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1 Introduction

Let T be a discrete random variable with support N = {1, 2, . . .}, survival function
F(k) = P(T ≥ k) and probability mass function (pmf), p(k) = P(T = k). The discrete
pseudo-hazard rate and the discrete hazard rate average of T is defined as

r(k) = − log
F(k + 1)

F(k)
, (1.1)

and

h(k) =
1
k

k∑
i=1

r(i) = −
1
k

log F(k + 1), (1.2)
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respectively. By analogy with continuous distributions, the aging intensity of the
discrete random variable is defined as

L(k) =
r(k)
h(k)

= k

1 − log F(k)

log F(k + 1)

 for k = 1, 2, . . . . (1.3)

It expresses the unit average aging behavior and analyzes the aging property quantita-
tively, the larger the aging intensity, the stronger the tendency of aging (see Szymkowiak
and Iwińska (2016)).

Lemma 1.1. (Xie et al. (2002)) Given discrete hazard rate r(k), for k = 1, 2, . . . , the distribution
function is determined as

F(k) = exp

− k−1∑
i=1

r(i)

 , f or k = 1, 2, . . . . (1.4)

Now, if T is a discrete random variable with support N0 = {0, 1, 2, . . .}, then the
discrete hazard rate, the hazard rate average and the mean residual life function of T,
respectively are defined as follows:

rF(n) =
P(T = n)
P(T ≥ n)

, n = 0, 1, 2, . . . , (1.5)

A(n) = −
1
n

log P(T ≥ n), n = 0, 1, 2, . . . , (1.6)

µF(n) = E(T − n|T ≥ n) =
∑
∞

x=n(x − n)P(T = x)
P(T ≥ n)

=

∑
∞

x=n+1 F(x)

F(n)
, n = 0, 1, 2, . . . . (1.7)

(see Kemp (2004) and Gupta (2015)). The pseudo-hazard rate r(n) and the hazard rate
rF(n) are related as:

r(n) = − ln(1 − rF(n)).

By analogy with continuous distributions, Kemp (2004) proved that, the hazard rate,
the survival function and the mean residual life are related by,

F(n) =
∏

0≤i≤n−1

[1 − rF(i)]

=
∏

0≤i≤n−1

[
µF(i)

1 + µF(i + 1)

]
, µF(0) = E(T), (1.8)

and also the variance residual life function is defined as

σ2
F(n) = Var(T − n|T ≥ n)
= Var(T|T ≥ n)

=
2
∑
∞

x=n xF(x + 1)

F(n)
− (2n − 1)µF(n) − µ2

F(n). (1.9)
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Definition 1.1. (Kemp , 2004)

(i) F is IFR (DFR) if rF(n) is increasing (decreasing) in n.

(ii) A lifetime distribution is said to be new better than used (NBU) or new worse
than used (NWU) if P(T ≥ n + x) > (<)P(T ≥ n)P(T ≥ x).

Kemp (2004) proved that if a discrete lifetime distribution with infinite support is
IFR/DFR then it is NBU/NWU and also a discrete lifetime distribution that is IFR/DFR
has a decreasing/increasing mean residual life function, i.e., is DMRL/IMRL.

Moreover, for discrete nonnegative random variables X and Y with cumulative
distribution functions F and G and mean residual lifetime functions µF(t) and µG(t),
respectively, we say that X is smaller than Y in the

• Usual stochastic order, denoted by X ≤st Y, if F(k) ≤ G(k) for all k ∈ {0, 1, 2, . . .},

• Mean residual lifetime order, denoted by X ≤mrl Y, if µF(k) ≤ µG(k) for all k ∈
{0, 1, 2, . . .}.

Gupta et al. (1997) defined Glaser’s function (also known as eta function) for a
discrete random variable as follows:

η(k) =
p(k) − p(k + 1)

p(k)
.

The entropy and the varentropy of a discrete random variable T taking values in
the set {xi; i ∈ I} are expressed, respectively, as

H(T) = −
∑
i∈I

P(T = xi) log P(T = xi), (1.10)

and

V(T) =
∑
i∈I

P(T = xi)[log P(T = xi)]2
− [H(T)]2. (1.11)

Indeed entropy of a discrete random variable is the average number of bits of infor-
mation that is obtained based on observing one symbol. In other words, if we have
a sequence of symbols drawn independently according to probabilities p1, p2, . . ., such
that by observing symbol oi, for example, we get − log pi bits of information then en-
tropy can be given by equation (1.10). Now if two sources have the same entropy,
then for decoding, the number of digits for codeword of a symbol is nearest to entropy,
when the source has the least varentropy. The varentropy measures the variability in
the information content of X. For more details see Di Crescenzo and Paolillo (2021).

