mixtures
using usual stochastic orderings and aging concepts such as shifted, proportional and
shifted proportional orderings. In Section 4, we fit the proposed HXTG distribution
to a real data set and compare it with its baseline distribution and also Marshal-Olkin
distribution (denoted by MOXTG). Clearly, one can use our results to one’s benefit by
choosing its tilt parameter to be fixed or rv, i.e., HXTG model or unconditional HXTG
model.

2 Relations among different Types of Stochastic Orderings

First we present acronyms which are used in this paper. For more details, we refer
readers to Abbasi (2016), Abbasi (2018), Abbasi (2019), Lillo (2001), Marshall (2007)
and Shaked (2007).
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Eq. equation DHR decreasing hazard rate
pdf probability density function IRHR increasing reversed hazard rate
st simple stochastic DRHR decreasing reversed hazard rate
lr likelihood ratio plr proportional likelihood ratio
hr hazard rate phr proportional hazard rate
rh reversed hazard rate prh proportional reversed hazard rate
E expectation IPLR increasing proportional likelihood ratio
AI ageing intensity IPHR increasing proportional hazard rate
lr↑ up likelihood ratio IPRH increasing proportional reversed hazard rate
lr↓ down likelihood ratio plr↑ up proportional likelihood ratio
hr↑ up hazard rate plr↓ down proportional likelihood ratio
hr↓ down hazard rate phr↑ up proportional hazard rate
rh↑ up reversed hazard rate phr↓ down proportional hazard rate
rh↓ down reversed hazard rate UIPLR up increasing proportional likelihood ratio
ILR increasing likelihood ratio UIPHR up increasing proportional hazard rate
DLR decreasing likelihood ratio DIPLR down increasing proportional likelihood ratio
IHR increasing hazard rate DIPHR down increasing proportional hazard rate

Table 1, due to Abbasi (2018), summarizes several useful relationships among the
stochastic orderings used in the sequel.

Table 1: Some useful relations among various types of stochastic orderings
≤lr ⇒ ≤hr ≤hr↑ ⇒ ≤hr ⇒ ≤st ⇒ ≤E
⇑ ⇑

≤plr↑ ⇒ ≤prh↑ ⇒ ≤rh↑ ⇐ ≤lr↑ ⇐ ≤plr↑ ⇒ ≤phr↑ ⇒ ≤hr↑
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

≤plr ⇒ ≤prh ⇒ ≤rh ⇐ ≤lr ⇐ ≤plr ⇒ ≤phr ⇒ ≤hr
⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

≤plr↓ ≤prh↓ ⇒ ≤rh↓ ⇐ ≤lr↓ ⇐ ≤plr↓ ⇒ ≤phr↓ ⇒ ≤hr↓
⇓ ⇓

≤st ⇐ ≤rh ≤hr↓

3 Stochastic Comparison under Mixtures

In Eq (1.6), let the parameterΘ be an absolutely continuous rv with df G(.) and pdf g(.).
Then, its corresponding unconditional Harris sf is given by

H̄(x; k) =
∫
∞

0
H̄(x;θ, k)g(θ)dθ,

= E[
Θ

1 − Θ̄F̄k(x)
]

1
k F̄(x). (3.1)
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We denote the corresponding rv by X∗. Clearly, pdf of X∗is given by

h(x; k) =
∫
∞

0
h(x;θ, k)g(θ)dθ,

= f (x)E[
Θ

(1 − Θ̄F̄k(x))k+1
]

1
k . (3.2)

Marshall (2007) have compared H̄(.; k) for the case k = 1; i.e., the mixture of Marshall-
Olkin distribution, with its baseline distribution F under several stochastic orderings.
In what follows, we shall compare, more generally, Harris distributions; i.e., when
k > 0 is arbitrary, with its mixtures. Our results enfold Nanda (2012)’s findings in this
connection.

Theorem 3.1. Let X and X∗ be two rv’s with sf’s H̄(.; ν, k) and H̄(.; k), respectively. Then,
X ≤lr (≥lr)X∗ if P(Θ ≥ ν) = 1 (P(0 < Θ ≤ ν) = 1).

