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1 Introduction

It is common that time series data sometimes display long memory dependence, in the
sense that it has a slow decaying autocorrelation function (ACF). These type of time
series are usually modelled as Autoregressive Fractionally Integrated Moving Average
(ARFIMA) processes as follows

ϕ(B)(1 − B)dYt = θ(B)Zt. (1.1)

where ϕ(B) = 1−ϕ1B−ϕ2B2
− · · · −ϕpBp is the stationary AR operator, θ(B) = 1−θ1B−

θ2B2
−· · ·−θpBp is the invertible MA operator, B is the backward shift operator, i.e, B jXi =

Xi− j, d is the long memory parameter that d ∈ (0, 0.5) and Yt and Zt are the stationary
time series and the white noise process, respectively, at time t ∈ {0,±1,±2, · · · }. There is
a whole host of literature covering these type of models (see for example, Granger and
Joyeux (1980), Hosking (1981, 1984), Geweke and Porter-Hudak (1983), Sowell (1992a,
b), Beran et. al. (2009), Boissy et. al. (2005), Gray et. al. (1989), etc.).

A generalized class of long memory time series known as GARMA models, using
the theory of Gegenbauer polynomials has also been introduced in the literature (See
Gray et. al (1989) and Chung (1996a,b)). The GARMA models are defined as

ϕ(B)(1 − 2uB + B2)dYt = θ(B)Zt, (1.2)

where u is called Gegenbaure parameter and |u| ≤ 1. Distinctive properties of this
generalized class are long range dependence and quasi-periodic behaviour, and they
provide a model for cyclical or seasonal persistent processes, whose autocorrelation
function is an hyperbolically damped oscillating sequence. As a result, the autocorre-
lation function is not absolutely summable and the spectrum possesses a pole at the
cyclical or seasonal frequencies. The GARMA models can be also used to represent long
memory depicting multiple unbounded spectral peaks away from the origin, unlike
in the standard long memory ARFIMA case of Hosking (1981), which can only show
unbounded spectral density peak at the zero frequency (Dissanayake, et al. (2018)).

In 2018, Dissanayake, et al. reviewed and discussed the usefulness of generalized
fractionally differenced Gegenbauer processes in time series and econometric research
endeavours. The k-factor Gegenbauer process has found its application in the urban
transport traffic in the Paris subway (Ferrara and Guegan (2001)). Estimation of the pa-
rameters of a stationary Gegenbauer process using a wavelet methodology is presented
by Boubaker, 2014. In 2018, Wu and Peiris introduced a new class of time series models



First-Order Spatial Gegenbauer Autoregressive (SGAR(1,1)) Modell 75

generated by the vector Gegenbauer Autoregressive Moving Average structure.

Espejo, et al. (2014) extended the idea of Gegenbauer process to the spatial domain.
They introduced the Gegenbauer random fields as,

(1 − 2u1B1 + B2
1)d1(1 − 2u2B2 + B2

2)d2Yi j = Zi j, (1.3)

and autoregressive Gegenbauer random fields as below,

ϕ(B1,B2)(1 − 2u1B1 + B2
1)d1(1 − 2u2B2 + B2

2)d2Yi j = Zi j, (1.4)

where {Yi j : i, j ∈ Z} is a spatial process defined on a two-dimensional regular lattice
and {Zi j} is a two-dimensional white noise process, |u1| ≤ 1, |u2| ≤ 1, |d1| < 0.5, |d2| < 0.5,
B1 and B2 denoting backward-shift operators for each spatial coordinates, i.e, Bk

1Bl
2Yi j =

Yi−k, j−l.

They considered the following particular cases of ϕ(B1,B2) polynomial,

ϕ(B1,B2) = (1 − ϕ10B1 − ϕ01B2 + ϕ10ϕ01B1B2), −1 ≤ ϕ10, ϕ01 ≤ 1, (1.5)

and

ϕ(B1,B2) = (1 − ϕ10B1 − ϕ01B2), |ϕ10| + |ϕ01| < 1,

and the spectral functions of these processes were also introduced.

