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Abstract. This article deals with the problem of E-Bayesian and robust Bayesian estima-
tion and prediction in the exponential distribution on the basis of record observations
under the squared log error loss function. The E-Bayesian and robust Bayesian estima-
tors of the scale parameter are computed and their performances are investigated using
a simulation study. We extend the idea of E-Bayesian estimation to the E-Bayesian pre-
diction of future record observation and perform a simulation study using a prequential
analysis for comparison of proposed E-Bayesian and robust Bayesian predictors. Two
real data sets are analyzed for illustrating the estimation and prediction results.
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1 Introduction

Let X1, ...,Xn be a sequence of independent and identical distributed (i.i.d.) random
variables from the exponential distribution with probability density function (p.d.f.)

f (x|θ) = θe−θx, x > 0, θ > 0, (1.1)

whereθ is the unknown scale parameter. An observation x j is said to be an upper record
value if its value exceeds that of all previous observations. Thus, x j is an upper (lower)

Alaa Alhamaidah (aalakamal9@gmail.com)
Corresponding Author: Mehran Naghizadeh Qom (m.naghizadeh@umz.ac.ir)
Azadeh Kiapour (azadeh_ kiapour@yahoo.com)



134 A. Alhamaidah et al.

record if x j > (<)xi for every i < j. By convention x1 is a record value. An analogous
definition deals with lower record values. Data of this type arise in a wide variety
of practical situations. Examples of application areas include industrial stress testing,
meteorological analysis, sporting and athletic events, and oil and mining surveys; see
Arnold et al. (1998) for these types of applications.

Let Rm denote the mth upper record value. The joint density of the first m-records
R = (R1, ...,Rm) can be presented as

fR1,··· ,Rm(r1, ..., rm) = f (rm)
m−1∏
i=1

f (ri)
1 − F(ri)

, r1 < r2 < · · · < rm. (1.2)

Also, the marginal p.d.f. of the mth record, Rm, is given by

fRm(x) =
[− log(1 − F(x))]m−1

(m − 1)!
f (x). (1.3)

Therefore, from (1.1) and (1.2), the likelihood function of θ based on r = (r1, ..., rm) is
given by

L(θ|r) = θme−θrm , θ > 0. (1.4)

There are some methods in order to obtain an appropriate estimate ofθ. In a classical
method, we estimate θ based on the sample imformation, for example, the maximum
likelihood estimator (MLE) denoted by Tm, and can be derived from the equation
∂L(θ|r)
∂θ = 0, which is given by Tm = m/Rm. A Bayesian approach to a statistical problem

requires defining a prior distribution over the parameter space and loss function. Many
Bayesians believe that just one prior can be elicited. In practice, the prior knowledge
is vague and any elicited prior distribution is only an approximation to the true one.
Various solutions to this problem have been proposed. In robust Bayesian estimation
or prediction, it is a common practice to construct optimal estimators and predictors
by changing a prior whithin a class Γ of priors which seems to best match our personal
beleifs, see Berger (1984), Rios Insua et al. (1995) and Arias-Nicolas et al. (2009) among
others.

One of the recent proposed solutions is E-Bayesian estimation or prediction. The E-
Bayesian estimator is the expectation of the Bayesian estimator of unknown parameter
over the hyperparameter(s), which was first introduced by Han (1997). E-Bayesian
estimation is investigated by Jaheen and Okasha (2011), Han (2017), Gonzalez-Lopez
et al. (2017), Kiapour (2018), Han (2019), Okasha (2019), Piriaei et al. (2020) and
Han (2021). We consider the E-Bayesian prediction of the future record observation
as the expectation of the Bayesian predictor of future record observation over the
hyperparameter(s).

