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Abstract. The celebrated Ljung-Box residual analysis is a widely used method in time
series for the parameter estimation and the goodness of fit test for the ARMA time series
models. The question is whether the autocorrelation function of the fitted ARMA(p, q)
model for an observed time series, at different lags, in the Ljung-Box estimation method,
is close to the correlogram of observed series. The answer indeed is not affirmative. In
this article, firstly, we present a new procedure in solving the Yule-Walker equations
for the exact computation of the autocorrelation functions of ARMA(p, q) models. Sec-
ondly, we provided a goodness of fit procedure using the limiting distribution of the
the sample correlation function. Thirdly, we establish a new parameters estimation
method based on examining the model autocorrelation function against the series au-
tocorrelation coefficients. The effectiveness of the procedure is brought into sight using
simulated data.
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1 Introduction

In this article, we address the classical topic in time series, namely, parameters estima-
tions for the ARMA(p, q) processes. There are of course various methods in time series
for this purpose. The common and most applied method is the residual analysis and
the goodness for the fitted model by Ljung-Box (1978) chi-square test. Then estimated
parameters, the fits, the residuals and the forecasts will come easily afterwards. The
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question is whether the fitted series and the observed series exhibit close or nearly close
autocorrelation functions, ACFs. The answer, in general, may not be positive. This eas-
ily can be seen: For t = 1, 2, let Y1 = X1 +Z1 and Y2 = X2 +Z2, where Z2 is independent
of X1,X2 and Z1 and means are zero. Then cov(Y1,Y2) = cov(X1,X2) + cov(Z1,X2). For
time series data, cov(Z1,X2) , 0. Therefore cov(Y1,Y2) and cov(X1,X2) can be different.
Indeed this is the case whenever the current noise and future series values are signifi-
cantly correlated. Clearly, the autocorrelation function, as well as the autocorrelation
coefficients, are essential tools in time series analysis, either in the time domain or in
the spectral domain. The main aim in this article is to present a new ARMA(p, q) model
building method. This article is indeed three folded. Firstly, we develop a new theoret-
ical and computational method for the exact evaluation of the autocorrelation function
of an ARMA(p, q) model, in solving the corresponding "Yule-Walker equations". To
the best of our knowledge, the common procedures cited in the well known classical
texts in time series, either relay on the roots of certain polynomials, Chatfiled (1975),
Brockwell and Davis (1991), Pourahmadi (2001), Shumway and Stoffer (2011), or on the
moving average representation, using the moving average coefficients. Neither of these
methods, in practice, is handy nor gives the exact values of the autocorrelation func-
tion. Secondly, we use the true value of the autocorrelation function of the proposed
ARMA(p, q) model to identify the limiting distribution of the correlation coefficients.
Then, we provide a goodness of fit for the ARMA(p, q) models, using the asymptotic
distribution of the sample ACF. Thirdly, we furnish a new ARMA(p, q) model building
procedure by examining the autocorrelation function of the proposed model against the
series autocorrelation coefficients. The methodology of our procedure, indeed, is very
different from the residual analysis. The fits for the proposed parameters estimation
procedure exhibit the closest ACF to the corresponding one of the observed series.

Interestingly, in addition, in our goodness of fit, the limiting distribution of the test
statistic at each lag is the standard normal distribution. Hence in contrast to the existing
diagnosing methods in time series, at each lag, the p-value of the test is provided by
the standard normal distribution, as in the goodness of fit for the underlying population
distribution given in Soltani (2019). The work of Khmaladze (1998), Khmaladze and
Koul (2009) and Koul (2002) give insights to the goodness of fit tests.

This article is organized as follows. In Section 2, we provide preliminaries and
establish the foundation of our ACF computation method for AR(p) processes, that also
will be used in the ACF computation for the ARMA(p, q) given in Section 3. Section 4
is devoted to the our model parameters estimation procedure. All the programs and
numerical derivations are furnished using the Wolfram Mathematica (2020) Version
12.1.