Espejo et al. (2015) have introduced the autocorrelation function of the Gegenbauer
random fields and obtained the consistency together with its asymptotic normality for a
class of minimum contrast estimators (MCE) of the long-range dependence parameters
(d1 and d2).

In model (1.5), the two dimensional spectral density function is symmetric. In this
paper, we replace ϕ10ϕ01 in equation (1.5) by −ϕ11. The purpose of doing this, is to
generalise model (1.5) by reparametrising it in such a way that ϕ11 is not restricted to
being the product of ϕ10 and ϕ01. This generalisation would now allow for models in
which the spectral density function is asymmetric about axes.

Hence, in this work we focus our attention to this more general class of models.
That is, we consider the model in which the polynomial ϕ(B1,B2) is given by,

ϕ(B1,B2) = 1 − ϕ10B1 − ϕ01B2 − ϕ11B1B2.

We shall also introduce,
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• the autocorrelation function of this model,

• the new method to estimate the Gegenbauer parameters (u1 and u2 ),

• the log-periodogram regression method estimation of long memmory parameters
and

• Whittle’s method to estimate the whole parameters of the model.

The rest of the paper is organized as follows. The model is first defined in Section
2 while the spectral density and autocovariance functions are discussed in Section
3. In Section 4, the estimation of the parameters of the model are taken up by log-
periodogram regression method, Yajima method and Whittle’s method. Section 5
consists of some simulation results. Finally, the conclusions are drawn up in Section 6.

2 The SGAR(1,1) Model

A stationary and invertible first-order spatial Gegenbauer Autoregressive
(SGAR(1,1)) process is a seasonal long memory process generated by the equation

(1 − ϕ10B1 − ϕ01B2 − ϕ11B1B2)(1 − 2u1B1 + B2
1)d1(1 − 2u2B2 + B2

2)d2Yi j = Zi j, (2.1)

where {Yi j : i, j ∈ Z} is a spatial process defined on a two-dimensional regular lattice,
{Zi j} is a two-dimensional white noise process with mean zero and variance σ2

Z with
| ϕ10 |< 1, | ϕ01 |< 1, | ϕ10 + ϕ01 |< 1 − ϕ11, | ϕ10 − ϕ01 |< 1 + ϕ11, 0 < di < 0.5 for |ui| < 1
and 0 < di < 0.25 for |ui| = 1, i = 1, 2. The u1 and u2 called as Gegenbauer parameters.
If ϕ11 = −ϕ10ϕ01, then the term 1 − ϕ10B1 − ϕ01B2 − ϕ11B1B2 in (2.1) can be factored out
as (1 − ϕ10B1)(1 − ϕ01B2) and in this case we call the reduced process (2.1) as Separable
SGAR(1,1) model ( denoted as SSGAR(1,1), see Ghodsi and Shitan (2021)).

The SGAR(1,1) model can be equivalently represented by the following two equa-
tions

(1 − ϕ10B1 − ϕ01B2 − ϕ11B1B2)Yi j =Wi j, (2.2)

and

(1 − 2u1B1 + B2
1)d1(1 − 2u2B2 + B2

2)d2Wi j = Zi j. (2.3)
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where (2.2) is the spatial AR(1,1) model, which its innovations Wi j, are spatial Gegen-
bauer white noise (SGWN) process and (2.3) represent the SGWN process introduced
by Espejo, et al. (2014 and 2015).

The process Yi j defined in equation (2.2) can be written as

Yi j =

∞∑
k=0

∞∑
ℓ=0

∞∑
r=0

(k + ℓ + r)!
k!ℓ!r!