Proof. Using Eq (3.2), we have

h(x; k)
h(x; ν, k)

= [
(1 − ν̄F̄k(x))k+1

ν
]

1
k E[

Θ

(1 − Θ̄F̄k(x))k+1
]

1
k

= E[
Θ(1 − ν̄F̄k(x))k+1

ν(1 − Θ̄F̄k(x))k+1
]

1
k .

So

d
dx

(
h(x; k)

h(x; ν, k)
) =

d
dx

(E[
Θ(1 − ν̄F̄k(x))k+1

ν(1 − Θ̄F̄k(x))k+1
]

1
k ),

= E[
(k + 1)Θ

1
k F̄k−1(x) f (x)(1 − ν̄F̄k(x))

1
k (Θ − ν)

ν
1
k (1 − Θ̄F̄k(x))

1
k+2

]. (3.3)

Clearly, Eq (3.3) is non-negative provided that P(Θ ≥ ν) = 1 and is non-positive
provided that P(0 < Θ ≤ ν) = 1. Thus, the proof is completed. □

Remark 1. TakingΘ as a degenerate rv, the above results coincide with those of Theorem
3.2 in Abbasi (2018) when k1 = k2 = k

Observing Table 1, we obtain the following corollary.

Corollary 3.1. i) X ≤hr (≤rh,≤st,≤E)X∗ if Θ ≥ ν with probability 1.
ii) X∗ ≤hr (≤rh,≤st,≤E, )X if 0 < Θ ≤ ν with probability 1.

In the following theorem, we compare the ageing intensity ordering between a
Harris family and its mixture. First, we give the following lemma.

Lemma 3.1. Let X be a rv with sf H̄(.; ν, k) and X∗ be a rv with sf H̄(.; k) and hazard rate
rH(.; k). Then, if P(0 < Θ ≤ 1) = 1, rH(x;k)

rH(x;ν,k) is decreasing in x.
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Proof. We have

rH(x; k)
rH(x; ν, k)

=
1 − ν̄F̄k(x)

rF(x)
h(x; k)
H̄(x; k)

=
1 − ν̄F̄k(x)

rF(x)

∫ 1
0 f (x) u

1
k g(u)

(1−(1−u)F̄k(x))
1
k +1

du

∫ 1
0 F̄(x) u

1
k g(u)

(1−(1−u)F̄k(x))
1
k

du

=

(1 − ν̄F̄k(x))
∫ 1

0
u

1
k g(u)

(1−(1−u)F̄k(x))
1
k +1

du

∫ 1
0

u
1
k g(u)

(1−(1−u)F̄k(x))
1
k

du

= E[
1 − ν̄F̄k(x)

1 − (1 − Z)F̄k(x)
| x], (3.4)

where Z | x is a rv having pdf

hZ|x(z; k) = a(x; k)
z

1
k g(z)

(1 − (1 − z)F̄k(x))
1
k

, 0 < z ≤ 1,

with a(x; k) as the normalizing constant. It is easy to verify that

hZ|x2(z; k)
hZ|x1(z; k)

=
a(x2; k)
a(x1; k)

[
1 − (1 − z)F̄k(x1)
1 − (1 − z)F̄k(x2)

]
1
k ,

is increasing in 0 < z ≤ 1 for any 0 ≤ x1 ≤ x2. This implies that Z | x1 ≤lr Z | x2,
which yields Z | x1 ≤st Z | x2. By relation (1.A.7) of [16] this in turn implies that for any

increasing function Q(z), E(Q(Z) | x1) ≤ E(Q(Z) | x2). If we put Q(z) = −(1−ν̄F̄k(x))
1−(1−z)F̄k(x) which

is increasing in 0 < z < 1, for any x and k > 0, we obtain

E[
−(1 − ν̄F̄k(x1))

1 − (1 − Z)F̄k(x1)
| x1] ≤ E[

−(1 − ν̄F̄k(x2))
1 − (1 − Z)F̄k(x2)

| x2],

or, equivalently,

E[
1 − ν̄F̄k(x2)

1 − (1 − Z)F̄k(x2)
| x2] ≤ E[

1 − ν̄F̄k(x1)
1 − (1 − Z)F̄k(x1)

| x1]. (3.5)

This completes the proof. □

Theorem 3.2. Let X and X∗ be two rv’s with sf’s H̄(.; ν, k) and H̄(.; k), respectively. Then, if
P(0 < Θ ≤ 1) = 1, we have X ≤AI X∗.