In this paper, we obtain upper bound for the variance of a function of random
variables Tn = (T − n|T ≥ n) for n = 0, 1, . . .. Upper and lower variance bounds of g(X)
for an arbitrary random variable X were considered in Cacoullos (1982) and Cacoullos
and Papathanasiou (1985). Both upper and lower variance bounds may be obtained
by Cauchy-Schwarz inequality. Now, in order to find the desired bounds, we use the
following lemma.
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Lemma 1.2. (Cacoullos and Papathanasiou , 1985) Let X be a nonnegative integer-valued
random variable with pmf p(x), E(X) = µ and g(x) a real-valued function defined on {0, 1, 2, . . .}
such that Var[g(X)] < ∞. Then

Var[g(X)] ≤
∞∑

x=0

[∆g(x)]2

 x∑
k=0

(µ − k)p(k)

 = ∞∑
x=0

[∆g(x)]2

 ∞∑
k=x+1

(k − µ)p(k)

 , (1.12)

where ∆g(x) = g(x + 1) − g(x) and equality holds if and only if g is linear.

2 Characterization by Cauchy-Schwarz Inequality

In this section, we characterize some distributions using the moments of some functions
of interest in reliability theory. The following theorem characterizes the discrete Weibull
(III) distribution through E

[
Tα

r(T)

]
. For more details about various versions of the Weibull

distribution for discrete data, see Almalki and Nadarajah (2014).

Lemma 2.1. For a discrete random variable T, the discrete hazard rate has form r(k) =
−kβ−1 log q for k = 1, 2, . . . ; 0 < q < 1, β ≥ 0 if and only if T ∼ DW(III)(q, β) with survival
function F(k) = q

∑k−1
i=1 iβ−1

.

Theorem 2.1. For any random variable T with support {1, 2, . . .},

E
[

Tα

r(T)

]
≥

1

E
[

r(T)
Tα

] , (2.1)

where α ≥ 0 is a real constant. The equality holds if and only if T has discrete Weibull (III)
distribution.

Proof. Using Cauchy-Schwarz inequality, it follows that

E
[

Tα

r(T)

]
E
[
r(T)
Tα

]
≥ 1. (2.2)

The equality in (2.2) holds if and only if there exists a constant A(> 0) such that, for all
k ∈ {1, 2, . . .},

kα

r(k)
p(k) = A

r(k)
kα

p(k), (2.3)

that is equivalent to r(k) = θkα forθ > 0 and by using Lemma 2.1, T ∼ DW(III)(e−θ, α+1).

Trivially if α = 0 then the geometric distribution is characterized. For α = 1 we
obtain the characterization of discrete Rayleigh distribution. □
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Theorem 2.2. For any random variable T with support {1, 2, . . .},

E
[
TαL(T)

r(T)

]
≥

1

E
[

r(T)
TαL(T)

] , (2.4)

for any real constant α ≥ 0. The equality holds if and only if T has discrete Weibull (I).

Proof. Using Cauchy-Schwarz inequality, it follows that

E
[

r(T)
TαL(T)

]
E
[
TαL(T)

r(T)

]
≥ 1. (2.5)

The equality in (2.5) holds if and only if there exists a constant A(> 0) such that, for all
k ∈ {1, 2, . . .},

kαL(k)
r(k)

p(k) = A
r(k)

kαL(k)
p(k), (2.6)

that is equivalent to h(k) = − 1
k log F(k + 1) = θkα for θ > 0 and thus F(k + 1) = e−θkα+1

for
k = 1, 2, . . ..

Now if we consider e−θ = q(0 < q < 1), then T has discrete Weibull (I) distribution
with pmf p(k) = q(k−1)α+1

− q(k)α+1
, k = 1, 2, . . ..

It is easy to note that for α = 0, T follows geometric distribution, with parameter q = e−θ

for θ > 0. □

Below we obtain a lower bound for E[T3rF(T)] and characterize the geometric dis-
tribution in terms of it. Note that, sometimes hazard function may have a complex
form and therefore finding the expected value of a function of it is not simple.