In Bayesian inference, the most commonly used loss function is convex and sym-
metric squared error loss (SEL) function which is widely used in decision theory due
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to its simple mathematical properties. But in some cases, it does not represent the true
loss structure. For example, it is not useful for estimation of the scale parameter and
it assigns the same penalties to overestimation and underestimation. For estimation
of the scale parameter θ, Brown (1968) proposed the Squared Log Error Loss (SLEL)
function, which is given by

L(θ, δ) = (ln δ − lnθ)2 =
[

ln
δ
θ

]2
= ln2 ∆, (1.5)

where both θ and δ are positive, see also Kiapour and Nematollahi (2011) for some
estimation and prediction problems. This loss function is not symmetric and convex;
it is convex for ∆ = δ

θ ≤ e and concave otherwise, but has a unique minimum at ∆ = 1.
Also when ∆ > 1, this loss increases sublinearly, while when 0 < ∆ < 1, it rises rapidly
to infinity at zero. Therefore it is useful in situations where underestimation is more
serious than overestimation. It should be noticed here that an estimator δ of θ is risk-
unbiased if E(ln δ) = lnθ. Therefore, the bias is defined as E(ln δ)− lnθ, see Lemma 4.1
in the Appendix A.

The paper is organized as follows. In section 2, we obtain the Bayesian, robust
Bayesian and E-Bayesian estimators of θ under the loss function (1.5) and compare
their performances using a Monte Carlo simulation. A real data example is applied
for illustrating the estimation results. In section 3, we obtain the Bayesian and ro-
bust Bayesian predictions and extend the idea of E-Bayesian estimation to E-Bayesian
prediction. We use a prequential analysis for comparison of obtained E-Bayesian pre-
dictors and ilustrate the proposed predictors by an application example. We end the
paper by a concluding remark.

2 Bayesian Methods of Estimation

Let r = (r1, ..., rm) be the first m-records coming from the exponential distribution with
parameter θ given in (1.1). In this section, we obtain the Bayesian and E-Bayesian
estimators of θ and compare them by a simulation study.

2.1 Bayesian Estimation

Considering a Gamma(α, β) distribution of θ with p.d.f.

π(θ|α, β) =
βα

Γ(α)
θα−1e−βθ, α > 0, β > 0, θ > 0. (2.1)

Using the likelihood function (1.4), it can be shown that the posterior distribution
is Gamma(m + α, rm + β). In estimation of θ, let L(θ, δ) be the loss function (1.5). So, the
posterior risk of δ = δ(r) can be expressed as

ρ(π, δ) = E[L(θ, δ)|r]
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= ln2 δ + E[ln2 θ|r] − 2 ln δE[lnθ|r]. (2.2)

The Bayesian estimate of θ based on observation r is any estimate δπ(r) that minimizes
the posterior risk (2.2), which is given by δB(r) = eE[lnθ|r]. Using the factθ|r ∼ Gamma(m+
α, rm + β) and applying Lemma 4.2 (see Appendix A), we have E[lnθ|r] = Ψ(m + α) −
ln(rm + β), where Ψ(ν) = d

dν lnΓ(ν) = Γ′(ν)
Γ(ν) is the digamma function and Γ(ν) denotes

the complete gamma function given by Γ(ν) =
∫
∞

0 tν−1e−tdt. Therefore, the Bayesian
estimate of θ is given by

δB(r) = eE[lnθ|r] =
eΨ(m+α)

rm + β
. (2.3)

2.2 Robust Bayesian Estimation

Suppose that the prior distribution is not exactly specified and consider the following
class of priors for θ

Γ = {π(θ|α, β), α ∈ [α1, α2] ⊂ R+, β ∈ [β1, β2] ⊂ R+}, (2.4)

where α1, α2, β1 and β2 are known. There are several robust Bayesian estimators but
we focus on the posterior Regret Γ-Minimax (PRGM) estimator. The estimator δRB is
called the PRGM estimator if, for all r,

sup
π∈Γ

R(δRB, δπ) = inf
δ∈D

sup
π∈Γ

R(δ, δπ), (2.5)

where R(δ, δπ) = ρ(π, δ) − ρ(π, δπ) is the posterior regret, which measures the loss of
optimality due to choosing the estimator δ(r) instead of the optimal Bayes estimator
δπ(r).