224 S. Abbasi and M. H. Alamatsaz

Proof. X ≤AI X∗ if and only if,

1
rH(x; ν, k)

∫ x

0
rH(u; ν, k)du ≤

1
rH(x; k)

∫ x

0
rH(u; k)du,

or, equivalently, by Eq (1.7) and Eq (3.4), if and only if,

1 − ν̄F̄k(x)
rF(x)

∫ x

0

rF(u)
1 − ν̄F̄k(u)

du ≤
1

rF(x)E[ 1
1−(1−Z)F̄k(x) | x]∫ x

0
rF(u)E[

1
1 − (1 − Z)F̄k(u)

| u]du.

This, in turn, is equivalent to

∫ x

0
rF(u)

E[ 1−ν̄F̄k(u)
1−(1−Z)F̄k(u) | u] − E[ 1−ν̄F̄k(x)

1−(1−Z)F̄k(x) | x]

(1 − ν̄F̄k(u))(1 − ν̄F̄k(x))
du ≥ 0,

for all x > 0, which is true by the decreasing property of inequality (3.5). Thus, we have
the result. □

In the following theorems, we shall only give the proofs for the case when Θ ≥ 1
with probability 1. Proofs of the case 0 < Θ ≤ 1 with probability 1 are similar and thus
omitted.

Theorem 3.3. Let X and X∗ be two continuous and non-negative rv’s corresponding to sf’s
H̄(.; ν, k) and H̄(.; k), respectively. Also, letΘ ≥ 1 (0 < Θ ≤ 1) with probability 1 and 0 < ν ≤ 1
(ν ≥ 1). Then
i) X ≤plr↑ (≥plr↑)X∗ if F ∈ UIPLR,
ii) X ≤plr (≥plr)X∗ if F ∈ IPLR,
iii) X ≤lr↑ (≥lr↑)X∗ if F ∈ ILR.

Proof. i) X ≤plr↑ X∗ if and only if,

h(λx; k)
h(x + t; ν, k)

=
f (λx)

f (x + t)
E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x + t)
1 − Θ̄F̄k(λx)

)
1
k+1],

is increasing in x for all t ≥ 0, 0 < λ ≤ 1 and k > 0. But, F ∈ UIPLR is equivalent to f (λx)
f (x+t)

being increasing in x for all t ≥ 0 and 0 < λ ≤ 1. Also,

d
dx

E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x + t)
1 − Θ̄F̄k(λx)

)
1
k+1] = E[(k + 1)(

Θ

ν
)

1
k (

1 − ν̄F̄k(x + t)
1 − Θ̄F̄k(λx)

)
1
k

(
ν̄F̄k−1(x + t) f (x + t)(1 − Θ̄F̄k(λx))

(1 − Θ̄F̄k(λx))2

−
Θ̄λF̄k−1(λx) f (λx)(1 − ν̄F̄k(x + t))

(1 − Θ̄F̄k(λx))2
)], (3.6)
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is non-negative if 0 < ν ≤ 1 and Θ > 1 with probability 1. Thus, since both factors are
non-negative, this completes the assertion.
With proper choices of t(= 0) or λ(= 1), proofs of parts (ii) and (iii) are immediate. □

Theorem 3.4. Let X and X∗ be two continuous and non-negative rv’s corresponding to sf’s
H̄(.; ν, k) and H̄(.; k), respectively. Also, letΘ ≥ 1 (0 < Θ ≤ 1) with probability 1 and 0 < ν ≤ 1
(ν ≥ 1). Then
i) X ≤plr↓ (≥plr↓)X∗ if F ∈ DIPLR,
ii) X ≤lr↓ (≥lr↓)X∗ if F ∈ DLR.