2 AR(p) Autocorrelation Computation

We recall that a discrete time AR(p) time series model assumes the formulation

Xt − µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + ... + αp(Xt−p − µ) + Zt, (2.1)
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where µ is the mean and α1, ..., αp are the AR parameters. It is assumed that all the roots
of the model characteristic polynomialΨ(z) = 1 − α1z − α2z2

− ... − αpzp lie outside the
unit disc {|z| ≤ 1}.

The "Yule-Walker equations" is a very familiar term in classical time series. For a
discrete time AR(p) process, it is indeed the system of equations involving the model
autocorrelation function (ACF), ρ(·), and the model parameters:

ρ(k) = α1ρ(k − 1) + · · · + αpρ(k − p), for all k > 0, ρ(−k) = ρ(k). (2.2)

As it is reported in well known texts in time series, such as Chatfiled (1975), Brockwell
and Davis (1991) and Shumway and Stoffer (2011), the classical technique concerning
solving difference equations (2.2) reads ρ(·) as ρ(k) = A1πk

1 + · · · + Apπk
p, k ≥ 0, where

π1, · · · , πp are the roots of the auxiliary equation yp
− α1yp−1

− · · · − αp−1y − αp = 0, and
the coefficients A1, · · · ,Ap can be derived due to the restrictions that are imposed by
the first p − 1 Yule-Walker equations and ρ(0) = 1. Although theoretically the function
ρ(·) is provided, but tedious manipulations are required to get it in the closed form for
a given model. In general, for p ≥ 3, there in no formulation for the exact derivation of
roots of a polynomial of order p. Since the roots of a polynomial of order p are computed
approximately, consequently, the autocorrelation function is approximated, and even
advanced computational softwares do not give exact values for the autocorrelation
function. The second approach, given in Brockwell and Davis (1991), is based on
the moving average representation, using the moving average coefficients. Plausibly,
simulated value for large series length gives estimates for the autocorrelation.

In time series, mostly, the importance of Yule-Walker equations is realized from
the point of the ARMA(p, q) parameters estimation. In the Matrix form, the first p − 1
equations are written as,

ρ(p−1)×1 = A(p−1)×pαp×1, (2.3)

where

A =


ρ(0) ρ(1) · · · ρ(p − 1)
ρ(1) ρ(0) · · · ρ(p − 2)
...

...
. . .

...
ρ(p − 1) ρ(p − 2) · · · ρ(1)

 ,
αp×1 =

(
α1, · · · , αp

)′
and ρ(p−1)×1 =

(
ρ(1), · · · , ρ(p − 1)

)′. Equation (2.3) is frequently
applied for the parameter estimation of the autoregressive coefficients, where the au-
tocorrelation function values ρ(k) are replaced by the corresponding autocorrelation
coefficients rk, k = 1, ..., p − 1.

In this work we bring into sight another application of the AR(p) and ARMA(p, q)
Yule-Walker equations, and provide a fairly simple and practical method for the precise
computation of the autocorrelation (ρ(k)) and autocovariance (γ(k)) functions, for, k ≥ 0.

Our approach for the exact computation of the ACF ρ(·), is to rewrite the first p − 1
equations in (2.2) in a suitable matrix form in which the vector of the first p − 1 auto-
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correlation function values is expressed in terms of the autoregressive coefficients. The
details are provided in the following lemma.

Lemma 2.1. For p > 1, the first p − 1 Yule-Walker equations in (2.2) can be written
in the matrix form as

α(p−1)×1 = B(p−1)×(p−1)ρ(p−1)×1, (2.4)

where
α(p−1)×1 = (α1, · · · , αp−1)′, ρ(p−1)×1 = (ρ(1), ..., ρ(p − 1)), (2.5)

and the matrix B(p−1)×(p−1) = {B jk} j,k=1,...,p−1 is specified as follows.
For j < L:

B jk =


−(α j−k + α j+k) k = 1, 2, · · · , j − 1
1 − α2 j k = j
−α j+k k = j + 1, · · · , p − j
0 k = p − j + 1, · · · , p − 1,

(2.6)

for j = L:

BLk =


−(αL−k + αL+k) k = 1, 2, · · · ,L − 1
1 − α2L k = L
0 k = L + 1, · · · , p − 1,

(2.7)

for j > L:

B jk =


−(α j+k + α j−k) k = 1, 2, · · · , p − j
−α j−k k = p − j + 1, · · · , j − 1
1 k = j
0 k = j + 1, · · · , p − 1,

(2.8)

where L = p/2 for p even, and L = (p − 1)/2 for p odd.