Proposition 2.1. For any nonnegative discrete random variable T with support N0,

E[T3rF(T)] ≥
4(E(T3)2)

E(T2(T + 1)2)
. (2.7)

the equality holds if and only if T is geometrically distributed.

Proof. By the Cauchy-Schwarz inequality, we have

(E(T3))2 =
[ ∞∑

x=0

x3p(x)
]2
=

[ ∞∑
x=0

√
x3P(T ≥ x)

√
x3

P(T ≥ x)
p(x)

]2

≤

∞∑
x=0

x3P(T ≥ x)
∞∑

x=0

x3 p2(x)
P(T ≥ x)

. (2.8)
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Since

∞∑
x=0

x3P(T ≥ x) =
∞∑

x=0

x3
∞∑

y=x
p(y)

=

∞∑
y=0

p(y)
y∑

x=0

x3 =

∞∑
y=0

[ y(y + 1)
2

]2
p(y)

=
1
4

E[T2(T + 1)2], (2.9)

and
∞∑

x=0

x3 p2(x)
P(T ≥ x)

= E[T3rF(T)],

(2.8) reduces to (2.7). The equality holds if and only if there exists a constant A > 0 such
that, for all x ∈ {0, 1, 2, . . .}, √

x3p2(x)
P(T ≥ x)

= A
√

x3P(T ≥ x).

This gives rF(x) =constant, which holds if and only if T is geometrically distributed. □

Theorem 2.3. Let T be a discrete random variable with E[µF(T)/(T + 1)] < ∞ and E[(T +
1)/µF(T)] < ∞. Then

E[µF(T)/(T + 1)] ≥
1

E[(T + 1)/µF(T)]
, (2.10)

and the equality holds if and only if T follows the pmf

p(x) = (1 + 1/θ)B(x + 1, 2 + 1/θ), x = 0, 1, . . . , θ > 0,

where B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

, a > 0, b > 0.

Proof. The inequality (2.10) follows from the Cauchy-Schwarz inequality and equality
holds if and only if there exists a constant A > 0 such that

(x + 1)p(x)
µF(x)

= A
µF(x)p(x)

x + 1
, (2.11)

which is equivalent to the fact that µF(x) = θ(x + 1). Applying (1.8), we have

F(x) =
x−1∏
i=0

θ(i + 1)
1 + θ(i + 2)

=

x−1∏
i=0

i + 1
1
θ + i + 2

, (2.12)
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and thus

P(T = x) = P(T ≥ x) − P(T ≥ x + 1)

=

x−1∏
i=0

i + 1
1
θ + i + 2

−

x∏
i=0

i + 1
1
θ + i + 2

=

x−1∏
i=0

i + 1
1
θ + (i + 2)

( 1
θ + 1

1
θ + x + 2

)
=

( 1
θ + 1)x!∏x

i=0( 1
θ + i + 2)

= (1 +
1
θ

)
Γ(x + 1)Γ(2 + 1

θ )

Γ(x + 3 + 1
θ )

= (1 +
1
θ

)B(x + 1, 2 +
1
θ

), x = 0, 1, . . . . (2.13)

□

The next theorem gives a useful lower bound for E[sTrF(T)], |s| ≤ 1 in terms of
probability generating function, and characterizes the geometric distribution.

Theorem 2.4. Let T be a nonnegative discrete random variable with support N0. Then

E[sTrF(T)] ≥
1 − s

1 − sE(sT)
(E[sT])2, (2.14)

for |s| ≤ 1, where the equality holds if and only if T has the geometric distribution.

Proof. Using the Cauchy-Schwarz inequality, we get

(E[sT])2
≤ E[sTrF(T)]E

[ sT

rF(T)

]
. (2.15)

On the other hand, one can easily show that

E
[ sT

rF(T)

]
=

∞∑
x=0

sxP(T ≥ x)

=

∞∑
y=0

y∑
x=0

sxp(y) =
∞∑

y=0

1 − sy+1

1 − s
p(y)

=
1

1 − s
{1 − E(sT+1)}. (2.16)

The equality is obtained if and only if there exists a constant A > 0 such that, for all
x = 0, 1, . . ., √

sxp2(x)
P(T ≥ x)

= A
√

sxP(T ≥ x).
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This gives rF(x) = constant, which again holds if and only if T is geometrically dis-
tributed. □

At present, we attain an upper bound for the variance of a function of residual
lifetime Tn. For example, we attain an upper bound for varentropy residual lifetime,
that will defined in the following literature.