Proof. i) X ≤plr↓ X∗ if and only if,

h(λx + t; k)
h(x; ν, k)

=
f (λx + t)

f (x)
E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x)
1 − Θ̄F̄k(λx + t)

)
1
k+1],

is increasing in x for all t ≥ 0, 0 < λ ≤ 1 and k > 0. But, F ∈ DIPLR is equivalent to
f (λx+t)

f (x) being increasing in x for all t ≥ 0 and 0 < λ ≤ 1. Also,

d
dx

E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x)
1 − Θ̄F̄k(λx + t)

)
1
k+1] = E[(k + 1)(

Θ

ν
)

1
k (

1 − ν̄F̄k(x)
1 − Θ̄F̄k(λx + t)

)
1
k

(
ν̄F̄k−1(x) f (x)(1 − Θ̄F̄k(λx + t))

(1 − Θ̄F̄k(λx + t))2

−
Θ̄λF̄k−1(λx + t) f (λx)(1 − ν̄F̄k(x))

(1 − Θ̄F̄k(λx + t))2
)], (3.7)

is non-negative if 0 < ν ≤ 1 and Θ > 1 with probability 1. Thus, since both factors are
non-negative, this proves the assertion.
With choosing λ(= 1), proof of part (ii) is immediate. □

Theorem 3.5. Let X and X∗ be two continuous and non-negative rv’s corresponding to sf’s
H̄(.; ν, k) and H̄(.; k), respectively. Also, letΘ ≥ 1 (0 < Θ ≤ 1) with probability 1 and 0 < ν ≤ 1
(ν ≥ 1). Then
i) X ≤phr↑ (≥phr↑)X∗ if F ∈ UIPHR,
ii) X ≤phr (≥phr)X∗ if F ∈ IPHR,
iii) X ≤hr↑ (≥hr↑)X∗ if F ∈ IHR.

Proof. i) X ≤phr↑ X∗ if and only if,

H̄(λx; k)
H̄(x + t; ν, k)

=
F̄(λx)

F̄(x + t)
E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x + t)
1 − Θ̄F̄k(λx)

)
1
k ],

is increasing in x for all t ≥ 0, 0 < λ ≤ 1 and k > 0. But, F ∈ UIPHR is equivalent to
F̄(λx)
F̄(x+t) being increasing in x for all t ≥ 0 and 0 < λ ≤ 1. Using Eq (3.6), the second factor
is also increasing in x if 0 < ν ≤ 1 andΘ ≥ 1 with probability 1. Thus, since both factors
are non-negative, thus the assertion follows.
With proper choices of t(= 0) or λ(= 1), proofs of parts (ii) and (iii) are immediate. □
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Theorem 3.6. Let X and X∗ be two continuous and non-negative rv’s corresponding to sf’s
H̄(.; ν, k) and H̄(.; k), respectively. Also, letΘ ≥ 1 (0 < Θ ≤ 1) with probability 1 and 0 < ν ≤ 1
(ν ≥ 1). Then
i) X ≤phr↓ (≥phr↓)X∗ if F ∈ DIPHR,
ii) X ≤hr↓ (≥hr↓)X∗ if F ∈ DHR.

Proof. i) X ≤phr↓ X∗ if and only if,

H̄(λx + t; k)
H̄(x; ν, k)

=
H̄(λx + t)

H̄(x)
E[(
Θ

ν
)

1
k (

1 − ν̄F̄k(x)
1 − Θ̄F̄k(λx + t)

)
1
k ],

is increasing in x for all t ≥ 0, 0 < λ ≤ 1 and k > 0. But, F ∈ DIPHR is equivalent to
F̄(λx+t)

F̄(x) being increasing in x for all t ≥ 0 and 0 < λ ≤ 1. Using Eq (3.7), the second factor
is also increasing in x if 0 < ν ≤ 1 andΘ ≥ 1 with probability 1. Thus, since both factors
are non-negative, this proves the assertion.