Proof. The term ρ(0)αk appears in the kth equation, k = 1, ..., p − 1. Since ρ(0) = 1,
the first p − 1 equations are rewritten by keeping αk in one side of each equation, and
moving the other terms to the other side. This rewriting provides the system of equa-
tions (2.4). □

In particular, for p = 2 and p = 3, respectively,

B1×1 = (1 − α2), B2×2 =

(
1 − α2 0
−(α1 + α3) 1

)
. (2.9)

For p = 4 and p = 5, respectively,

B3×3 =


1 − α2 −α3 −α4
−(α1 + α3) 1 − α4 0
−(α2 + α4) −α1 1

 , (2.10)
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B4×4 =


1 − α2 −α3 −α4 −α5
−α1 − α3 1 − α4 0 0
−α2 − α4 −α1 − α5 1 0
−α3 − α5 −α2 −α1 1

 . (2.11)

Example 2.1. In this example, we let α(k) stands for αk as well.
a. For p = 2,

ρ(1) =
α(1)

1 − α(2)
,

ρ(2) =
α(1)2

1 − α(2)
+ α(2),

ρ(3) =
α(1)α(2)
1 − α(2)

+ α(1)
(
α(1)2

1 − α(2)
+ α(2)

)
.

b. For p = 3,

ρ(1) =
α(1)

1 − α(2)
,

ρ(2) = α(2) +
α(1)(α(1) + α(3))

1 − α(2)
,

ρ(3) = α(1)
(
α(2) +

α(1)(α(1) + α(3))
1 − α(2)

)
+
α(1)α(2)
1 − α(2)

+ α(3),

ρ(4) = α(1)
(
α(1)

(
α(2) +

α(1)(α(1) + α(3))
1 − α(2)

)
+
α(1)α(2)
1 − α(2)

+ α(3)
)

+

(
α(2) +

α(1)(α(1) + α(3))
1 − α(2)

)
α(2) +

α(1)α(3)
1 − α(2)

.

c. For p = 4,

ρ(1) =
A1
B
,

A1 = α(1)(1 − α(4)) + α(2)(α(3) + α(1)α(4)) + α(3)
(
α(4) − α(4)2

)
,

B = α(4)3 + α(2)α(4)2
− α(4)2

− α(1)2α(4) − α(1)α(3)α(4)
− α(4) − α(3)2

− α(2) − α(1)α(3) + 1,

ρ(2) =
A2
B
,

A2 = α(1)(α(1) + α(3)) + α(3)(α(1)α(4) + α(3)α(4))

+ α(2)
(
−α(4)2

− α(2)α(4) − α(2) + 1
)
,

ρ(3) =
A3
B
,

A3 = α(3)
(
−α(3)2

− α(1)α(3) − α(2) + α(2)α(4) − α(4) + 1
)

+ α(2)(−α(2)α(1) + α(1) + α(2)α(3) + α(3)α(4))

+ α(1)
(
α(1)2 + α(3)α(1) − α(4)2 + α(2) − α(2)α(4) + α(4)

)
.
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For p > 1, Lemma 2.1 can be effectively applied to derive the values of the autocorre-
lation function ρ(k), k = 1, ..., p − 1, analytically and numerically:

ρ(p−1)×1 = B−1
(p−1)×(p−1)α(p−1)×1. (2.12)

For p = 1, ρ(k) = αk, k ≥ 0. Then, the Yule-Walker equations recursively provide the
values for ρ(k), k ≥ p.

For a given value for σ2
Z, and the ACF ρ(k), k = 0, ..., p, the variance of the AR(p)

model Xt, σ2
X, is given by

σ2
X =

σ2
Z

1 − 2
∑p

k=1 αkρ(k) +
∑p

i=1

∑p
j=1 αiα jρ(|i − j|)

. (2.13)

3 ARMA(p,q) Processes

We let {Xt} denote a mean zero discrete time ARMA(p, q) process,

Xt = α1Xt−1 + ... + αpXt−p + Zt + β1Zt−1 + ... + βqZt−q, t ∈ Z; (3.1)

where β1, · · · , βq denote the moving average (MA) coefficients. It is also assumed that
the roots of the polynomial Φ(z) = 1 + β1z + β2z2 + ... + βqzq are not in the unit disc
{|z| ≤ 1}.