ϕk
10ϕ
ℓ
01ϕ

r
11Wi−k−r, j−ℓ−r, (2.4)

and the process Wi j can be written in a Gegenbauer polynomial series (Gradshteyn and
Ryzhik (1980), section 8.93) as follows

Wi j =

∞∑
k=0

∞∑
ℓ=0

C(d1)
k (u1)C(d2)

ℓ
(u2)Zi−k, j−ℓ, (2.5)

where

C(di)
k (ui) =

[ k
2 ]∑

r=0

(−1)r Γ(k − r + di)
Γ(di)Γ(k + 1)Γ(k − 2r + 1)

(2ui)k−2r,

when |ui| < 1 and 0 < di < 0.5, for i = 1, 2, and

C(di)
k (ui) =

Γ(k + 2di)
Γ(2di)Γ(k + 1))

(−ui)k,

when |ui| = 1 and 0 < di < 0.5, for i = 1, 2.

In the following section we discuss the spectral and autocovariance functions of the
SGAR(1,1) model.

3 Spectral Density and Autocovariance Functions

The spectral function of the SGAR(1,1) model defined in (2.2), by definition, is given as

fY(ω1, ω2) = |1 − ϕ10e−iω1 − ϕ01e−iω2 − ϕ11e−i(ω1+ω2)
|
−2 fW(ω1, ω2), (3.1)

where |ωi| <, i for i = 1, 2, and fW(ω1, ω2) is the spectral function of the SGWN process
defined in (2.3), which is given as follows (see Espejo, et al. (2014) ),

fW(ω1, ω2) =
σ2

Z

4π2 |1 − 2u1e−iω1 + e−2iω1 |
−2d1 |1 − 2u2e−iω2 + e−2iω2 |

−2d2

=
σ2

Z

4π2

∣∣∣2(cosω1 − u1)|−2d1 |2(cosω2 − u2)
∣∣∣−2d2
, (3.2)
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where (ω1, ω2) ∈ [−π, π]2
− {(ω1, ω2)| cos(ω1) = u1 or cos(ω2) = u2} . It is clear that

fW(ω1, ω2) and fY(ω1, ω2) have unbounded peaks at ν1 = cos−1(u1) and ν2 = cos−1(u2)
termed as Gegenbauer frequencies.

Using equation (3.2), it can be easily seen that fW(−ω1,−ω2) = fW(ω1, ω2), fW(−ω1, ω2) =
fW(ω1, ω2) and fW(ω1,−ω2) = fW(ω1, ω2). Besides since |1 − ϕe−iω

|
2 = (1 − ϕ cosω)2 +

(ϕ sinω)2, then the spectral function of SSGAR(1,1) model is symmetric. Howevere,
since

f (ω1, ω2) = |1 − ϕ10e−iω1 − ϕ01e−iω2 − ϕ11e−i(ω1+ω2)
|
2 = (1 − ϕ10 cosω1 − ϕ01 cosω2 −

ϕ11 cos(ω1 + ω2))2 + (ϕ10 sinω1 − ϕ01 sinω2 − ϕ11 sin(ω1 + ω2))2

we have f (−ω1,−ω2) = f (ω1, ω2) but f (−ω1, ω2) , f (ω1, ω2) and f (ω1,−ω2) ,
f (ω1, ω2),then the spectral function of the SGAR(1,1) model is symmetric about the
origin and asymmetric about the axes.

Therfore, the difference between SGAR(1,1) model and SSGAR(1,1) model is that,
the spectral function of SSGAR(1,1) model is symmetric (because fW(−ω1, −ω2) =
fW(−ω1, ω2) = fW(ω1,−ω2) = fW(ω1, ω2)) but the spectral function of the SGAR(1,1)
model is symmetric about the origin(i.e., fW(−ω1,−ω2) = fW(ω1, ω2) and asymmetric
about the axes (i.e., fW(−ω1, ω2) , fW(ω1, ω2) or/and fW(ω1,−ω2) , fW(ω1, ω2)) .

Figure 1 compares the spectral functions of the SGAR(1,1) and SSGAR(1,1) models
for some selected parameter values. The parameters in SGAR(1,1) model were consid-
ered asϕ10 = 0.1, ϕ01 = 0.3, ϕ11 = 0.2, d1 = 0.1, d2 = 0.3,u1 = 0.3 and u2 = 0.1, and for SS-
GAR(1,1) were considered asϕ10 = 0.1, ϕ01 = 0.3, ϕ11 = −0.03, d1 = 0.1, d2 = 0.3,u1 = 0.3
and u2 = 0.1.

