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Abstract. In Demography and modelling mortality (or failure) data the univariate
Makeham-Gompertz is well-known for its extension of exponential distribution. Here,
a bivariate class of Gompertz–Makeham distribution is constructed based on random
number of extremal events. Some reliability properties such as ageing intensity,
stress-strength based on competing risks are given. Also dependence properties
such as dependence structure, association measures and tail dependence measures are
obtained. A simulation study and a performance analysis is given based on estimators
such as MLE, Tau-inversion and Rho-inversion.
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1 Introduction

The estimation and calculation of mortality tables are of great importance in Actuary.
One of the first leading models in this area was the famous Gompertz distribution
(Gompertz (1825)) which is a truncated extreme value distribution and flexible in
the right-hand tail of distribution (Johnson et al. 1994, pp. 25, 640 and Wang et al.
1998). This univariate distribution is considered as an generalization of exponential
distribution since it can be obtained from limits of sequences from Gompertz distributi-
ons.

The univariate Gompertz–Makeham distribution has gained the attention of many
researchers. Juckett and Rosenberg (1993) explained the advantages of the Gompertz
distribution to Weibull distrbution. An MCMC algorithm to generate data from
Gompertz-Makeham distribution was obtained by Scollnik (1995). An efficiency comp-
arison of Gompertz, Gompertz–Makeham and Lee-Carter mortality models for risk
management is given by Melnikov and Romaniuk (2006). Feng and He (2008) used the
least square method to estimate the parameters of Gompertz–Makeham distribution.
Missov and Lenart (2013) derived a closed form solution to the life expectancy integral
corresponding to the cases of homogeneous and gamma–heterogeneous populations.
Abd El-Bar (2018) presented the transmuted Gompertz–Makeham model.

The negative Gompertz–Makeham distribution was defined by Marshall and Olkin
(2007) and named as the negative Gompertz–Makeham distribution with survival
function

F̄(t) = exp{−τθλt + θ(e−λt
− 1)},

where λ, τ, θ, t > 0. Also, this model is constructed from a sequence of random
variables. Let {Xi, i ≥ 0} be independent sequence of exponential distribution such
that X0 ∼ Exp(δ) and Xi ∼ Exp(λ) for i ≥ 1 and N be a Poisson random variable with
parameter θ. Then the survival function of Y = min(X0,X1, . . . ,XN) is the negative
Gompertz-Makeham distribution denoted by NGM(δ, λ, θ) with survival function

F̄(t) = exp{−δt − θ(1 − e−λt)}; λ, δ, θ, t > 0. (1.1)

By reparameterizing δ = τθλ where τ > 0, we derive the model

F̄(t) = exp{−τθλt − θ(1 − e−λt)}; λ, τ, θ, t > 0. (1.2)

The function in (1.2) is actually the survival function of Z = min(X,Y) where X and
Y are independent with X having a negative Gompertz distribution, and Y having
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an exponential distribution (Marshall and Olkin 2007). The given model has been
applied by Bailey and Homer (1977) and Bailey et al. (1977) in the context of kidney
transplantation where they used the three parameter hazard rate of (1.2).

Moreover, the multivariate extension of these models have been studied. Brockett
(1984) derived a bivariate Gompertz distibution by functional equation approach.
Adham and Walker (2001) introduced a multivariate Gompertz distribution using
frailty models. El-Sherpieny et al. (2013) proposed a bivariate Gompertz Marshall-
Olkin model. Marshall and Olkin (2015) derived the Gompertz–Makeham distribution
using a limiting case of Kaminsky’s functional equation. Kolev (2016) characterized a
class of bivariate Gompertz distributions.

In the following, some concepts of dependence and ageing notions obtained from
Nelsen (2007) and Lai and Xie (2006) are introduced:

• The joint random variable (X,Y) is said to be positive quadrant dependent (PQD)
if for every distribution function F, we have FX,Y(x, y) ≤ FX(x)FY(y); ∀x, y.

• The joint random vector (X,Y) is said to be right corner set increasing (RCSI) if
P(X > x,Y > y|X > x

′

Y > y
′

) is increasing in x
′

and y
′

for all x and y.

• A bivariate function f : R2
→ R is totally positive of order two (TP2) if for every

x ≤ x
′

and y ≤ y
′

we have f (x, y) f (x
′

, y
′

) − f (x
′

, y) f (x, y
′

) ≥ 0.