The corresponding Yule-Walker equations can be written as

ρ(k) = α1ρ(k − 1) + · · · + αpρ(k − p) + βkη(0) + βk+1η(1) + · · · + βqη(q − k), (3.2)

k ≥ 1, where

η( j) =


E(XtZt− j)/σ2

X j = 1, 2, · · ·
σ2

Z/σ
2
X j = 0

0 j = −1,−2, · · · ,
(3.3)

and satisfy

η(k) = α1η(k − 1) + · · · + αpη(k − p) + βkη(0), for all k ≥ 1, (3.4)

where βk = 0, k > q.

Lemma 3.1. Let

η(1)(k) =
η(k)
η(0)

=
1
σ2

Z

E [XtZt−k] , k ≥ 0. (3.5)

Also let

η(1)
(p−1)×1 =

(
η(1)(1), ..., η(1)(p − 1)

)′
, and β(p−1)×1 =

(
β1, ..., βp−1

)′
. (3.6)
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Then for p > 1,
C(p−1)×(p−1)η

(1) = α(p−1)×1 + β(p−1)×1, (3.7)

where

C(p−1)×(p−1) =


1 0 0 0 · · · 0 0
−α1 1 0 0 · · · 0 0
−α2 −α1 1 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

−αp−2 −αp−3 −αp−4 αp−5 · · · −α1 1


; (3.8)

Indeed

C(p−1)×(p−1) = [C j,k], C j,k =


−α j−k, k < j
1, k = j
0 k > j,

(3.9)

Proof. The proof follows from the fact that η(1)(0) = 1, and the autoregressive struc-
ture for η(k)(0), k = 1, ..., p − 1. □

By using Lemma 2.1 and Lemma 3.1, the values of η(1)(k), k ≥ 1 can be calculated.
For calculating ρ(k), it is to compute η(0) first. We proceed by deriving η(0). Let us first
introduce the following notations.

β(k)
(q−k+1)×1 =

(
βk, ..., βq

)′
, βk = 0, k > q, (3.10)

η(1)
(q−k+1)×1 =

(
η(1)(0), ..., η(1)(q − k)

)′
, η(1)( j) = 0, j < 0, (3.11)

δ(p−1)×1 = (δ1, ..., δp−1)′, (3.12)

δk = η
(1)′
(q−k+1)×1 · β

(k)
(q−k+1)×1, k = 1, ....,min{p − 1, q}, (3.13)

δk = 0, k > min{p − 1, q}, k , p, (3.14)

δp = η
(1)′
(q−p+1)×1 · β

(p)
(q−p+1)×1, p ≤ q; δp = 0, p > q, (3.15)

τ(p−1)×1 =
(
τ1, ..., τp−1

)′
, τk =

p−k∑
i=1

αiαi+k − αk, k = 1, ..., p − 1. (3.16)
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Lemma 3.2. For p > 1, q ≥ 1,
a.

B(p−1)×(p−1)ρ(p−1)×1 = α(p−1)×1 + η(0)δ(p−1)×1, (3.17)

b.
ρ(p) = αp + α∗∗′(p−1)×1ρ(p−1)×1 + η(0)δp, (3.18)

where α∗∗(p−1)×1 = (αp−1, · · · , α1)′.
c.