In the following theorem, we obtain the PRGM estimator ofθunder the loss function
(1.5) with respect to the class of priors given in (2.4). For the proof and more information
on PRGM derivation, readers may refer to Kiapour and Nematollahi (2011).

Theorem 2.1. Let r = (r1, ..., rm) be a first m-record observations from the exponential dis-
tribution and the prior π belongs to a class Γ of priors. Suppose δ(r) = infπ∈Γ δB(r) and
δ(r) = supπ∈Γ δ

B(r) are finite and δ < δ. Then, the PRGM estimates of θ corresponding to the
prior given in (2.4) under the loss function (1.5) is given by

δRB(r) =
√
δ(r)δ(r),

=

√
eψ(m+α1)+ψ(m+α2)

(rm + β1)(rm + β2)
. (2.6)
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2.3 E-Bayesian Estimation

Consider a prior π(θ|α, β) for θ with hyperparameters α and β. Following Han (1997),
the E-Bayesian estimator of θ is the expectation of the Bayesian estimator for the all
hyperparameters which is defined as

δEB(r) =
∫ ∫

D
δB(r)π(α, β)dαdβ = E(δB(R)), (2.7)

where D is the domain of α and β and π(α, β) is the prior density function of α and β.

Based on Han (1997), the prior parameters α and β should be selected to guarantee
that π(θ|α, β) is a decreasing function of θ. If we take the conjugate prior (2.1), hyper-
parameters α and β should be in the ranges 0 < α < 1 and β > 0, respectively, due to
dπ(θ|α,β)

dθ < 0. Prior distribution with thinner tail would worsen the robustness of the
Bayesian distribution. Accordingly, β should not be too big while 0 < α < 1. For β > 0,
there is a constant, say c, such that 0 < β < c.

Assume that α and β are independent with bivariate density function π(α, β) =
π(α)π(β). We consider three prior distributions of the hyperparameters α and β for
E-Bayesian estimation of θ:

π1(α, β) =
2(c − β)
c2B(u, v)

αu−1(1 − α)v−1, 0 < α < 1, 0 < β < c,

π2(α, β) =
1

cB(u, v)
αu−1(1 − α)v−1, 0 < α < 1, 0 < β < c,

π3(α, β) =
2β

c2B(u, v)
αu−1(1 − α)v−1, 0 < α < 1, 0 < β < c. (2.8)

These distributions are used to investigate the influence of the different prior distri-
butions on the E-Bayesian estimation, see Jaheen and Okasha (2011) and Naghizadeh
Qomi and Kiapour (2020).

Theorem 2.2. Let r = (r1, ..., rm) be a first m-record observations from the exponential distri-
bution. Then, the E-Bayesian estimates of θ corresponding to the priors given in (2.8) under
the loss function (1.5) are as follows:

δEB1(r) =
2I
c2 [(c + rm) ln(1 +

c
rm

) − c], (2.9)

δEB2(r) =
I
c

ln(1 +
c

rm
),

δEB3(r) =
2I
c2 [c − rm ln(1 +

c
rm

)],

where I =
∫ 1

0 eΨ(m+α) αu−1(1−α)v−1

B(u,v) dα.
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Proof. For prior distribution π1(α, β), the E-Bayesian estimate of θ under the loss func-
tion (1.5) is obtained as

δEB1(r) =
∫ c

0

∫ 1

0
δB(r)π1(α, β)dαdβ

=

∫ 1

0

∫ c

0

eΨ(m+α)

rm + β

2(c − β)αu−1(1 − α)v−1

c2B(u, v)
dβdα

=

∫ 1

0
eΨ(m+α)α

u−1(1 − α)v−1

B(u, v)
dα
∫ c

0

2(c − β)
c2(rm + β)

dβ

=
2I
c2

∫ c

0

c − β
rm + β

dβ

=
2I
c2 [(c + rm) ln(1 +

c
rm

) − c]. (2.10)

Similarly, if the prior distributions of (α, β) are given by π2(α, β) and π3(α, β), then,
the corresponding E-Bayesian estimates under the loss function (1.5) will be obtained,
respectively as