From Figure 1, it can be seen that the spectral function of the SSGAR(1,1) model is
symmetric, but the spectral function of the SGAR(1,1) model is asymmetric about the
axes. furthermore, both of them have some peeks away from the origin.

Given the spectral function, we can compute the autocovariance function (ACVF)
γW(h1, h2) for the SGWN process. For the case |ui| < 1, for i = 1, 2, then the ACVF of the
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SGWN process is given by (see Espejo, et al. (2015) and Dissanayake et al. (2018)),

γW(h1, h2) =
∫ π
−π

∫ π
−π

ei(h1ω1+h2ω2) fW(ω1, ω2)dω1dω2

=
σ2

Z

4π

2∏
i=1

Γ(1 − 2di) [2 sin(νi)]0.5−2di

×[P2di−0.5
hi−0.5 (ui) + (−1)hiP2di−0.5

hi−0.5 (−ui)]. (3.3)

where Pb
a(x) is the associated Legendre function of the first kind given as follows (see

Gradshteyn and Ryzhik (2014), page 1015),

Pb
a(x) =

1
Γ(1 − b)

(
1 + x
1 − x

)b/2F(−a, a + 1; 1 − b;
1 − x

2
),

in which

F(a, b; c; w) =
∞∑

n=1

Γ(c)Γ(a + n)Γ(b + n)
Γ(a)Γ(b)Γ(c + n)Γ(n + 1)

wn,

is the hypergeometric function.
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Figure 1: Spectral function of (a) SGAR(1,1) and (b) SSGAR(1,1) models for selected
parameter values.

Now we can obtain the ACVF of the SGAR(1,1) process. Since E(Wi j) = 0, we have
E(Yi j) = 0, and therefore the autocovariance function of the SGAR(1,1) process is given
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as,

γY(h1, h2) = E(Yi+h1, j+h2Yi j)

=

∞∑
k=0

∞∑
ℓ=0

∞∑
r=0

∞∑
m=0

∞∑
n=0

∞∑
p=0

(k + ℓ + r)!
k!ℓ!r!

.
(m + n + p)!

m!n!p!
ϕk+m

10 ϕ
ℓ+n
01 ϕ

r+p
11

× γW(h1 + k + r −m − p, h2 + l + r − n − p), (3.4)

where h1, h2 ∈ Z and γW(., .) is given as in (3.3).

For the SSGAR(1,1) process, ( i.e. when ϕ11 = −ϕ10ϕ01), Yi j defined in (3) can be written
as

∞∑
k=0

∞∑
ℓ=0

ϕk
10ϕ
ℓ
01Wi−k, j−ℓ, (3.5)

and its ACVF is given by,

γY(h1, h2) =
∞∑

k=0

∞∑
ℓ=0

∞∑
m=0

∞∑
n=0

ϕk+m
10 ϕ

ℓ+n
01 γW(h1 + k −m, h2 + ℓ − n) (3.6)

where γW(., .) is given as in (3.3).

Figure 2 gives an example of the autocorrelation function of the SGAR(1,1) and
SSGAR(1,1) models for selected parameter values. It can be seen that the autocorrelation
functions of both models are hyperbolically damped which is a properties of long
memory processes.

In the next section the estimation of parameters of the SGAR(1,1) process is briefly
discussed.

4 Parameters Estimation

To obtain preliminary estimates for the long memory parameters (d1, d2) and the coef-
ficients (u1,u2), log-periodogram regression method and Yajima (1996) estimators can
be used, respectively. All the parameters could be estimated using Whittle’s method.
These methods will be described in the following.