(1 +
p∑

j=1

α2
j ) + 2

p−1∑
k=1

{

p−k∑
i=1

αiαi+k − αk}ρ(k) − 2αpρ(p) = (1 +
q∑

j=1

β2
j )η(0). (3.19)

Proof. a. Since ρ(0) = 1, the same reasoning as in Lemma 2.1, provides (3.17). Part
b follows from (3.2) with k = p and Part c follows from the fact that the expressions on
both sides in

Xt − α1Xt−1 − ... − αpXt−p = Zt + β1Zt−1 + ... + βqZt−q,

possess the same variance. □

Next, we replace ρ(p) in (3.19) by its value in (3.18), then we solve the resulting
equation for η(0). Indeed

(1 +
p∑

j=1

α2
j ) + 2τ′(p−1)×1 · ρ(p−1)×1 − 2αp

(
αp + α∗∗′(p−1)×1ρ(p−1)×1 + η(0)δp

)
= (1 +

q∑
j=1

β2
j )η(0).

Therefore,

(1 +
p∑

j=1

α2
j ) + 2τ′(p−1)×1 · ρ(p−1)×1 − 2αpα∗∗′(p−1)×1 · ρ(p−1)×1 − 2α2

p

= 2αpη(0)δp + (1 +
q∑

j=1

β2
j )η(0).

Giving that,

(1 +
p∑

j=1

α2
j ) +

{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
· ρ(p−1)×1 − 2α2

p

= 2αpη(0)δp + (1 +
q∑

j=1

β2
j )η(0).
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Thus,

(1 +
p∑

j=1

α2
j )

+
{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
·

{
B−1

(p−1)×(p−1)α(p−1)×1 + η(0)B−1
(p−1)×(p−1)δ(p−1)×1

}
−2α2

p

= 2αpη(0)δp + (1 +
q∑

j=1

β2
j )η(0).

Consequently,

(1 +
p∑

j=1

α2
j ) +

{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
·

{
B−1

(p−1)×(p−1)α(p−1)×1

}
− 2α2

p

= −

{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
·

{
B−1

(p−1)×(p−1)δ(p−1)×1

}
η(0)

+2αpη(0)δp + (1 +
q∑

j=1

β2
j )η(0),

giving the formula in the following lemma for the η(0).

Lemma 3.3. For p > 1, q ≥ 1, the quantity η(0) is given by

η(0) =
C
D
, (3.20)

where

C = (1 +
p∑

j=1

α2
j ) +

{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
·

{
B−1

(p−1)×(p−1)α(p−1)×1

}
− 2α2

p, (3.21)

D = (1 +
q∑

j=1

β2
j ) + 2αpδp −

{
2τ′(p−1)×1 − 2αpα∗∗′(p−1)×1

}
·

{
B−1

(p−1)×(p−1)δ(p−1)×1

}
.

(3.22)

We record that σ2
X =

σ2
Z

η(0) .

For p = 1,

η(1)(1) = α + β1, η(0) =
1 − α2

2αδ1 + (1 +
∑q

i=1 β
2
i )
. (3.23)
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3.1 Autocovariance and Autocorrelation Functions Formulations and Com-
putation Procedure

The formulation-computational algorithm for computing ρ(k), k ≥ 1 goes as follows.

(I). In spirit of Lemma 3.1, (3.7) is applied to deduce η(1)(k), k ≥ 1.

(II). Lemma 3.3, (3.20), together with the derivations in (I) are applied to compute
η(0).

(III). Lemma 3.1 together with the value of η(0) are applied to compute ρ(k), k =
1, ..., p − 1:
For p > 1,

ρ(p−1)×1 = B−1
(p−1)×(p−1)α(p−1)×1 + η(0)B−1

(p−1)×(p−1)δ(p−1)×1, (3.24)

For p = 1,
ρ(1) = α + η(0)δ1. (3.25)

(IV). Lemma 3.1 together with the derivations in (I), (II) and (III) are applied to
compute ρ(k), k ≥ p:

ρ(k) = α1ρ(k − 1) + · · · + αpρ(k − p) + η(0){βk + βk+1η
(1)(1) + · · · + βqη

(1)(q − k)}. (3.26)

Numerical implementations are given in Section 5.

4 Parameter Estimation and Goodness of Fit via ACF

As it was discussed in Section 1, the autocorrelation function, ACF, of the fitted
ARMA(p, q) model, provided by the residuals, is not necessarily close to the sample
ACF of the observed series, more numerical demonstrations will be given in Section 5.
In this section, we provide a new ARMA(p, q) parameters estimation procedure based
the observed series ACF, SACF in brief, and ACF of the model.