By choosing λ = 1, proof of part (ii) is immediate. □

Remark 2. Taking Θ as a degenerate rv, some of the results in Theorem 2.3, 2.4, 2.5 and
2.6 enfold Theorem 3.1 in Abbasi (2018) as a special case when k1 = k2 = k

Remark 3. Taking Θ as a degenerate rv and ν = 1, our results coincide with Batsidis
and Lemonte (2015)’s findings in this connection. Also, by Remark 1 of Batsidis
and Lemonte (2015) or, taking ν = 1 and k = 1, our results contain Nanda (2012)’s
findings in this connection. Some results of Nanda (2012) and consequently the results
of proposition 2 in Batsidis and Lemonte (2015) are not correct as the conventional
definitions of down and up orderings but, they are correct according to their own
definitions.

In the following theorem, we shall investigate preservation of decreasing hazard
rate average (DHRA) and new worse than used (NWU) characteristics by mixtures of
Harris family of distributions. F has DHRA property, if F̄(ct) ≤ (F̄(t))c, for all 0 < c < 1.
This means that the system improving, as time goes by, is less intuitive.
F has NWU property, if F̄(t+u) ≤ F̄(t)F̄(u), for t > 0 and u > 0. This means that a device
of any particular age has a stochastically bigger remaining lifetime than dose a new
device. For more details see Barlow (1981).

Theorem 3.7. Let P(0 < Θ < 1) = 1.

i) DHRA characteristic is preserved by transformation to Mixture of Harris family.
ii) NWU characteristic is preserved by transformation to Mixture of Harris family.

Proof. i) For any 0 < c < 1 and k > 0, by Eq(3.1), we have

H̄(cx; k) = EΘ[H̄(cx;Θ, k)].
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Let F have DHRA and 0 < Θ < 1 with probability 1. By Corollary 5.1 of Abbasi
(2018), DHRA is preserved by transformation to Harris family. Thus, for non-negative
H̄ function, we have

EΘ[H̄(cx;Θ, k)] ≤ EΘ[(H̄(x;Θ, k))c].

Let U = H̄(x;Θ, k). Rv U is non-negative. Thus, [E(Uc)]
1
c is an increasing function of

c > 0. Hence, for any 0 < c < 1, E(Uc) ≤ [E(U)]c. Consequently

EΘ[(H̄(x;Θ, k))c] ≤ [EΘ(H̄(x;Θ, k))]c,

= [H̄(x; k)]c. (3.8)

By above definition of DHRA, we have the result.
ii) Let F have NWU and 0 < Θ < 1 with probability 1. By Abbasi (2018), NWU is
preserved by transformation to Harris family. Thus, for non-negative H̄ function, we
have

H̄(t + u; k) = EΘ[H̄(t + u;Θ, k)]
≤ EΘ[H̄(t;Θ, k)H̄(u;Θ, k)]
≤ EΘ[H̄(t;Θ, k)]EΘ[H̄(u;Θ, k)]
= H̄(t; k)H̄(u; k), (3.9)

since the random variables H̄(t;Θ, k) and H̄(u;Θ, k) are monotone in the same direction,
the last inequality holds and we have the result. □

4 Application

In this section, to show the applicability of our model, we investigate the data set
originally considered by Bjerkedal (1960). This data set has also been analyzed by
Cordeiro et al. (2014). The data shows the survival times of guinea pigs injected with
different doses of tubercle bacilli. It is known that guinea pigs have high susceptibility
to human tuberculosis. Thus, they are worth dealing with in this study. Here, we are
primarily considering the animals in the same cage that were under the same regimen.
The regimen value is the common logarithm of the number of bacillary units in 0.5 ml
of challenge solution; i.e., regimen 6.6 corresponds to 4.0 × 106 bacillary units per 0.5
ml (log(4.0 × 106) = 6.6). The data are: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48,
52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73,
75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146,
175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

Cordeiro et al. (2014) considered three baseline distributions denoted by Ch, XTG
and FW and their transformations to Marshall-Olkin family (i.e., k = 1 in Harris family)
denoted by MOCh, MOXTG and MOFW. They fitted these distributions to a real data
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set and compared them. They concluded that MOXTG model fits the data well and
then can be used to model the survival times of guinea pigs.