Proposition 2.2. Let T be a nonnegative discrete random variable with pmf p(x) and survival
function F(x). If g is a function with forward difference ∆g(x) = g(x + 1) − g(x) then

Var[g(Tn)] ≤ E
[( 1

rF(Tn + n)
− 1

)(
µF(n + Tn + 1) − µF(n) + Tn + 1

)
∆g2(Tn)

]
. (2.17)

Proof. We know that

P(Tn = x) = P(T − n = x|T ≥ n) =
P(T = x + n)

P(T ≥ n)
.

Using Lemma 1.2, and since E[Tn] = µF(n), we can write that

∞∑
k=x+1

(k − µF(n))
P{T = k + n}

P{T ≥ n}
=

1
P(T ≥ n)

 ∞∑
k=x+1+n

(k − n)p(k) − µF(n)
∞∑

k=x+n+1

p(k)


=

P(T ≥ n + x + 1)
P(T ≥ n)

 ∞∑
k=x+1+n

(k − (n + x + 1))p(k)
P(T ≥ n + x + 1)

+ (x + 1) − µF(n)


=

P(T ≥ n + x + 1)
P(T ≥ n)

[µF(n + x + 1) − µF(n) + (x + 1)], (2.18)

and further using Lemma 1.2 and substituting the right hand side of (2.18) in inequality
(1.12), we have

Var[g(Tn)] ≤
∞∑

x=0

[∆g(x)]2 F(x + n + 1)

F(n)
{µF(n + x + 1) − µF(n) + x + 1}

=

∞∑
x=0

[∆g(x)]2 F(x + n + 1)
P(T = x + n)

{µF(n + x + 1) − µF(n) + x + 1}
P(T = x + n)

F(n)

=

∞∑
x=0

[∆g(x)]2 P(T ≥ x + n) − P(T = x + n)
P(T = x + n)

{µF(n + x + 1) − µF(n) + x + 1}
P(T = x + n)

P(T ≥ n)

=

∞∑
x=0

[∆g(x)]2(
1

rF(x + n)
− 1){µF(n + x + 1) − µF(n) + x + 1}P(Tn = x)

= E
[
(∆g(Tn))2(

1
rF(Tn + n)

− 1){µF(n + Tn + 1) − µF(n) + Tn + 1}
]
.

□
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Corollary 2.1. In Proposition 2.2, if let g(x) = − log p(n+x)
F(n)

then ∆g(x) = − log p(n+x+1)
p(n+x) =

− log(1 − ηn+x) and hence

Var[− log p(Tn)] ≤ E
{
[log(1 − ηn+Tn)]2(

1
rF(Tn + n)

− 1)[µF(n + Tn + 1) − µF(n) + Tn + 1]
}
.

(2.19)

According to Lemma 1.2, the equality in (2.19) holds if and only if g(x) = − log p(n+x)+log F(n)
is linear in x. Thus, log p(n + x) = ax + b for constants a and b, and therefore in inequality
(2.19) the equality holds if and only if T has a geometric and discrete uniform distribution. In
fact if a , 0 then p(n + x) = eax+b and thus p(x) = (ea)xeb−n and simplifyig we can show that T
has a geometric distribution. On the other hand if a = 0 then p(n + x) = eb and hence p(x) = c
for a finite set of values of random variable T and this shows that T has a discrete uniform
distribution.

Now, we consider the generalization of the entropy to the residual lifetime distri-
butions, that is given by

H(Tn) = −
∞∑

x=n

p(x)

F(n)
log

p(x)

F(n)
= log F(n) −

1

F(n)

∞∑
x=n

p(x) log p(x), (2.20)

which is called residual entropy, in short. Based on Equation (1.11), the residual
varentropy, varentropy of the residual lifetime Tn, is defined as

V(Tn) = Var[− log p(Tn)]

=

∞∑
x=n

p(x)

F(n)

(
log

p(x)

F(n)

)2
−

 ∞∑
x=n

p(x)

F(n)

(
log

p(x)

F(n)

)2

=
1

F(n)

∞∑
x=n

p(x)(log p(x))2
− (log F(n) −H(Tn))2. (2.21)

It can be easily seen that
lim
n→0

V(Tn) = V(T),

where V(T) is the varentropy of T in Equation (1.11). Computing the residual varen-
tropy using the definition in Equation (2.21) is presented in the following example for
the geometric distribution.