We let {xt, t = 1, · · · ,N} to be an observed time series. The aim is to fit an ARMA(p, q)
model to the series xt. It is assumed that xt exhibits no trend and no seasonality. The
derivation of the exact values for the ACF of an ARMA(p, q) model, presented in
Sections 2 & 3, enables us to pave the way for the implementation of the procedure.
We let ρ̂(k) stands for the SACF of the series xt and ρ(k)[α1, · · · , αp; β1, · · · , βq] stands
for the ACF of an ARMA(p, q)[α1, · · · , αp; β1, · · · , βq] model, at lag k. An SACFvsACF
ARMA(p, q) parameters estimates [α̂1, · · · , α̂p; β̂1, · · · , β̂q] are those that minimized the
SACF-ACF Square Deviation:

L[α1, · · · , αp; β1, · · · , βq] =
K∑

k=1

∣∣∣ρ̂(k) − ρ(k)[α1, · · · , αp; β1, · · · , βq]
∣∣∣2 . (4.1)
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In time series, since the estimation procedures deal with implicit functions of sev-
eral variables, the estimation procedures are put into action by detecting the unknown
model parameters, Chatfield (1999). Nevertheless, advances in computation technol-
ogy has facilitated the technicalities. In Section 5, we provide numerical demonstra-
tions on the effectiveness of the SACFvsACF estimation procedure. According to the
derivations in Section 3, the model ACF ρ(k), k ≥ 1 are indeed functions of the model
parameters α1, · · · , αp; β1, · · · , βq, through complicated but computing formulations.
Therefore the criteria to minimize (4.1) indeed gives nonlinear least squares parameter
estimates. The corresponding model is

ρ̂(k) = ρ(k)[α1, · · · , αp; β1, · · · , βq] + ϵk, k = 1, ....K. (4.2)

Thus the corresponding estimators possess the properties of the least square estimators.
The consistency of the nonlinear is established in Chien-Fu Wu (1981) and Richardson
and Bhattacharyya (1986), among others. Applying these results to (4.2) by itself is an
interesting research topic.

Goodness of fit. Let us present one more application for the knowledge of the
true (exact) values of the autocorrelation function, which is the goodness of fit for a
proposed model. The methodology is based on the limiting distribution of (ρ̂1, ..., ρ̂h),
the sample autocorrelation function.

The commonly applied Box-Pierce (1970) and Ljung-Box (1978) goodness of fit test
relies on whether the residual series is purely random, by examining the autocorrelation
coefficients of the residual.

Our goodness of fit test for the ARMA(p, q) models relies on examining the auto-
correlation coefficients of the observed series to the autocorrelation function values of
the proposed model.

According to Theorem 7.2.2 in Brockwell and Davis (1991), for a stationary process

Xt − µ =
+∞∑

j=−∞

ψ jZt− j, {Zt} ∼ IID(0, σ2
Z), (4.3)

for which either
+∞∑

j=−∞

|ψ j| < ∞ and
+∞∑

j=−∞

| j|ψ2
j < ∞, (4.4)

or
+∞∑

j=−∞

|ψ j| < ∞ and EZ4 < ∞, (4.5)

is satisfied, then it follows that for each h ∈ {1, 2, ...},

ρ̂h×1 is AN
(
ρh×1,n

−1Wh×h

)
, (4.6)
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where ρ̂h×1 = (ρ̂(1), ..., ρ̂(h))′ and the element of the covariance matrix Wh×h = [wi j], are
given by

wi j =

+∞∑
k=1

ckickj, cki = ρ(k + i) + ρ(k − i) − 2ρ(i)ρ(k), i, j = 1, ..., h. (4.7)

As it is reported in Brockwell and Davis (1991), both conditions (4.4) and (4.5) are
satisfied for the ARMA(p,q) models. For more on the sample ACF, see Basrak, Davis
and Mikosch (1999), Pourahmadi (2003), Tsay and Pourahmadi (2017).

