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Abstract. This paper proposes a bivariate process-based model for maintenance and
inspection planning of a parallel system, consisting of two components whose states
evolve in one of three possible states: normal (0), satisfactory (1) and failure (2). The
changes of states driven by a non-homogeneous Markov process are detected only by
inspections and repair actions are determined by the observed state of the bivariate
process. Outperforming maintenance strategies and other classical maintenance poli-
cies, the paper aims at minimizing the long-run average maintenance cost per unit time
by deriving optimal inspection intervals and a preventive replacement threshold. A
numerical example is given to illustrate the proposed model and examine the response
of the optimal solutions to system parameters. The model explored here provides the
framework for further developments.
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1 Introduction

This paper presents an approach to the joint determination of optimal inspection and
preventive replacement policy for two-component parallel systems. The model is
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developed under the assumptions that components state is hidden and detected only
by inspections and their failure state is defined by regulation (soft failure) (Khatab et
al., 2018; Newby and Barker, 2006). The latter means, a component experiences failure
when its deterioration process exceeds a failure threshold. In that sense our model
differs from those whose failures result from exposure to both the natural degradation
and random shocks triggered by adverse environment.

Cold-standby systems (Wei et al., 2018) with the above operation and failure char-
acteristics are typically encountered in practice. A particular case of a cold-standby
system is the standby safety equipment adopted in nuclear plants. For such systems
condition-based maintenance (CBM) is essential to retain them to an acceptable con-
dition and increase availability against rising costs due to undetected failures. CBM
is a two-step decision making process: step 1 involves monitoring the components at
inspections to reveal their true state and step 2 takes in corrective maintenance (CM)
and preventive maintenance (PM) actions in response to the observed components
state. Since each repair and maintenance action (RMA) incurs cost, which is more for
the higher level of RMAs, an intriguing question raised is how to make inspections
and when to stop processing the system and carrying out a (preventive) replacement in
order to minimize resulting repair and maintenance costs. This paper aims to answer
this question.

For such systems, particularly safety systems, (non)periodic checking and inspec-
tions are essential to detect possible failures hidden within inter-inspection times. The
earlier works on inspection models for non-self announcing failure systems are given
by Barlow et al. (1963); Munford and Shahani (1972) and Keller (1974). As an exten-
sion of classical models, Jiang and Jardine (2005) propose two optimization models to
determine the optimum sequence of inspection times. In contrast to classical optimum
inspection policies, their model is more accurate and computationally tractable. Chelbi
et al. (2008) studied an optimal inspection model for systems with self-announcing and
non-self-announcing failures. Their approach was based on determining the age T for
inspection which maximizes the stationary availability of the system. Rezaei (2017)
presented a maintenance model for inspection planning. Liu et al. (2017) proposed an
approach for obtaining optimal inspection scheme for multi-component systems char-
acterized by hidden failures and dependent components. Recently, Seyedhosseini et al.
(2018) proposed an imperfect inspection model to find the optimal periodic inspection
interval.

In the literature, to further meet industry needs, the above modeling approaches
were developed under a maintenance decision framework. In contrast to inspection
models, they allow the use of condition monitoring information for PM decision mak-
ing. During past decades numerous CBM models for systems with non-self announcing
failures (e.g. see Ahmadi, 2017, 2019, 2020; He et al., 2015; Kijima, 1989) and self an-
nouncing failures (e.g. see Azizi and Salari, 2023; Cai et al., 2022; Chen et al., 2021;
Forouzandeh Shahraki et al., 2020; Fink et al., 2022; Hu et al., 2021; Khatab et al., 2018;
Liu et al., 2021; Jong Kim and Makis, 2009; Salari and Makis, 2017; Wang et al., 2022;
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Zhang et al., 2023) are explored. For instance, He et al. (2015) propose a periodic
inspection and preventive replacement policy for a system subject to hidden failures.
Preventive replacement (PR) policy is implemented whenever the number of inspec-
tions scheduled between PRs reaches the quantity n. Ahmadi (2017) given partial
information proposed a new approach for scheduling inspection and threshold-type
replacement policy for parallel systems subject to hidden failures. PM is implemented
as soon as the total number of failed components reach the threshold d. Recently,
Ahmadi (2019) proposed a maintenance model integrating both the inspection and the
imperfect repair policy for repairable parallel systems. His approach differs through
the use of an age reduction model (Kijima, 1989). More recently, Ahmadi (2020) sug-
gested an approach to the joint determination of inspection and replacement policy for
a load-sharing k-out-of-n system whose components state is hidden and detected only
by inspections. Preventive replacements are decided with respect to a basic process
describing the true state of components and a performance metric (conditional mean
residual lifetime).