Example 2.1. Let T be a random variable that follows discrete uniform distribution on
the set {0, 1, . . . , θ}, then

H(Tn) = log
(
1 −

n
θ + 1

)
−

( θ + 1
θ + 1 − n

) θ∑
x=n

1
θ + 1

log
1
θ + 1

= log
(
1 −

n
θ + 1

)
+ log(1 + θ),

(2.22)



242 F. Goodarzi

and thus

V(Tn) =
θ + 1
θ + 1 − n

θ∑
x=n

1
θ + 1

( 1
θ + 1

)2
−

(
log

(θ + 1 − n
θ + 1

)
− log

(θ + 1 − n
θ + 1

)
− log(1 + θ)

)2
= 0.

(2.23)

On the other hand, since − log(1 − ηn+x) = − log p(n+x+1)
p(n+x) =0, hence the equality holds in

inequality (2.19).

Example 2.2. Let T be a geometric random variable with probability mass function
p(x) = pqx, x = 0, 1, 2, . . .. Then

H(Tn) = log
1 − p

p
−

1
p

log(1 − p),

and thus

V(Tn) =
1

(1 − p)n

∞∑
x=n

p(1 − p)x(log p(1 − p)x)2
−

(
log(1 − p)n + log

1 − p
p
−

1
p

log(1 − p)
)2

= (log(1 − p))2 1 − p
p2 = V(T). (2.24)

On the other hand, since rF(n) = p, µF(n) = q
p and hence ηn+x = 1 − p(1−p)k+1

p(1−p)k = p, so
by using (2.19) the upper bound for residual varentropy of geometric distribution is
obtained as follows:

E[(log(1 − p))2(
1
p
− 1)(Tn + 1)] = (log(1 − p))2 1 − p

p2 , (2.25)

which agrees with the result of Proposition 2.2.

Remark 1. Let X and Y be related by Y = aX + b. Hence the residual varentropy of Y is
obtained as

V(Yn) =
1

FX( n−b
a )

∞∑
x= n−b

a

pX(x)(log pX(x))2
−

( 1

FX( n−b
a )

∞∑
x= n−b

a

pX(x)(log pX(x))
)2
. (2.26)

Proposition 2.3. For all n ∈N ∪ {0}, the difference of the residual varentropy is

∆V(Tn) =
p(n)

F(n + 1)

{
V(Tn) +

(
H(Tn) + log rF(n)

)(
log

F(n + 1)

F(n)
−H(Tn+1) − log rF(n)

)}
.

(2.27)
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Proof. By differencing of Equation (2.21) and recalling (1.5), we have

∆V(Tn) =
p(n)

F(n + 1)

−(log p(n))2 +

∞∑
x=n

p(x)

F(n)
(log p(x))2

 − (log F(n + 1) −H(Tn+1))2 + (log F(n) −H(Tn))2

=
p(n)

F(n + 1)

{
V(Tn) + (log F(n) −H(Tn))2

− (log p(n))2

+ (log rF(n) +H(Tn))(log[F(n)F(n + 1)] −H(Tn) −H(Tn+1))
}

=
p(n)

F(n + 1)

{
V(Tn) +

(
H(Tn) + log rF(n)

)(
log

F(n + 1)

F(n)
−H(Tn+1) − log rF(n)

)}
.

(2.28)

□

In the previous theorem, for all n, if H(Tn) = H(Tn+1), then

∆V(Tn) =
p(n)

F(n + 1)

(
V(Tn) + (H(Tn) + log rF(n)) log

F(n + 1)

F(n)
− (H(Tn) + log rF(n))2

)
.

(2.29)

Proposition 2.4. Let T have a pmf such that p(n) > 0 for all n = 0, 1, 2, . . ..