δEB2(r) =
∫ 1

0

∫ c

0
δB(r)π2(α, β)dαdβ

=

∫ 1

0

∫ c

0

eΨ(m+α)

rm + β

αu−1(1 − α)v−1

cB(u, v)
dβdα

=

∫ 1

0
eΨ(m+α)α

u−1(1 − α)v−1

B(u, v)
dα
∫ c

0

1
c(rm + β)

dβ

=
I
c

ln(1 +
c

rm
), (2.11)

and

δEB3(r) =
∫ 1

0

∫ c

0
δB(r)π3(α, β)dαdβ

=

∫ 1

0

∫ c

0

eΨ(m+α)

rm + β

2βαu−1(1 − α)v−1

c2B(u, v)
dβdα

=

∫ 1

0
eΨ(m+α)α

u−1(1 − α)v−1

B(u, v)
dα
∫ c

0

2β
c2(rm + β)

dβ

=
2I
c2

∫ c

0

β

rm + β
dβ

=
2I
c2 [c − rm ln(1 +

c
rm

)]. (2.12)

□

2.4 Monte Carlo Simulation and Comparisons

In this section, we perform a simulation study for comparison of proposed estimators
of θ. For this purpose, we generate i.i.d. random observations x1, ..., xn from the
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exponential distribution with parameter θ = 5 and obtain record observations r1, ..., rm

for values m = 3, 5, 7, 9 by using Rk =
∑k

i=1 Xi, where Rk ∼ Gamma(k, θ), see Awad
and Raqab (2000). The performance of Bayesian, E-Bayesian and robust Bayesian
estimates have been compared for repeated M = 10000 times simulation runs in terms
of estimated bias as

EB(δ(k)) =
1
M

M∑
i=1

(ln δ(k)
i − lnθ), (2.13)

and estimated risk as

ER(δ(k)) =
1
M

M∑
i=1

(ln δ(k)
i − lnθ)2, (2.14)

where δ(1) is the Bayesian estimate δB in (2.3) with α = 0.6 and β = 3, δ(2) is the robust
Bayesian estimate δRB in (2.6) with α1 = 0.1, α2 = 0.7, β1 = 1 and β2 = 3 and δ(3), δ(4)

and δ(5) are the E-Bayesian estimates δEBi, i = 1, 2, 3 given in (2.9) for selected values of
c = 3, 3.5, u = 3 and v = 2.

The estimated values of bias and risk of the estimators are summarized in Table 1.
It is observed from Table 1 that all E-Bayesian estimates are clearly biased. Moreover,
δEB1 has less bias when compared to other estimators. As can be observed, the robust
Bayesian and E-Bayesian estimates performs well compared to the Bayesian estimates
in terms of risk. Also, the estimated risk of the estimates decreases (increases) as the
values of m(c) increases.

Table 1: Estimated bias (in first row) and risk (in second row) for Bayesian, robust
Bayesian and E-Bayesian estimates.

δEB1 δEB2 δEB3

m δB δRB c = 3 c = 3.5 c = 3 c = 3.5 c = 3 c = 3.5
3 1.7437 1.3972 0.7231 0.9054 1.0042 1.2169 1.4049 1.6805

3.0480 1.9720 0.6138 0.8951 1.0706 1.5315 1.9946 2.8377
5 1.3558 1.0407 0.5525 0.7062 0.7798 0.9658 1.0789 1.3225

1.8489 1.1079 0.3806 0.5614 0.6613 0.9760 1.1878 1.7651
7 1.1109 0.8238 0.4266 0.5629 0.6231 0.7921 0.8709 1.0933

1.2775 0.7062 0.2486 0.3728 0.4369 0.6669 0.7843 1.2130
9 0.9534 0.6965 0.3680 0.4889 0.5384 0.6915 0.7456 0.9478

0.9224 0.5108 0.1881 0.2837 0.3294 0.5104 0.5794 0.9149

2.5 Real Data Analysis

Consider a data set of Dunsmore (1983), in which a rock crushing machine is kept
working as long as the size of the crushed rock is larger than the rocks crushed before.
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Otherwise it is reset. The following data show the sizes of the crushed rocks up to the
third reset of the machine:

9.3 0.6 24.4 18.1 6.6 9.0 14.3 6.6 13 2.4 5.6 33.8.