The PM problem for systems with self announcing failures is widely addressed
in literature. For example, Jong Kim and Makis (2009) proposed a CBM model for
a multi-state deteriorating system with major and minor failures. The maintenance
decision rule is based on two sets corresponding to the failure of minor and major com-
ponents. Salari and Makis (2017) presented two condition-based maintenance policies
for a production system consisting of N components whose deterioration is modelled
by a three-state homogeneous Markov process (two working states and a failure state).
The maintenance decision rule is based on an index integrating both the production rate
and components state. Under periodic inspection and imperfect maintenance, Khatab
et al. (2018) addressed the selective maintenance optimization problem for a system
consisting of repairable binary components degrading according to a gamma process.
Hu et al. (2021) considered a threshold-type policy with respect to the degradation of
a multi-state system governed by an environmental condition-varying homogeneous
Markov process. Liu et al. (2021) presented a condition-based maintenance (CBM)
model for a system consisting of two heterogeneous components whose degradation
conforms to a bivariate gamma process. Preventive and corrective maintenance actions
are carried out based on the degradation state revealed at inspection times. Recently,
Cai et al. (2022), with the same approach as Ahmadi (2020) modelled CBM based on
remaining useful life for multi-component systems. Using a Markov-decision process,
Fink et al. (2022) formulated both the time-based maintenance and condition-based
maintenance for a k-out-of-n system whose components deteriorate according to a
multivariate gamma process with Lévy copula dependence. Wang et al. (2022) devel-
oped a CBM model for a multi-component deteriorating system with stochastic and
economic dependencies. Maintenance decision-making integrated both a diagnostic
condition index at system level and a prognostic condition index. More recently, Azizi
and Salari (2023) addressed the condition based maintenance problem for a multi-
component system in which the deterioration process of each component is modelled
by a three-state homogeneous Markov process (healthy state, unhealthy state and fail-
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ure state). The maintenance decision rule was based on a bivariate birth/birth–death
process tracking the number of units in the failure state, and an unhealthy state. Zhang
et al. (2023) presented a CBM model under the Markov-decision process framework.
In that sense, their approach resemble the ones suggested by Fink et al. (2022), but the
Zhang et al. (2023)’s model differ in that they relaxed the homogeneity assumption of
components (Liu et al., 2021).

Although the current model shares some features with previous works cited above,
but, in a unifying model, it includes some characteristics which have not been studied
or presented in isolation. More specifically, the common and distinctive features are as
follows:

• The degradation process of each component conforms to a non-homogeneous
Markov process Xi(t) (i = 1, 2) with three possible states: normal (0), satisfactory
(1) and failure (2). This makes superiority to those models restricting their analysis
to two states (Khatab et al., 2018), or transition rate remains constant as long as
the component sojourns within each state (Azizi and Salari, 2023; Chen et al.,
2021; Hu et al., 2021).

• Maintenance policies developed in our model resemble the ones proposed by He
et al. (2015) and Ahmadi (2017, 2020); we consider both the inspection planning
and the threshold-type replacement policy for the maintenance problem. The
latter means a preventive replacement is implemented whenever a performance
metric reaches a threshold (e.g. see Ahmadi, 2019; Cai et al., 2022; Hu et al., 2021).

• Unlike most maintenance models, the preventive replacement cost is modulated
by a performance metric X(t). This approach allows the cost model responds to
the components state in a sensible way.

Furthermore, our model mainly differs in decision rule and maintenance decision
mechanism. Unlike most CBM models (e.g. see Cai et al., 2022; Chen et al., 2021;
Forouzandeh Shahraki et al., 2020; Fink et al., 2022; Hu et al., 2021; Khatab et al.,
2018; Liu et al., 2021; Jong Kim and Makis, 2009; Salari and Makis, 2017; Wang et al.,
2022; Zhang et al., 2023), herein the action taken after an inspection are completely
determined by partitioning a two-dimensional state space associated with a bivariate
(damage) process X(t) = (X1(t),X2(t)), in which the ith element describes the component
state at age t. In that sense, our model partly resembles the one suggested by Azizi
and Salari (2023), but the two models differ in the assumed transition rate pattern.
The transition rate in the model of Azizi and Salari (2023) remains constant as long as
a component sojourns within each state, while we apply a continuous-time Markov
models with time-dependent transition rates. In addition, Azizi and Salari (2023)
adopted two populations (the number of units in the failure state, and the number of
units in an unhealthy state) to characterize the system state, while our approach allows
the consideration of an additional population (the number of units in the normal state).