Let c ∈ R; if H(Tn) = H(Tn+1) and log F(n+1)
F(n)

−H(Tn+1) − log rF(n) = c, then

V(Tn) =
1

F(n)
(V(T) − c2F(n − 1)) +

c

F(n)

n−1∑
i=0

p(i) log
F(i + 1)

F(i)
. (2.30)

Proof. If the conditions given in the theorem are satisfied, then Equation (2.27) becomes

∆V(Tn) =
p(n)

F(n + 1)
[V(Tn) + c(log

F(n + 1)

F(n)
− c)],

with initial condition limn→0 V(Tn) = V(T). Now, since

V(Tn+1) − V(Tn)
{ p(n)

F(n + 1)
+ 1

}
=

cp(n)

F(n + 1)

{
log

F(n + 1)

F(n)
+ c

}
, (2.31)

is a first order inhomogeneous difference equation, then

V(Tn) =
V(T)

F(n)
+

c

F(n)

n−1∑
i=0

p(i)
{

log
F(i + 1)

F(i)
− c

}
, (2.32)

and the desired result is obtained. □
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In the following, we want to find a bound for V(Tn) in terms of the weighted residual
entropy of T, which is a weighted version of the residual entropy in (2.20) and is given
by

Hw(Tn) = −
∞∑

x=n
x

p(x)

F(n)
log

p(x)

F(n)

= −
1

F(n)

∞∑
x=n

xp(x) log p(x) +
log F(n)

F(n)

∞∑
x=n

xp(x), n ∈ {0, 1, . . .}. (2.33)

Furthermore, it is based on the so-called vitality function of T, i.e.

ν(n) = E[X|X ≥ n] = µF(n) + n. (2.34)

Theorem 2.5. If T is a random lifetime such that its probability mass function satisfies

e−αx−β
≤ p(x) ≤ 1, (2.35)

for all x, with α > 0 and β ≥ 0, then for all n ∈ {0, 1, . . .},

V(Tn) ≤ α[− log F(n)ν(n) +Hw(Tn)] + β[− log F(n) +H(Tn)] − (log F(n) −H(Tn))2.
(2.36)

Proof. From Equation (2.21), due to (2.35) we have

V(Tn) ≤
−1

F(n)

∞∑
x=n

p(x) log p(x)(αx + β) − (log F(n) −H(Tn))2. (2.37)

We note that Equations (1.7) and (2.34) give
∞∑

x=n
xp(x) = F(n)ν(n),

hence, recalling (2.34), Equation (2.33) implies:
∞∑

x=n
xp(x) log p(x) = −F(n){Hw(Tn) − log F(n)ν(n)}. (2.38)

Moreover, from (2.20), we have
∞∑

x=n
p(x) log p(x) = −F(n){H(Tn) − log F(n)}. (2.39)

Finally, substituting (2.38) and (2.39) in (2.37), we obtain the inequality (2.36). □

Remark 2. In Proposition 2.2, if T is a nonnegative discrete random variable and F is
IFR then

Var[g(Tn)] ≤ E
[( 1

rF(T)
− 1

)
(T + 1)∆g2(T)

]
. (2.40)

The upper bound of (2.40) is equal to (2.17) if and only if F has geometric distribution
with pmf P(T = x) = pqx, x = 0, 1, . . ., since T having constant hazard rate, having
constant mean residual life and having a geometric distribution are all equivalent.
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3 Results on Discrete Cumulative Residual Entropy and Vari-
ance

Let X be a nonnegative discrete random variable with survival function F(k) = P(T ≥ k)
and pmf p(k). The discrete cumulative residual entropy of T was defined by Baratpour
and Bami (2012) as follows,

dE (X) = −
∞∑

k=1

F(k) log F(k). (3.1)

Theorem 3.1. If X is a nonnegative discrete random variable, then

dE (X) ≤ 2E(X)
(

E(X2)
E(X2) − E(X)

− 1
)
+

1
2

(
E(X2)
E(X)

− 1
)
. (3.2)

Proof. By log-sum inequality (see Cover and Thomas (2006)), for 0 < p < 1 and q = 1−p,
we have

∞∑
k=0

P(X > k) log
P(X > k)

qk+1
≥ E(X)

log
E(X)

q
p

 . (3.3)

Expanding the LHS of (3.3) we get

∞∑
k=0

P(X > k) log P(X > k) − log q
∞∑

k=0

(k + 1)P(X > k) ≥ E(X) log
(

p
q

E(X)
)
.

On the other hand, since
∑
∞

k=0(k + 1)P(X > k) = 1
2 (E(X2) + E(X)) thus

∞∑
k=0

P(X > k) log P(X > k) ≥ log q
[1
2

(E(X2) + E(X))
]
+ E(X) log

[
1 − q

q
E(X)

]
. (3.4)

This is valid for all 0 < q < 1. The maximum of the RHS of (3.4) is attained when
q = E(X2)−E(X)

E(X2)+E(X) .