4.1 Yajima Estimation of u1 and u2 Parameters

In practice, u1 and u2 are unknown and have to be estimated. We extend the idea
of Yajima (1996) for estimating the frequency of an unbounded spectral function in
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Figure 2: Autocorrelation function of (a) SGAR(1,1) and (b) SSGAR(1,1) models for
selected parameter values.

one dimension to estimate the Gegenbauer parameters of the SGAR(1,1) model in two
dimension as follows:

(û1, û2) = (cos(ω1), cos(ω2)) (4.1)

where
(ω1, ω2) = arg max I j1, j2 ; ji = −

[ni − 1
2

]
, . . . ,

[ni

2

]
for i = 1, 2,

where I j1, j2 will be introduced in the next section.

4.2 Log-Periodogram Regression Estimation of the Long Memory Parame-
ters

Assume that {Yi j : i, j ∈ Z} is a SGAR(1,1) process as defined in (2.1). Let Ui j =

(1 − 2u1B1 + B2
1)d1(1 − 2u2B2 + B2

2)d2Yi j. The spectral function of Yi j can be written as

fY(ω1, ω2) = |1 − 2u1e−iω1 + e−2iω1 |
−2d1 |1 − 2u2e−iω2 + e−2iω2 |

−2d2 fU(ω1, ω2), (4.2)

where

fU(ω1, ω2) =
σ2

4π2 |1 − ϕ10e−iω1 − ϕ01e−iω2 − ϕ11e−i(ω1+ω2)
|
−2,

and ω1, ω2 ∈ [−π, π].

Define the two-dimensional periodogram ordinates of the process as follows,

I(ω1, j1 , ω2, j2) =
1

n1n2

∣∣∣∣∣∣∣
n1∑

s=1

n2∑
t=1

ys,tei(sω1, j1+tω2, j2 )

∣∣∣∣∣∣∣
2

,
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where (y11, y12, . . . , y1n2 , y21, y22, . . . , y2n2 , . . . , yn11, . . . , yn1n2) is an observed dataset of
grid size n1 × n2 of the SGAR(1,1) process and ωi, ji = 2π ji/ni, ji = −

[
ni−1

2

]
, · · · ,

[
ni
2

]
for

i = 1, 2.

By taking logarithm of (4.2) and adding ln I j1, j2 to both sides, we obtain the multiple
regression equation as follows (see Shitan (2008))

ln I j1, j2 = β0 + β1x1, j1 + β2x2, j2 + ε j1, j2 , (4.3)

where I j1, j2 = I(ω1, j1 , ω2, j2), β0 = ln fU(0, 0) − C, β1 = d1, β2 = d2, x1, j1 = x(ω1, j1) =
−2 ln |1 − 2u1e−iω1, j1 + e−2iω1, j1 |, x2, j2 = x(ω2, j2) = −2 ln |1 − 2u2e−iω2, j2 + e−2iω2, j2 |, ε j1, j2 =
ln(I j1, j2/ f j1, j2) + C, f j1, j2 = fY(ω1, j1 , ω2, j2) and C = 0.5772 is Euler’s constant. Note that,
according (3.2) and (4.3), if there exists some j1 and j2 such that cos(ω1, j1) = u1 or
cos(ω2, j2) = u2 or I j1, j2 = 0, the corresponding elements in ln I j1, j2 , x1, j1 and x2, j2 should
be excluded.

Suppose u1 and u2 have been estimated by Yajima method, presented in section 4.1,
and d1 and d2 can be estimated by ordinary least square (OLS) method. After estimating
d1 and d2, we can obtain estimates of Ui j as Ûi j = (1− 2u1B1 + B2

1)d̂1(1− 2u2B2 + B2
2)d̂2Yi j,

and from which the usual methods of estimation like maximum likelihood (Basu and
Reinsel, 1993) or whittle can be employed to estimate out the parameters ϕ10, ϕ01, ϕ11
and σ2

Z.