The Kolmogorov-Smirnov (K-S) test with test statistics 0.2069 and a corresponding p-
value = 0.6835 implies that the exponential distribution with mean 0.084 have a good
fit to this data set. The observed upper record values r = (r1, r2, r3) are obtained to
be r = (9.3, 24.4, 33.8). Then, the maximum likelihood estimate is t3 =

3
r3
= 0.089.

The Bayesian estimate δB with α = 0.6 and β = 3, robust Bayesian estimate δRB with
α1 = 0.1, α2 = 0.7, β1 = 1 and β2 = 3 and the E-Bayesian estimates δEBi (i = 1, 2, 3) with
values u = 3, v = 2 and c = 3, 3.5 and corresponding absolute error, ∆δ = |δ − 0.089|,
are summarized in Table 2. It is observed that the Bayesian, robust Bayesian and
E-Bayesian estimates are close together and are all robust. Moreover, the E-Bayesian
estimate δEB1 outperforms other estimators.

Table 2: Results for estimates and corresponding absolute error of estimates.

δEB1 δEB2 δEB3

δB δRB c = 3 c = 3.5 c = 3 c = 3.5 c = 3 c = 3.5

0.0846 0.0866 0.08908 0.08788 0.08765 0.08590 0.08621 0.08393
∆δEB1 ∆δEB2 ∆δEB3

∆δB ∆δRB c = 3 c = 3.5 c = 3 c = 3.5 c = 3 c = 3.5

0.0044 0.0024 0.00008 0.0011 0.0014 0.0031 0.0028 0.0051

3 Bayesian Approches of Prediction

Making prediction is one of the fundamental objectives of statistical modeling, and a
Bayesian approach can make this task reasonably straight forward. Let r = (r1, ..., rm)
be the first m-records and rm+1 be a future record random variable coming from the
exponential distribution with parameter θ given in (1.1). Our goal is to predict the
future record rm+1 on the basis of currently observed data r = (r1, ..., rm). The predictive
distribution is given by

h(rm+1|r) =
∫
Θ

f (rm+1|θ)π(θ|r)dµ(θ), (3.1)

where θ ∈ Θ has the prior density πw.r.t. σ-finite measure µ. In this section, we obtain
the Bayesian and E-Bayesian predictors of rm+1 by δm+1 from past observation r under
the Squared Log Error Prediction Loss (SLEPL) function given by

L(rm+1, δm+1) = (ln δm+1 − ln rm+1)2 = [ln
δm+1

rm+1
]2. (3.2)
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3.1 Bayesian Prediction

The posterior risk of the predictor δm+1 unedr the loss function (3.2) is given by

ρ(π, δm+1) = E[L(rm+1, δm+1) | r]
= ln2 δm+1 + E[ln2 Rm+1|r] − 2 ln δm+1E[ln rm+1|r]. (3.3)

The Bayesian predictor is obtained by minimizing (3.3) over δm+1 as

δ̂B
m+1(r) = eE[ln rm+1|r]. (3.4)

From (1.3), we get Rm+1 ∼ Gamma(m+1, θ) and, using Lemma 4.2, we obtain E[ln Rm+1|θ] =
Ψ(m + 1) − lnθ. Therefore, we have

E[ln Rm+1|r] = E{E[ln Rm+1|θ]|r}
= E[Ψ(m + 1) − lnθ|r]
= Ψ(m + 1) −Ψ(m + α) + ln(rm + β). (3.5)

So, the Bayesian predictor of the random variable Rm+1 under the loss function (3.2) is
given by

δ̂B
m+1(r) = eE[ln Rm+1|r] = (rm + β)eΨ(m+1)−Ψ(m+α). (3.6)

3.2 Robust Bayesian Prediction

We consider a class Γ of priors (2.4) and recall that the predictor δ̂RB
m+1 is called the

posterior Regret Γ-Minimax (PRGM) predictor if, for all r,

sup
π∈Γ

R(δ̂RB
m+1, δ̂

π
m+1) = inf

δm+1∈D
sup
π∈Γ

R(δm+1, δ̂
π
m+1), (3.7)

where R(δm+1, δ̂πm+1) = ρ(π, δm+1) − ρ(π, δ̂πm+1) is the posterior regret, which measures
the loss of optimality due to choosing the predictor δm+1(r) instead of the optimal Bayes
predictor δ̂πm+1(r).