Substituting this value of q into (3.4) we get

∞∑
k=0

P(X > k) log P(X > k) ≥ log
(

E(X2) − E(X)
E(X2) + E(X)

) [1
2

(E(X2) + E(X))
]
+ E(X) log

[
2E2(X)

E(X2) − E(X)

]
≥

(
1 −

E(X2) + E(X)
E(X2) − E(X)

) [1
2

(E(X2) + E(X))
]
+ E(X)

(
1 −

E(X2) − E(X)
2E2(X)

)
.

Here we used log x ≥ 1 − 1
x . At last, straightforward computations yield that

dE (X) ≤ 2E(X)
(

E(X2)
E(X2) − E(X)

− 1
)
+

1
2

(
E(X2)
E(X)

− 1
)
. (3.5)

□
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In the following, we want to find the introduced formula for dE (X). Let X be a
nonnegative discrete random variable with probability mass function p(x) and survival
function F(x). Assume that 0 ≡ X0 ≤ X1 ≤ X2 ≤ . . . denote the epoch times, where
Xn,n ≥ 1, denote the time until the nth event of a discrete-time stochastic process and
X1 has the same distribution as X. In this case, Xn+1 −Xn, describes the duration of the
interepoch intervals or the interoccurrence times. By denoting the survival function of
X2 as F2(t), it follows that

F2(t) =
1∑

k=0

P(k failures in [0, t)) = F(t) +
t−1∑
i=1

r(i)F(t) = F(t)(1 − log F(t)). (3.6)

Now, from (3.6) we obtain

dE (X) = E[X2 − X1] =
∞∑

x=0

[F2(x) − F1(x)] = −
∞∑

x=0

F(x) log F(x), (3.7)

and also p2(x) = p(x)(1−log F(x))−F(x+1)r(x).The equation (3.6) corresponds to the case
n = 1 of Corollary 4.1 of Kapodistria and Psarrakos (2012) for continuous distribution
function.

Hereafter, we obtain a lower bound for the variance of the random variable X, in
terms of the mean residual life function.

Theorem 3.2. Let X be a discrete random variable with support N0, then

E[µ2
F(X)] ≤ Var(X). (3.8)

Proof. By using (1.7), we have

E[µ2
F(X)] =

∞∑
x=0

( ∞∑
y=x+1

F(y)

F(x)

)2
p(x) ≤

∞∑
x=0

(
∑
∞

y=x+1 F(y))2

F(x)F(x + 1)
p(x). (3.9)

Applying summation by parts

b∑
a

u∆v = uv|ba −
b∑
a

Sv∆u, (3.10)

where Sv is a shift operator, i.e. Sv(x) = v(x + 1) , we have, with considering

(
∑
∞

y=x+1 F(y))
2
= u and 1

F(x)
= v, and therefore ∆u = F

2
(x + 1)− 2F(x+ 1)

∑
∞

y=x+1 F(y), and
also

∆v =
p(x)

F(x)F(x + 1)
, (3.11)
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E[µ2
F(X)] ≤

(
∑
∞

y=x+1 F(y))2

F(x)

∣∣∣∣∞
0
−

∞∑
x=1

F
2
(x) − 2F(x)

∑
∞

y=x F(y)

F(x)

= −E2(X) −
∞∑

x=1

F(x) + 2
∞∑

x=1

∞∑
y=x

F(y)

= −E2(X) − E(X) + 2
∞∑

y=1

y∑
x=1

F(y)

= −E2(X) − E(X) + 2(
1
2

[
E(X2) + E(X)

]
)

= Var[X].

□

For an absolutely continuous nonnegative random variable, Toomaj and Di Crescenzo
(2020) proved that E[µ2

F(X)] = Var(X), and by giving an example, they stated that the
equality does not hold for a discrete random variable.

Now we must notice that, since E2(µF(X)) ≤ E(µ2
F(X)) ≤ Var(X), consequently

E(µF(X)) ≤
√

Var(X).

Szymkowiak and Iwińska (2016) obtained a lower bound for E[µF(X)]. Also Barat-
pour and Bami (2012) proved E[µF(X)] ≤ dE (X) where dE (X) is defined in equation
(3.1). In the following proposition, we obtain the other lower bound on E[µF(X)] in

terms of cumulative residual Tsallis entropy of order 2 as ξ2(X) =
∑
∞

x=1(F(x) − F
2
(x)),

(see Rajesh and Sunoj (2019)).