Before proceeding to the model development, the main features of the model are
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as follows. The system maintained is a parallel system consisting of two components
whose states are detected only by inspections. It is assumed that the state of the
ith component is described by a non-homogeneous Markov process Xi(t) (i = 1, 2)
with three possible states: normal (0), satisfactory (1) and failure (2). The system is
inspected according to a periodic policy Π = {nτ : n = 1, 2, · · · } to reveal the true state
of components X(t) = (X1(t),X2(t)) defined on a state space Ω = {(r, s) : r, s = 0, 1, 2}. To
maintain a minimum level of performance, repair actions defined on an action space
Ωa = {a0, a1, a∗} are taken on the basis of (i) the bivariate process X(t) observed at the
inspection instants and (ii) the exclusive subsets A0(κ), A1(κ) and A2 partitioning the
state spaceΩ. More specifically, if on inspection, the decision maker finds the bivariate
process X(t) in the subset A0(κ) = {(r, s) : 0 ≤ r + s ≤ κ − 1}, no repair action is taken
(the action is denoted by the doubleton

〈
a,X

〉
= a0); otherwise either the system is

preventively replaced by new one (
〈
a,X

〉
= a1) if X(t) ∈ A1(κ) = {(r, s) : κ ≤ r + s < n},

or it undergoes a corrective replacement (
〈
a,X

〉
= a∗ if both components are found

in the failure state, i.e. X(t) ∈ A2 = {(2, 2)}. Since two maintenance parameters (τ, κ)
induce changes in both the level and the costs of RMAs, our aim is to determine
optimal inspection intervalτ∗ and optimal replacement thresholdκ∗which truly balance
these two factors. The resulting optimization problem is solved by a renewal-reward
argument to formulate a long-run average cost used as a measure of policy.

This paper is organized as follows. The features of the model including assump-
tions, modeling degradation and maintenance are given by section 2. Section 3 for-
mulates the long-run average cost as a function of the expected cost per cycle and
the expected cycle length. It is used as a measure of policy to optimize the model
with respect to maintenance parameters. Section 4 includes an example for illustra-
tion purpose. Section 5 concludes the paper and gives some suggestions for further
developments.

2 Features of the Model

2.1 Assumptions

• The system maintained is a parallel system consisting of two identical and inde-
pendent components whose states are detected only by inspection.

• The state of the ith component is described by a NHMP, Xi(t), with three states:
normal (0), satisfactory (1) and failure (2).

• The failure of components in normal state is not possible. This feature is common
to items whose failures are defined by regulation (Khatab et al., 2018; Noortwijk
et al., 1997; Newby and Barker, 2006). On this case a failure occurs when the
component’s deterioration process exceeds a threshold.

• The system is monitored according to a periodic inspection policyΠ = {τ, 2τ, · · · }.
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• Inspections are perfect and revels the true state of components.

• The action spaceΩa includes three kinds of actions: (i) no action {a0}, (ii) preven-
tive replacement {a1} and (iii) corrective replacement {a∗}.

• The decision maker’s actions are determined by the bivariate process X(t) =
(X1(t),X2(t)) and partitioning the state space Ω = {(r, s) : r, s = 0, 1, 2}.

2.2 Modeling System

Consider a parallel system consisting of two independent and identical components
whose state are detected only by inspections. The state of the component i (i = 1, 2) is
described by a NHMP, Xi(t), taking its values in the state spaceΩ = {0, 1, 2}. Specifically,
the components experience three possible states: normal (0), satisfactory (1) and failure
(2) with corresponding transition probabilities matrix P(t) = [Pkl(t)] and transition rate
matrixA(t) = [akl(t)]:

P(t) =


P00(t) P01(t) P02(t)

0 P11(t) P12(t)
0 0 1

 , A(t) =


−λt λt 0

0 −γt γt
0 0 0

 ,
P02(t) = 1−P00(t)−P01(t) and P12(t) = 1−P11(t). The transition rate matrixA(t) implies
that, the process has propensity to shift from normal state (0) to the satisfactory state
(1) and then from satisfactory state (1) to the absorbing (failure) state (2) with rates λ
and γ respectively. Further, it indicates that the failure in normal state is not possible.
To formulate the transition probabilities Pi j(t), let ˙P(t) = [Ṗi j(t)] be a matrix associated
with elements Ṗi j(t):

Ṗi j(t) =
dPi j(t)

dt
.