To introduce our diagnosing procedure, we let

1h×1 = (1, ..., 1)′h×1, and Yh =

h∑
i=1

ρ̂. (4.8)

Then for large n,

Yh ∼ AN

 h∑
i=1

ρ(i),n−11′h×1Wh×h1h×1

 . (4.9)

The null hypothesis is stated as

H0 : X ∼ ARMA(p, q)[α1, ..., αp; β1, ..., βq], (4.10)

where X = {x1, ..., xn} is the observed time series. The test statistics is

z(h) =
Yh −

∑h
k=1 ρ(k)
σYh

, (4.11)

where ρ(·) is the autocorrelation function for the ARMA(p, q)[α1, ..., αp; β1, ..., βq].
The observed time series X gives the statistic Yh. The model information is used in the
algorithm, given in Section 3, to compute the exact values for

∑h
k=1 ρ(k) and σYh .

For a given lag h, P(|z(h)| < zν/2) = 1 − ν for large n. The plot of z(h) in terms h
supports the null hypothesis (4.5), whenever |z(h)| < zν/2, for 100(1 − ν)% of times.

The numerical implementations of the procedures established in Sections 2-4 are
given in the next section.

5 Numerical Implementations

In this section we provide numerical implementations of the procedures established
in the previous sections. We provide examples accordingly. The programming and
numerical derivations are done using Wolfram Mathematica 12.1 (2020).

Example 5.1. In this example, we illustrate the deviation between the correspond-
ing ACF values, the exact values, presented in Section 3 (Algorithm), and the values
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provided by the software which uses the well known ACF computation technique.
Interestingly, as it is evident in Figure 1, even with 1000 iterations, at a specific lag, the
deviation is visible.

Model a:
{Xt} ∼ ARMA(5, 6) [0.4, −1.3, 0.5, −0.6, 0.2 ; −1.7, 0.5, 0.5, −0.3, 0.04, 0.002],
µ = 0, σZ = 1.
The correlation function ρ(k) is computed and depicted in Figure 1 using the Algorithm:
black tiny discs plots; using the mean of values provided by the Mathematica, red tiny
squares; light black in black-white display plots.
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Figure 1: Example 5.1, Model a; Plots: ρ(k) in k by the Algorithm (black discs) and the
software (red squares); [Top Left: By the Algorithm]; [Top Right: By the Algorithm,
and by the software, No. of iterations = 1]; [Bottom Left: By the Algorithm, and by
the software, No. of iterations = 100]; [Bottom Right:By the Algorithm, and by the
software, No. of iterations = 1000].
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Example 5.2. This example concerns the goodness of fit skim developed in Section
4. For the ARMA(p, q) model a in Example 5.1, X is a simulated series of length
n = 160. Then for a lag h, the test statistic z(h) is computed. This procedure is repeated,
r number of times. Then for every lag h, the percentage of times that z(h) falls in the
interval (−1.96 , +1.96), the coverage index I(h), is measured. The plots of I(h) in h,
for r = 1000, 10000 are depicted in Figure 2. As it is evident in Figure 2, the coverage
index I(h) indeed surpass, the expected level 95%. This supports that the statistics z(h)
behavior is consistent and reliable and it supports the proposed ARMA(p, q) model as
well.

We also record that for σZ = 1, the variance of Xt, σ2
X = 18.3133.

5 10 15 20

93

94

95
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97

2 4 6 8 10 12 14

94.5

95.0

95.5

96.0

96.5

97.0

97.5

Figure 2: Example 5.2, Coverage Index, I(h) Plot in h; Left: r = 1000 iterations; Right
r = 10000, iterations.
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Example 5.3. False Model The procedure in Example 5.2 is done for testing H0 :
X ∼ ARMA Model a. But the series X is generated from:

Model b: ARMA(4, 4) [0.4, 0, 0.5, −0.6, 0.2; 0, 0.5, 0.5, −0.3, 0.04, 0.002], σZ = 1.

The corresponding plots for the coverage index I(h) in h are depicted in Figure 3.
The coverage index for the interval (−1.96 , +1.96) for each h is below 5%, except for
lags h = 10 and h = 15, which is about 10% and 8%, respectively. Thus the statistic
{z(h), h} does not support the Model b.
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Figure 3: Example 5.3, Coverage Index, I(h) Plot in h; Left: r = 1000 iterations; Right
r = 10000, iterations.
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Example 5.4. This example concerns our model building method developed in
Section 4. The ACF for the model fitted based onthe Ljung-Box, SACFvsACF model
building methods and the actual model are plotted, Figure 4.