In the following theorem, we obtain the PRGM predictor of Rm+1 under the loss
function (3.2) with respect to the class of priors given in (2.4). For the proof and
more information on PRGM derivation, readers may refer to Kiapour and Nematollahi
(2011).

Theorem 3.1. Let r = (r1, ..., rm) be a first m-record observations from the exponential dis-
tribution and the prior π belongs to a class Γ of prior. Suppose δ̂m+1(r) = infπ∈Γ δ̂B

m+1(r) and

δ̂m+1(r) = supπ∈Γ δ̂
B
m+1(r) are finite and δ̂m+1 < δ̂m+1. Then, the PRGM predictor of rm+1

corresponding to the prior given in (2.4) under the loss function (3.2) is given by

δ̂RB
m+1(r) =

√
δ̂m+1(r)δ̂m+1(r),

= eψ(m+1)
√

(rm + β1)(rm + β2)e−(ψ(m+α1)+ψ(m+α2)). (3.8)
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3.3 E-Bayesian Prediction

The E-Bayesian predictor of the future record rm+1 is defined as the expectation of the
Bayesian predictor w.r.t. the prior π(α, β) and is given as follows:

δ̂EB
m+1(r) =

∫ ∫
D
δ̂B

m+1(r)π(α, β)dαdβ = E(δ̂B
m+1(r)). (3.9)

In the next theorem, we obtain the E-Bayesian predictors under the loss function
(3.2) w.r.t. the prior distributions given in (2.8).

Theorem 3.2. Let r = (r1, ..., rm) be a first m-record random observations from the exponential
distribution. Then, the E-Bayesian predictors of rm+1 corresponding to the priors given in (2.8)
under the loss function (3.2) are given by

δ̂EB1
m+1(r) = J(rm +

c
3

), (3.10)

δ̂EB2
m+1(r) = J(rm +

c
2

),

δ̂EB3
n+1(r) = J(rm +

2c
3

),

where J = eΨ(m+1)

B(u,v)

∫ 1
0 e−Ψ(m+α)αu−1(1 − α)v−1dα.

Proof. For π1(α, β), the E-Bayesian predictor under the loss function (3.2) is obtained as

δ̂EB1
m+1(r) =

∫ 1

0

∫ c

0
δ̂B

m+1(r)π1(α, β)dβdα

=

∫ 1

0

∫ c

0
(rm + β)eΨ(m+1)−Ψ(m+α) 2(c − β)αu−1(1 − α)v−1

c2B(u, v)
dβdα

=
eΨ(m+1)

B(u, v)

∫ 1

0
e−Ψ(m+α)αu−1(1 − α)v−1dα

∫ c

0

2(rm + β)(c − β)
c2 dβ

= J
∫ c

0

2(rm + β)(c − β)
c2 dβ

= J[Rm +
c
3

]. (3.11)

Similarly, if the prior distributions of α and β are given by π2(α, β) and π3(α, β) respec-
tively, then the corresponding E-Bayesian predictors under the loss function (3.2) will
be, given as

δ̂EB2
m+1(r) =

∫ 1

0

∫ c

0
δ̂B

m+1(r)π2(α, β)dβdα

=

∫ 1

0

∫ c

0
(rm + β)eΨ(m+1)−Ψ(m+α)α

u−1(1 − α)v−1

cB(u, v)
dβdα

=
eΨ(m+1)

B(u, v)