4.3 Whittle’s Method

The Whittle’s estimator η̂ is the value of η = (ϕ10, ϕ01, ϕ11, d1, d2,u1,u2)
′

that minimizes
the Whittle’s likelihood function as follows

LW(η) =
1

n1n2

∑
j1

∑
j2

I(ω1, j1 , ω2, j2)
g(ω1, j1 , ω2, j2 ;η)

, (4.4)

whereωi, ji =
2π ji
ni

, ji = −
[

ni−1
2

]
, · · · ,

[
ni
2

]
, for i = 1, 2, and g(ω1 j1 , ω2 j2 ;η) = 4π2

σ2 f (ω1, j1 , ω2, j2).
An estimator for σ2

Z is LW(η̂).
Since this maximization procedure cannot be done analytically, we use numerical

approach to estimate the parameters.
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5 Numerical Study

5.1 Simulation Results

In order to provide the finite sample performance of the proposed estimators in section
4, some Monte-Carlo simulations of the SGAR(1,1) process defined in (2.1) are carried
out. To simulate the SGAR(1,1) model, we first generate Wi j using (2.5), in which

Zi j
iid
∼ N(0, 1), and then we generate Yi j using (2.4). Since the sums in (2.5) and (2.4) are

infinite, the calculation continued untill the sums converge.

We consider 500 replications with different sample sizes (n1,n2) = (20×20), (50×50)
and (80 × 80) and two sets of parameters θ = (ϕ10, ϕ01, ϕ11, d1, d2, u1,u2, σ2

Z) = (1): (0.1,
0.3, 0.2, 0.1, 0.3, 0.3, 0.1, 1) and (2): (0.3, 0.4, 0.2, 0.3, 0.2, 0.3, 0.4, 1).

We investigate the performance of the Yajima estimators (YE) of the Gegenbauer
parameters defined in (4.1), the Log-Periodogram Regression (LPR) estimators of the
memory parameters of the model defined in (4.3) and the Whittle (WITL) estimators of
all parameters discussed in section 4 through a simulation study. All the simulations
were carried out using R software.

Table 1 and 2 shows the estimated bias and RMSE (root mean squared error) values
of introduced estimators. It appears from these tables that the bias and RMSE values
from WITL method are often smaller than the other methods for all grid sizes. It can
also be seen that the bias and RMSE values decrease when the grid size increases.

5.2 A Real Data Example

In this subsection, we applied the SGAR(1,1) model to the dataset of the yield of
barley (kg), from an agricultural uniformity trial experiment (on a regular grid of 28
× 7) presented by Kempton and Howes (1981) at Plant Breeding Institute, Cambridge,
England.

Figure 3 shows the sample spatial correlation and peridogram functions of the data.
From Figure 3(a), it is clear that the data are highly correlated. As such, we fitted the
SGAR(1,1) model to the mean corrected data using Whittle’s estimation and the result
is as follows,

(1 − 0.365B1 − 0.176B2 + 0.145B1B2)(1 − 2(0.99999)B1 + B2
1)0.143

(1 − 2(0.621)B2 + B2
2)0.000001Yi j = Zi j,
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with σ̂2
Z = 1.002 and AIC=6.653.

Furthermore, as a comparison we also fitted the SSGAR(1,1) model and the fitted
model is,

(1 − 0.755B1)(1 + 0.187B2)(1 − 2(0.49999)B1 + B2
1)0.058

(1 − 2(0.650)B2 + B2
2)0.000001Yi j = Zi j,

with σ̂2
Z = 1.042 and AIC=4.732.

It was found that the AIC value for the SSGAR(1,1) model is smaller. Therefore, we
can conclude that the SSGAR(1,1) model is the better model compare to the SGAR(1,1)
model for the data, because the correlation function is not cyclicall.
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Figure 3: The sample spatial autocorrelations (a) and the periodogram (b) of the yield
of barley data.

6 Conclusion

The main objective of this research is to extend the idea of Gegenbauer process to the
spatial domain and introduce a model known as Spatial Gegenbauer Autoregressive
(SGAR(1,1)) model.

The Spectral Density and Autocovariance functions were discussed and the estima-
tion of the parameters of the model by two different methods namely, log-periodogram
regression method and Whittle’s method were provided. The numerical simulation
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results indicated that the bias and RMSE values of the Whittle estimators were uni-
formly smaller than the other methods for all grid sizes. The SGAR(1,1) model was
also applied to a real data example.