Then, using the Kolmogorov forward equations, we have Ṗ(t) = P(t) ·A(t), and given
known initial conditions Pii(0) = 1 and Pi j(0) = 0 (i , j) one can show that

−λtP00(t) = Ṗ00(t)
−γtP11(t) = Ṗ11(t)
+λtP00(t) − γP01(t) = Ṗ01(t).

Solving the above system of equations, for t ≥ 0, yields

P00(t) = exp(−0.5λt2),

P11(t) = exp(−0.5γt2),

P01(t) =
(
λ
γ − λ

)
exp

(
−0.5γt2

)
×

(
− 1 + exp

(
0.5(γ − λ)t2

) )
.

The behavior of transition probabilities Pi j(t) as a function of t is presented graphically
in Figure 1. For this, let (λ, γ) = (0.2, 0.25) indicating that at time t the transition rates
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from normal state to the satisfactory state and from satisfactory state to the failure state
are 0.2t and 0.25t respectively. The results reveal that for fixed values of the starting
state i (i = 0, 1), the likelihood of failure of components increases with time implying
that the process has propensity to shift to the absorbing state (2). Also, for a fixed value
of t, the component is more prone to fail as its starting state increases from 0 (normal
state) to 1 (satisfactory state).
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Figure 1: Transition probabilities Pi j(t) as a function of t.

To reveal the true state of components and take an appropriate repair action the
system is monitored according to a periodic inspection policy Π = {τ, 2τ, · · · }. The
repair action after inspection, denoted by the doubleton

〈
a, ·

〉
, is determined by the

bivariate underlying process X(t) =
(
X1(t),X2(t)

)
and partitioning state space Ω =

{(r, s) : r, s = 0, 1, 2}: if on inspection X(t) is found in state A0(κ) = {(r, s) : 0 ≤ r + s ≤ κ − 1},
the system is not repaired and it is left to continue (

〈
a,X

〉
= a0); if X(t) falls in

state A1(κ) = {(r, s) : κ ≤ r + s < n}, the system is preventively replaced by new one
(
〈
a,X

〉
= a1); otherwise the system undergoes a corrective replacement (

〈
a,X

〉
= a∗. In

other words,

〈
a,X

〉
=


a0, X ∈ A0(κ);
a1, X ∈ A1(κ);
a∗, X ∈ A2.

where r, s are non-negative integer values, n = 4 and κ is a decision variable taking its
values in {1, 2}. As noted the decision process is determined by the excursions of the
bivariate process (X1,X2) ∈ Ω and the decision maker’s actions are then carried out by
partitioning the state space Ω:

Ω = A0(κ) ∪ A1(κ) ∪ A2.
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3 The Long-run Average Cost

3.1 Expected Cost per Cycle

A cycle consists of a sequence of inspections and maintenance actions that ultimately
ends with replacement. The possible maintenance costs incurred in each cycle include
an inspection cost c and a corrective replacement cost CF. Also, a penalty cost CR is in-
curred due to undetected failures within inter-inspection times. Further, an inspection
and subsequent preventive replacement action for ith component at age t induces the
random cost CXi(t) modulated by the bivariate process Xi(t) (i = 1, 2). More specifically,

CXi(τ) =


C0, Xi(τ) = 0;
C1, Xi(τ) = 1;
C2, Xi(τ) = 2.

where C j ( j = 0, 1, 2) (C0 < C1 < C2) is the cost of inspection and preventive replacement
of a component if it is found in state j ( j = 0, 1, 2). As noted the piecewise function
CXi(τ) in terms of the Heaviside step function H(Xi(τ) − j) can be expressed as

CXi(τ) = C0 + (C1 − C0)
(
H(Xi(τ) − 1)

)
+ (C2 − C1)

(
H(Xi(τ) − 2)

)
,

where

H(x) =
{

1, x ≥ 0;
0, x < 0.