∫ 1

0
e−Ψ(m+α)αu−1(1 − α)v−1dα

∫ c

0

(rm + β)
c

dβ
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= J(rm +
c
2

), (3.12)

and

δ̂EB3
m+1(r) =

∫ 1

0

∫ c

0
δ̂B

m+1(r)π3(α, β)dαdβ

=

∫ 1

0

∫ c

0
(rm + β)eΨ(m+1)−Ψ(m+α) 2βαu−1(1 − α)v−1

c2B(u, v)
dβdα

=
eΨ(m+1)

B(u, v)

∫ 1

0
e−Ψ(m+α)αu−1(1 − α)v−1dα

∫ c

0

2β(rm + β)
c2 dβ

= J(rm +
2c
3

). (3.13)

□

3.4 Prequential Analysis for Comparison of Predictors

In this section, the performance of the proposed predictors are investigated through
a prequential analysis, see Kiapour and Nematollahi (2011). For this purpose, we
conduct a simulation study as follows:

1. Generate i.i.d. random observations x1, ..., xn+1 from exponential distribution
with parameter θ = 3 and obtain r1, ..., rm+1 using the algorithm mentioned in
section 2.4.

2. Compute δ̂(1) (the Bayesian predictor δ̂B
m+1 in (3.6)) with α = 0.6 and β = 0.2, δ̂(2)

(the robust Bayesian predictor δ̂RB
m+1 in (3.8)) with α1 = 0, α2 = 0.7, β1 = 0 and

β2 = 0.5 and δ̂(3), δ̂(4), δ̂(5) (the E-Bayesian predictors δ̂EBi
m+1, i = 1, 2, 3 given in

(3.10)) with c = 0.5, 0.75, 1, u = 3 and v = 2.

3. Calculate the prediction loss for rm+1 as (ln δ̂(k)
m+1 − ln rm+1)2.

4. Increase m by 1 and repeat Steps 2 and 3 until m = n, when n = 3, 5, 7, 9.

5. Average all of the one-step-ahead prediction errors computed in Step 3 and com-
pute Average Prediction Error (APE) for each predictor as

APE(k) =
1
n

n∑
m=1

(ln δ̂(k)
− ln rm+1)2. (3.14)

6. Repeat Steps 1-5 for N = 105 times and compute the Simulated APE (SAPE) as a
measure of the prediction error by avaraging the APE given in (3.14).

The results of SAPE for Bayesian and E-Bayesian predictors are presented in Table 3.
The conclusions, as can be observed from this table, are that:
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1. The E-Bayesian predictors δ̂EB2 and δ̂EB3 performs well against the Bayesian pre-
dictor for all values of c, while the E-Bayesian predictor δ̂EB1 has good performance
against the Bayesian predictor for c ∈ {0.75, 1}.

2. We observe the following inequality for E-Bayesian predictors in term of simu-
lated APE:

SAPE(δEB3) < SAPE(δEB2) < SAPE(δEB1) (3.15)

3. Also, the estimated risk of the estimates decreases as the values of n and c in-
creases.

Table 3: Results of SAPE for Bayesian, robust Bayesian and E-Bayesian predictors.

n c δ̂B δ̂RB δ̂EB1 δ̂EB2 δ̂EB3

3 0.5 1.614743 1.372065 1.736646 1.406910 1.152514
0.75 1.406911 1.045817 0.785720

1 1.152514 0.785720 0.538034
5 0.5 1.098426 0.9319076 1.176755 0.974982 0.811832

0.75 0.974982 0.741583 0.566063
1 0.811832 0.566063 0.393650

7 0.5 0.408006 0.344423 0.436278 0.365650 0.306523
0.75 0.365650 0.280622 0.215199

1 0.306523 0.215199 0.151172
9 0.5 0.182201 0.1604618 0.193683 0.165764 0.1428950

0.75 0.165764 0.133134 0.1096857
1 0.142895 0.109685 0.0899195

3.5 A Numerical Example

We use a real data set concerning the times (in minutes) between 24 consecutive tele-
phone calls to a companys switchboard which is presented by Castillo et al. (2005).
Data are as follows:

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33 2.20 0.62 3.20 1.38
0.96 0.28 0.44 0.59 0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09.