Proposition 3.1. Let X be a nonnegative discrete random variable, then

E[µF(X)] ≥ ξ2(X). (3.12)

Proof. By using (1.7), we have

E[µF(X)] =
∞∑

k=0

∞∑
t=k+1

F(t)

F(k)
p(k) =

∞∑
t=1

F(t)
t−1∑
k=0

p(k)

F(k)

≥

∞∑
t=1

F(t)
t−1∑
k=0

p(k) =
∞∑

t=1

F(t)(1 − F(t)) = ξ2(X).

□

Example 3.1. Let X have a three point discrete distribution with the pmf p(0) = 1
2 ,

p(1) = 1
4 and p(2) = 1

4 . Then from (1.7), we obtain µF(0) = 3
4 and µF(1) = 1

2 while
µF(2) = 0. It is obvious that σ2

F(X) = 11
16 . However, we get

E[µ2
F(X)] = 11/32 ≤ σ2

F(X).
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On the other hand, since dE (X) = 0.693, we can show that E[µF(X)] ≤ dE (X) ≤ σF(X).

Also we can find lower bounds for E[µF(X)] using the lower bound given in
Szymkowiak and Iwińska (2016) and inequality (3.12). Simple algebraic calculations
show that the lower bounds are 0 and 7/16 respectively, and thus the bound (3.12) is
sharper.

Example 3.2. Let X be a geometric random variable with probability mass function
p(x) = pqx, x = 0, 1, . . .. Then E[µ2

F(X)] = ( q
p )

2
≤

q
p2 = Var[X], also E[µF(X)] = q

p ≤

−
q
p2 log q = dE (X) because log q ≤ q − 1 and hence − log q

p ≥
1
√

q .

Theorem 3.3. Let X and Y be nonnegative discrete random variables with mean residual life
functions µX(t) and µY(t), respectively. Let X ≤st Y and X ≤mrl Y. If either X or Y is IMRL;
then E[µ2

X(X)] ≤ σ2(Y)

Proof. Let Y be IMRL. From (3.8), we get

E[µ2
X(X)] ≤ E[µ2

Y(X)] ≤ E[µ2
Y(Y)] ≤ σ2(Y). (3.13)

The first inequality is obtained from the assumption X ≤mrl Y while the last inequality is
obtained by the fact that X ≤st Y, which implies that E(g(X)) ≤ E(g(Y)) for all increasing
functions g(·). Now let X be IMRL. Then, we similarly have

E[µ2
X(X)] ≤ E[µ2

X(Y)] ≤ E[µ2
Y(Y)] ≤ σ2(Y), (3.14)

and hence the result stated is obtained. □

The proof of Theorem 3.3 proceeds similarly as the proof of Theorem 2 of Toomaj
and Di Crescenzo (2020).

Example 3.3. Let X and Y have discrete Weibull distributions with distribution func-
tions F(x) = (0.2)x2

and G(x) = (0.2)x for x = 0, 1, . . ., respectively. Then E[µX(X)2] ≤
σ2(Y) = 0.2/(0.82) = 0.3125

4 Conclusion

In this article, we obtained an upper bound for variance of a function of discrete residual
life random variable Tn. In view of the importance of varentropy in the information
theory, we investigated the discrete residual varentropy, that is the varentropy of the
residual lifetime distribution for discrete random variables. We obtained an upper
bound for it in terms of the mean residual life and eta function. Moreover, we presented
the other upper bound for the discrete residual varentropy that involves the weighted
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residual entropy. We analyzed the effect of linear transformations on the discrete
residual varentropy.

We also characterized the geometric distribution in terms of E[T3rF(T)] and E[sTrF(T)].
The geometric distribution can be characterized by E[TmrF(T)]; m ≤ 7. Moreover, we
characterized discrete Weibull distribution via Cauchy-Schwarz inequality.

Furthermore some results have been obtained for discrete cumulative residual en-
tropy and some stochastic orders. Also we showed that, the variance of a discrete
random variable is an upper bound for the expectation of the square of the mean resid-
ual life. We gave a lower bound for the expectation of the mean residual life in terms
of cumulative residual Tsallis entropy of order 2.
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