The above modelling approach helps to formulate the preventive maintenance cost of
a two-component parallel system through using a random cost function modulated by
the bivariate process X(t) =

(
X1(t),X2(t)

)
:

CX(τ) = 2C0 + (C1 − C0)
[(

H(X1(τ) − 1)
)
+

(
H(X2(τ) − 1)

)]
+ (C2 − C1)

[(
H(X1(τ) − 2)

)
+

(
H(X2(τ) − 2)

)]
. (3.1)

Let Cτ(κ; i) denote the cost per cycle starting with i = (i1, i2): when the system state is
found in A0(κ), X(τ) ∈ A0(κ), the system restarts from the current state X(τ) and the
cyclic cost makes up from the planned inspection cost c and the future costs induced by
taking no action Cτ

(
κ; X(τ)

)
. On finding the system in state A1(κ), the maintenance cost

includes the random preventive replacement cost CX(τ) (3.1) and the future cost starting
from zero Cτ(κ; 0). Also, the cyclic cost consists of the penalty cost of the system being
unavailable due to an undetected failure and the corrective replacement cost on failure.
In other words,

Cτ(κ; i) =
(
c + Cτ

(
κ; X(τ)

))
1A0(κ)(X(τ))

+
(
CX(τ) + Cτ(κ; 0)

)
1A1(κ)(X(τ)) +

(
CF + CR(τ − Ti:n)

)
1A2(X(τ)), (3.2)
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where

1A(x) =
{

1, x ∈ A;
0, x < A,

and Ti:n denotes the system’s lifetime given the starting state i = (i1, i2) and Ai(κ)
(i = 1, 2) are the subsets of the state space Ω = {(r, s) : r, s = 0, 1, 2}:

A0(κ) = {(r, s) : 0 ≤ r + s ≤ κ − 1} , A1(κ) = {(r, s) : κ ≤ r + s < n} .

Taking expectation of both sides of the equation (3.2) gives the expected cost per cycle
Cτ(κ; i) = E(Cτ(κ; i)) as

Cτ(κ; i) =
∑

j∈A0(κ)

(
c + Cτ(κ; j)

)
× Pij(τ)

+
(
CF + CRµ(τ; i)

)
× Pi2(τ) + Cτ(κ; 0)

∑
j∈A1(κ)

Pij(τ) +
∑

j∈A1(κ)

Hc(j) × Pij(τ), (3.3)

where Pij(τ) = P
(
X(τ) = ( j1, j2)|X(0) = (i1, i2)

)
= Pi1 j1(τ) × Pi2 j2(τ),

Hc(j) = 2C0 + (C1 − C0)
(
H( j1 − 1) +H( j2 − 1)

)
+ (C2 − C1)

(
H( j1 − 2) +H( j2 − 2)

)
,

and µ(τ; i) implies the mean past lifetime of the system with the lifetime Ti:n such that
µ(τ; i) =

∫ τ
0 Pi2(t)dt/Pi2(τ).

3.2 Expected Cycle Length

The cycle length starting from i = (i1, i2) is defined as Lτ(κ; i): The expected length of
a cycle Lτ(κ; i) = E

(
Lτ(κ; i)

)
is obtained as the expected cost per cycle: on failure, a

full period τ is completed. On observing the system in A0(κ), the random time until
replacement is made up of a completed inspection time and an additional cycle length
starting in state X(τ). On finding the system state in the critical region A1(κ) the cycle
length comprises a completed inspection time as well as the remaining cycle length
Lτ(κ; 0) starting from zero. In other words,

Lτ(κ; i) =
(
τ + Lτ(κ; X(τ))

)
1A0(κ)(X(τ)) +

(
τ + Lτ(κ; 0)

)
1A1(κ)(X(τ)) + τ1A2(X(τ))

The average length of a cycle Lτ(κ; i) = E
(
Lτ(κ; i)

)
becomes

Lτ(κ; i) = τ +
∑

j∈A0(κ)

Lτ(κ; j) × Pij(τ) +Lτ(κ; 0)
∑

j∈A1(κ)

Pij(τ). (3.4)

3.3 The Long-run Average Cost Rate

Since the perfect repair instants are regeneration points and the sequences of regenera-
tion points consists a renewal process, this allows the use of the renewal reward theorem
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(Ross, 1970) for formulating the average cost rate Cτ(κ; i) in terms of the expected cost
per cycle (3.3) and the expected cycle length (3.4):

Cτ(κ; i) =
Cτ(κ; i)
Lτ(κ; i)

. (3.5)

The average cost rate (3.5) is used as a measure of policy to determine the optimal
inspection policyΠ∗ = {nτ∗ : n = 1, 2, · · · } and the preventive replacement policy imple-
mented by the optimal replacement threshold κ∗:

(τ∗, κ∗) = argmin
(τ,κ)∈(0,∞)×Ac

Cτ(κ; i), (3.6)

where Ac = {1, 2, 3}.