Now, we consider XTG, MOXTG and Harris of XTG (HXTG) distributions and fit
them to above real data using a SAS Program. The pdf and sf of XTG distribution are

f (x; τ1, τ2, τ3) = τ1τ2(
x
τ3

)τ2−1exp((
x
τ3

)τ2 + τ1τ3[1 − exp((
x
τ3

)τ2)]), x > 0,

and

F̄(x; τ1, τ2, τ3) = exp(τ1τ3[1 − exp((
x
τ3

)τ2)]) x > 0,

respectively, where τ1 > 0, τ2 > 0 and τ3 > 0. Table 2 lists the MLEs and standard
errors, in parentheses, of the parameters of XTG, MOXTG and HXTG distributions.
AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) are listed in
Table 3. We note that HXTG distribution has the lowest AIC and BIC values in relation
to its special XTG and MOXTG models and it could be chosen as the best model among
the fitted models. HXTG model provides an adequate fit to the real data and it fits
the data well and therefore can be used to model the survival times of guinea pigs.
By using our results, we can chose either the HXTG or unconditional HXTG models.
Let the tilt parameter follow a uniform distribution in unconditional HXTG model.
Figure 1 shows that if P(0 < ν ≤ Θ ≤ 1) = 1 then h(x;k)

h(x;ν,k) is increasing. Thus, according
to Theorem 1 we have that in the likelihood ratio ordering sense HXTG rv is smaller
than unconditional HXTG rv. Figure 2 shows that if P(0 < Θ ≤ ν ≤ 1) = 1 then h(x;k)

h(x;ν,k)
is decreasing. Hence, the unconditional HXTG rv is smaller than HXTG model in
likelihood ratio ordering. Since the usual stochastic ordering is implied by likelihood
ratio ordering, we can conclude that if P(0 < ν ≤ Θ ≤ 1) = 1, then sf of unconditional
HXTG rv is larger than HXTG rv. If the utility issue is the sf, using unconditional
HXTG model will be better than HXTG model. Also, if the utility is a low hazard, using
unconditional HXTG model will be more favorable than HXTG model.

Table 2: MLEs and standard errors in parentheses
Model Estimates
HXTG(τ1, τ2, τ3, ν, k) 0.004319 3.5230 389.28 0.002822 2.2756

(-) (0.6537) (-) (0.002493) (0.6966)
MOXTG(τ1, τ2, τ3, ν) 0.001701 2.4390 389.28 0.01223

(0.008469) (0.2782) (418.98) (0.04449)
XTG(τ1, τ2, τ3) 1.851 1.3925 83522433

(2.7536) (0.1125) (-)
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Table 3: Statistics AIC and BIC
Statistics

Model AIC BIC
HXTG 792.6 804.0
MOXTG 796.1 805.3
XTG 810.3 817.2

Figure 1: Illustrating h(x;k)
h(x;ν,k) with baseline pdf XTG and P(ν ≤ Θ ≤ 1) = 1, is increasing.

Figure 2: Illustrating h(x;k)
h(x;ν,k) with baseline pdf XTG and P(Θ ≤ ν ≤ 1) = 1, is decreasing.

5 Discussion and conclusion:

The class of Harris family of distribution, which was introduced by Aly (2011), con-
tains a tilt parameter so that it can cover a wide range of data such as those with high
degrees of skewness and kurtosis, we describe the better choice of the tilt parameter by
comparing a Harris family distribution with a mixed Harris family distribution con-
sidering higher likelihood ratio, lower risk (Hazard rate order), longer lifetime (usual
stochastic order), higher expectation and lower aging intensity orderings. We also in-
vestigated preservation of certain aging properties of the baseline distribution, such as
the likelihood ratio and lower shifted proportional hazard rate orderings, by a mixed
Harris family distribution. Finally, to show the applicability of our model, we fitted
the proposed Harris model to a real data set and compared it with its mixture.
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