Model c: ARMA(1, 1)[{−0.8}; {0.6}, 4], n = 180; α = −0.8, β = 0.6, σ2
Z = 4

It is reported in Charfield (1991), and also for q = 1, δ1 = β, it follows from (3.23),
(3.25) and (3.26) that ρ(k) = αk−1 (1+αβ)(α+β)

1+β2+2αβ , k = 1, 2, .....

Number of iterations is setto be 100and the reported parameter estimates are the
mean values in 100 repeats.

SACFvsACF output data: {AD = 0.95951, α̂ = −0.736427, β̂ = 0.519823}}

Ljung-Box Time Series Model Fit ARMA(1, 1) : α̃ = −0.321925, β̃ = 0.0568402

Ljung-Box p-values: {0.569039, 0.431928, 0.262392, 0.249834, 0.228022, 0.239146}
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Figure 4: ACF Plots; Top Left: Data ACF in circles (blue color), Ljung-Box Fitted Model
ACF in squares (orange color); Top Right: Data ACF in circles (blue color), SACFvsACF
Fitted Model ACF in squares (orange color); Bottom: Data ACF in circles (blue color),
Ljung-Box Fitted Model ACF in squares (orange color), SACFvsACF Fitted Model ACF
in dimonds (green color).
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Example 5.5. This example also concerns our model building method developed
in Section 4. The ACF for the model fitted using the Ljung-Box, SACFvsACF model
building methods and the actual model are plotted in Figure 5.

Model d: ARMA(2, 2)[{0.4,−0.8}, {0.6, 0.8}, 4], n = 120; α1 = 0.4, α2 = −0.8, β1 =
0.6, β2 = 0.8, σ2

Z = 4.

Number of iterations: 20.

The sum of absolute deviation between the ACF of the simulated data from the
model d, and the ACF of ARMA(2,2)[{α1, α2}, {β1, β2}] at lags j = 1, ..., 15 is minimized
over the stationary region for the ARMA(2,2) processes. The reported parameter esti-
mates are the mean values in 20 repeats.

SACFvsACF output data: {AD = 0.596334, α̂1 = 0.450708, α̂2 = −0.791971 β̂1 =
0.607394, β̂1 = 0.81144}}

Ljung-Box Time Series Model Fit ARMA(2, 2) : α̃1 = 0.484478, α̃2 = −0.739369 β̃1 =
0.655853, β̃2 = 0.619243

Ljung-Box p-values: {0.0774189, 0.103001, 0.132726, 0.176277, 0.192082}
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Figure 5: ACF Plots; Top Left: Data ACF in circles (blue color), Ljung-Box Fitted Model
ACF in squares (orange color); Top Right: Data ACF in circles (blue color), SACFvsACF
Fitted Model ACF in squares (orange color); Bottom: Data ACF in circles (blue color),
Ljung-Box Fitted Model ACF in squares (orange color), SACFvsACF Fitted Model ACF
in dimonds (green color).
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6 Discussion.

In this work, (i): we developed a new practical method for the exact computation of
the autocorrelation and the autocovariance functions of a stationary and causal discrete
time univariate ARMA(p, q) process. (ii): We presented a goodness of fit procedure for
testing whether a time series follows an ARMA(p, q) model, using the exact values for
the autocorrelation of the model. (iii): We provided new ARMA(p, q) parameters esti-
mation method by minimizing the squared deviation between the sample and model
ACFs. Investigating the statistical properties of the corresponding least squares pa-
rameters estimators, not covered here, is an interesting topic for future work. Also we
did put light on the fact that the Ljung-Box ARMA(p, q) fitted model ACF might be far
away from the series ACF. Also as mentioned by a reviewer, the Durbin Watson (DW)
statistic for testing autocorrelation in the residuals from a statistical model or regression
analysis, can be revisited by our proposed method developed in this article.

Acknowledgments. The author is indebted to the reviewers for providing constructive
comments.
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