Here, the K-S test was used for checking the validity of the exponential distribution
based on the parameter θ = 1.0059. The test statistic K-S= 0.1489 with a corresponding
p-value= 0.6618 implies that the exponential distribution have a good fit to the above
data. The observed record values r = (r1, ..., r5) are obtained to be

r = (1.34, 1.68, 1.86, 2.20, 3.20). (3.16)

Our interest is to predict r5 = 3.2. The predicted values of r5 and corresponding absolute
errors ∆δ̂ = |δ̂ − r5| are listed in Table 4 for selected values α = 0.6, β = 0.2, u = 3, v = 2



E-Bayesian and Robust Bayesian Estimation and Prediction 145

α1 = 0.5, α2 = 1, β1 = 0, β2 = 0.2 and c = 1. It is observed that the E-Bayesian predictor
δ̂EB3 has good performance.

Table 4: The predicted values of 5th record and corresponding absolute errors.

δ̂B δ̂RB δ̂EB1 δ̂EB2 δ̂EB3

2.6331 2.4366 2.786 2.9693 3.1526

∆δ̂B ∆δ̂RB ∆δ̂EB1 ∆δ̂EB2 ∆δ̂EB3

0.5669 0.7634 0.4140 0.2307 0.0474

4 Concluding Remarks

The problem of Bayesian, robust Bayesian and E-Bayesian estimation and prediction
from the exponential distribution based on record values is considered. The Estima-
tors and predictors are obtained under the loss functions (1.5) and (3.2), respectively.
We compared the performance of Bayesian, robust Bayesian and E-Bayesian estima-
tors and predictors using a simulation study and prequential analysises, respectively.
Our findings show that tha E-Bayesian and robust Bayesian estimators and predictors
work better than the Bayesian counterparts. We also considered two real data sets for
illustrating the results. The results of these analysises agree with the simulation results.
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Appendix

Lemma 4.1. With respect to loss, the estimator δ of θ is risk-unbiased if

E[ln δ] = lnθ, ∀θ.

Proof. Following Lehmann (1951), an estimator δ of θ is said to be risk-unbiased under
the loss function L(θ, δ) if it satisfies

E[L(θ, δ)] ≤ E[L(θ′, δ)], ∀θ′ , θ. (4.1)

Under the loss, we have

E
[

ln2 δ
θ

]
− E
[

ln2 δ
θ′

]
= (ln2 θ − ln2 θ′) − 2(lnθ − lnθ′)E[ln δ]. (4.2)

If we consider E[ln δ] = lnθ, we conclude that

E
[

ln2 δ
θ

]
− E
[

ln2 δ
θ′

]
= −(lnθ − lnθ′)2 < 0. (4.3)

Therefore, an estimator δofθ is risk unbiased under the loss if it satisfies in the condition
E[ln δ] = lnθ. Thus the biase of δ is E[ln δ] − lnθ. □

Lemma 4.2. Let U be a random variable with Gamma(ν, b), distribution and let Ψ(ν) =
d
dν lnΓ(ν) = Γ

′(ν)
Γ(ν) be the digamma function,Ψ′(ν) = d

dνΨ(ν) be the trigamma function and Γ(ν)
denote the complete gamma function given by

Γ(ν) =
∫
∞

0
tν−1e−tdt. (4.4)

Then we have E[ln U] = Ψ(ν) − ln b.

Proof. By differentiating both sides of (4.4) with respect to ν and dividing by Γ(ν), we
get

Ψ(ν) =
Γ′(ν)
Γ(ν)

=

∫
∞

0
(ln t)

tν−1e−t

Γ(ν)
dt. (4.5)

Now, using the transformation u = t/b in the integral, it reduces to

Ψ(ν) =
∫
∞

0
(ln u + ln b)

bν

Γ(ν)
uν−1e−budu = ln b + E[ln U], (4.6)

where U ∼ Gamma(ν, b), which completes the proof.
□