4 Numerical Example

Numerical results are based on a bivariate process X(t) = (X1(t),X2(t)) characterized
by three states (normal state (0), satisfactory state (1) and failure state (2)). For the
numerical illustration, we set (λ, γ) = (0.2, 0.25). The choice for the cost parameters are
c = 0.25, C0 = 0.5, C1 = (C1,C2,CF) = (1.5, 2.5, 10). Using the above set of values, we
aim at finding both the optimal inspection and replacement policy implemented by the
optimal inspection interval τ∗ and the optimal replacement threshold κ∗. The results
are developed by examining the response of the model to costs C2 = (4.5, 7.5, 30), C3 =
(9, 15, 60) and CR ∈ {0.20, 1.0, 5.0, 25} and the degradation parameters λ ∈ {0.05, 0.2, 0.8}
and γ ∈ {0.025, 0.25, 0.75, 1.25}.

From Figure 2 and Table 2, it is easy to see that the maintenance policy is char-
acterized by the optimal maintenance parameters (τ∗, κ∗) = (0.95, 3.0). Therefore, to
achieve the minimum expected cost per unit time, the model postulates that to detect
the true state of components the system should be monitored according to the policy
Π∗ = {0.95n : n = 1, 2, · · · }: if the revealed state (X1(t),X2(t)) on inspection at age t = nτ∗

falls in the set A0(κ∗) = {(r, s) : 0 ≤ r + s < κ∗} = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)} no
repair action is taken; the system undergoes a preventive replacement if the com-
ponents state is found in A1(κ∗) = {(r, s) : κ∗ ≤ r + s < 4} = {(1, 2), (2, 1)}; otherwise,
(X1(t),X2(t)) = (2, 2), a corrective replacement should be undertaken. This mainte-
nance policy driven by the optimal inspection interval τ∗ and the optimal replacement
threshold κ∗ determines the optimal expected cost Cτ∗(κ∗, 0) = 0.49.

The optimal solutions for different combinations of maintenance cost and degrada-
tion parameters are illustrated in Table1 to Table3.

The main findings of our numerical results are outlined as follows:

• Apart from few cases outlined below, changing both the degradation and cost
parameters does not impact on the optimal replacement threshold κ∗ = 3:
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(i) as the process is more prone to move up to the failure state from the sat-
isfactory state at a constant rate γt = 1.25t (γ/λ = 25), given that maintaining
the system incurs the least cost C1, the preventive replacement policy is imple-
mented whenever the bivariate process X(t) on inspection is found in the set
A1(κ∗) = {(r, s) : κ∗ ≤ r + s < 2} with κ∗ = 1 (i.e. a degradation process makes a
transition to the satisfactory or the failure state) (see Table 1). An intuitive impli-
cation of this result is that as the system becomes more susceptible to failure (γ/λ
increases), the model ideally responds to it by the reduction of the replacement
threshold κ∗ : 3 7→ 1.

(ii) in the case when the maintenance cost increases uniformly and the process in
contrary to the case (i) has propensity to sojourn in state 1 (λ/γ = 32), the model
adapts itself via moving up the threshold value κ∗ = 4 (see Tables 2 and 3). In
this case the action space includes only two types of actions Ωa = {a0, a∗} and the
model is simplified by dropping the set A1(κ) (PR region) from the model. The
equations (3.3) and (3.4) can be rewritten respectively as:

Cτ(κ; i) =
∑

j∈A0(κ)

(
c + Cτ(κ; j)

)
× Pij(τ) +

(
CF + CRµ(τ; i)

)
× Pi2(τ),

and

Lτ(κ; i) = τ +
∑

j∈A0(κ)

Lτ(κ; j) × Pij(τ).