The importance of this study is that by introducing the Spatial Gegenbauer Au-
toregressive (SGAR(1,1)) Model, it adds to the literature of spatial models and thereby
extends the field of spatial modelling.

Table 1: The Bias and RMSE values estimated by YE, LPR and WITL method for true
parameters θ=(0.1, 0.3, 0.2, 0.1, 0.3, 0.3, 0.1, 1). ’-’ means that, the estimator of the
parameter has not been defined.

ϕ10 ϕ01 ϕ11 d1

Grid size Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

YE - - - - - - - -
20 × 20 LPR - - - - - - 0.0042 0.0012

WITL -0.0048 0.0003 -0.0048 0.0002 -0.0047 0.0002 -0.0032 0.0002

YE - - - - - - - -
50 × 50 LPR - - - - - - 0.0153 0.0006

WITL -0.0014 0.0000 -0.0009 0.0000 -0.0023 0.0000 -0.0007 0.0000

YE - - - - - - - -
80 × 80 LPR - - - - - - 0.0254 0.0008

WITL -0.0003 0.0000 -0.0006 0.0000 -0.0008 0.0000 0.0004 0.0000

d2 u1 u2 σ2
Z

Grid size Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

YE - - 0.0901 0.1652 0.1740 0.1575 - -
20 × 20 LPR 0.1257 0.0180 - - - - - -

WITL -0.0045 0.0003 0.0091 0.0001 -0.0354 0.0033 0.0060 0.0087

YE - - 0.0085 0.1537 0.0152 0.0221 - -
50 × 50 LPR 0.0454 0.0026 - - - - - -

WITL -0.0044 0.0001 0.0092 0.0001 -0.0368 0.0014 -0.0115 0.0010

YE - - -0.0355 0.1274 -0.0070 0.0050 - -
80 × 80 LPR 0.0289 0.0010 - - - - - -

WITL -0.0006 0.0000 0.0095 0.0001 -0.0213 0.0005 -0.0042 0.0004
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Table 2: The Bias and RMSE values estimated by YE, LPR and WITL method for true
parameters θ=(0.3, 0.4, 0.2, 0.3, 0.2, 0.1, 0.4, 1). ’-’ means that, the estimator of the
parameter has not been defined.

ϕ10 ϕ01 ϕ11 d1

Grid size Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

YE - - - - - - - -
20 × 20 LPR - - - - - - 0.1056 0.0145

WITL -0.0011 0.0012 -0.0202 0.0015 -0.0378 0.0024 -0.0511 0.0039

YE - - - - - - - -
50 × 50 LPR - - - - - - 0.0195 0.0005

WITL -0.0005 0.0000 -0.0044 0.0000 -0.0054 0.0001 -0.0054 0.0002

YE - - - - - - - -
80 × 80 LPR - - - - - - 0.0254 0.0008

WITL -0.0004 0.0000 -0.0009 0.0000 -0.0018 0.0000 -0.0016 0.0000

d2 u1 u2 σ2
Z

Grid size Method Bias RMSE Bias RMSE Bias RMSE Bias RMSE

YE - - 0.5717 0.4698 0.4005 0.2158 - -
20 × 20 LPR 0.1908 0.0394 - - - - - -

WITL -0.0316 0.0020 -0.0926 0.0009 -0.0891 0.0083 0.0076 0.0087

YE - - 0.5977 0.5237 0.4082 0.2358 - -
50 × 50 LPR 0.1364 0.0188 - - - - - -

WITL -0.0065 0.0002 -0.0353 0.0013 0.0258 0.0007 0.0264 0.0019

YE - - 0.5317 0.4628 0.3245 0.0050 - -
80 × 80 LPR 0.1112 0.0158 - - - - - -

WITL -0.0019 0.0000 -0.0211 0.0004 -0.0173 0.0003 0.0183 0.0008
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