• The optimal period of inspection τ∗ strongly depends on the degradation pa-
rameters (λ, γ) as other parameters remain fixed: as transition rates decrease the
system is monitored less frequently (τ∗ increases) implying a reduction in the
amount of maintenance undertaken on the system and resulting expected costs.

• The optimal period of inspection τ∗ is sensitive to the cost parameters Ci (i = 1, 2, 3)
as other parameters remain fixed: as CM cost in contrast to PM cost increases
more rapidly, the inspections are scheduled more frequently. This ideally averts
increasing costs by an early detection of failures.

The optimal solutions for different combinations of the penalty cost and the mainte-
nance cost parameters are examined as other parameters remain fixed (see Table 4).

The results summarized in Table 4 indicate that:

• in all cases the optimal replacement threshold κ∗ does not respond to Ci and CR.

• as maintenance cost parameters remain constant, increasing the penalty cost
makes inspections slightly more frequent (see the first two rows of Table 4).
This penalizes a costly strategy resulting from undetected failures within inter-
inspection times.
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• as maintenance costs increase more rapidly, changes in penalty cost does not
induce significant changes in optimal solutions (see the last row of Table 4).

Figure 2: Expected cost per unit time for different κ ∈ {1, 2, 3, 4} and (λ, γ) = (0.2, 0.25).

Table 1: Optimal parameters (τ∗, κ∗,Cτ∗) for different Ci and γ given λ = 0.05.
γ

0.025 0.25 0.75 1.25
Ci τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗

C1 2.25 3.00 0.21 1.52 3.00 0.28 1.29 3.00 0.31 1.36 1.00 0.32
C2 1.34 3.00 0.37 1.00 3.00 0.46 0.89 3.00 0.49 0.83 3.00 0.51
C3 0.94 3.00 0.52 0.75 3.00 0.64 0.68 3.00 0.66 0.64 3.00 0.68

Table 2: Optimal parameters (τ∗, κ∗,Cτ∗) for different Ci and γ given λ = 0.2.
γ

0.025 0.25 0.75 1.25
Ci τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗

C1 1.80 3.00 0.27 0.95 3.00 0.49 0.81 3.00 0.54 0.75 3.00 0.56
C2 1.04 3.00 0.48 0.57 3.00 0.84 0.52 3.00 0.90 0.50 3.00 0.93
C3 0.72 4.00 0.68 0.41 3.00 1.19 0.38 3.00 1.26 0.36 3.00 1.29

Table 3: Optimal parameters (τ∗, κ∗,Cτ∗) for different Ci and γ given λ = 0.8.
γ

0.025 0.25 0.75 1.25
Ci τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗

C1 1.66 3.00 0.29 0.65 3.00 0.74 0.51 3.00 0.94 0.46 3.00 1.00
C2 0.96 4.00 0.50 0.38 3.00 1.31 0.29 3.00 1.64 0.28 3.00 1.72
C3 0.70 4.00 0.70 0.27 3.00 1.87 0.21 3.00 2.32 0.20 3.00 2.43
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Table 4: Optimal parameters (τ∗, κ∗,Cτ∗) for different Ci and Cr given (λ, γ) = (0.2, 0.25).
Cr

0.2 1 5
Ci τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗ τ∗ κ∗ Cτ∗

C1 0.97 3.00 0.487 0.97 3.00 0.488 0.95 3.00 0.49
C2 0.585 3.00 0.8460 0.585 3.00 0.8461 0.5729 3.00 0.8464
C3 0.4165 3.00 1.1964 0.4165 3.00 1.1964 0.4165 3.00 1.1964

5 Conclusion

Through the use of a bivariate process and the identification of a renewal process this
paper has presented a new approach to the joint determination of optimal inspection
and preventive replacement policy for a two-component parallel system whose state is
detected by inspections.

The model is examined for the case when the state transitions of components are
driven by a three-state non-homogeneous Markov process with known characteristics.
The results of the model provide a sound inspection and preventive replacement policy
and give an intuition on the behavior of the optimal solutions as system’s parameters
vary.

The structure explored here allows further developments via the study of complex
systems (e.g. see Zarezadeh et al., 2019; Zarezadeh and Asadi, 2019) with independent
or dependent multi-state components, (ii) the consideration of systems with a more
general failure mechanism and (iii) the inclusion of imperfect repair. The latter can be
implemented by considering age reduction models and partitioning the state space to
four exclusive subsets.
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