• For every pair (X,Y) with bivariate survival function F̄ and marginals F̄1 and F̄2,
two famous measures of association are Kendall’s Tauτ = 4

∫
(0,∞)2 F̄(x, y)dF̄(x, y)−1

and Spearman’s Rho ρs = 12
∫

(0,∞)2(F̄(x, y) − F̄1(x)F̄2(y)) f1(x) f2(y)dxdy.

• For every pair (X,Y) with distribution function F and marginals F1 and F2 the
lower and upper tail dependence coefficients λL and λU are defined as λL =

limt→0+ P
(
X ≤ F−1

1 (t)|Y ≤ F−1
2 (t)

)
and λU = limt→1− P

(
X > F−1

1 (t)|Y > F−1
2 (t)

)
.

• The joint random vector (X,Y) is said to have bivariate lack of memory property
whenever it satisfies the relation

P(X > x + t,Y > y + t|X > s,Y > t) = P(X > x,Y > y), x, y, t > 0.

• Let the joint random vector (X,Y) ∼ H. Then

– (X,Y) is said to be bivariate new worse than used of type I (bivariate new better
than used of type I) denoted by BNWU-I (BNBU-I), whenever for all x, y, t > 0

H̄(x + t, y + t) ≥ (≤)H̄(x, y)H̄(t, t).
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– (X,Y) is said to be bivariate new worse than used of type II (bivariate new
better than used of type II) denoted by BNWU-II (BNBU-II), whenever for
all x, y, t1, t2 > 0

H̄(x + t1, y + t2) ≥ (≤)H̄(x, y)H̄(t1, t2).

In this paper, we are focused on introducing bivariate and multivariate extensions
of negative Gompertz–Makeham distribution in (1.1) with decreasing hazard rates.
The introduced model is considered for an analysis of ageing concepts and stress-
strength index. Also, the need for more mortality models with decreasing failure rates
is expressed by Bebbington et al. (2014) since countries like USA, Japan and Sweden
have decreasing mortality beyond some point. So, the main purpose of this paper is to
introduce a bivariate class of Gompertz–Makeham distribution with decreasing hazard
rate using same sequences of random variables.

In Section 2, the bivariate mortality distribution is constructed with a lifetime
interpretation. In section 3, dependence properties of the model is presented. Section
4 provides some properties of univariate and bivariate hazard components for the
proposed model. Section 5, investigates the notion of Ageing intensity in the univariate
and bivariate cases. In section 6, we calculate the stress-strength parameter based on
competing risks. In section 7, we give algorithm to generate data from the presented
model and illustrate different plots to see the behaviour of the model. Also, we present
three estimators for the dependence parameter and give a performance analysis for the
mentioned estimators.

2 Derivation of the Model

Suppose we have two sets of iid survival events (for example, failure time) {Xi; i ≥ 0}
and {Y j; j ≥ 0}. Let (N1,N2) be the counts of these two survival events. So, the joint
lifetime of {Xi; i ≥ 0} and {Y j; j ≥ 0} is (min{X0, . . . ,XN1},min{Y0, . . . ,YN2}). Based on
Marshall and Olkin (1997), we present the bivariate extension of negative Gompertz–
Makeham distribution given in (1.1). Consider the sequences of independent random
variables {Xi; i ≥ 0} and {Y j; j ≥ 0} such that X0 ∼ Exp(α0), Y0 ∼ Exp(β0), Xi ∼ Exp(α1)
and Y j ∼ Exp(β1) for i, j ≥ 1. Define

T = min{X0, . . . ,XN1} and S = min{Y0, . . . ,YN2}, (2.1)

where (N1,N2) = (P1 + P12,P2 + P12) is a bivariate discrete Poisson random vector
constructed from three independent Poisson random variables such that P1 ∼ P(θ1),
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P2 ∼ P(θ2) and P12 ∼ P(θ). The probability generating function of (N1,N2) is

AN1,N2(t, s) = exp{−θ1(1 − t) − θ2(1 − s) − θ(1 − ts)}; θ1, θ2, θ > 0.

Let θ1, θ2 → 0. So, The probability generating function of (N1,N2) becomes

AN1,N2(t, s) = exp{−θ(1 − ts)}; θ > 0. (2.2)

So, the aim of this section is to find the survival function of (T,S) assuming that
{(Xi,Y j); i, j ≥ 0} is independent of (N1,N2). Thus,

F̄T,S(t, s) = P(X0 > t)P(Y0 > s)
∞∑

n1=0

∞∑
n2=0

{P(X1 > t)}n1{P(Y1 > s)}n2P(N1 = n1,N2 = n2)

= P(X0 > t)P(Y0 > s)AN1,N2

(
P(X1 > t),P(Y1 > s)

)
. (2.3)

Thus, by plugging the probability generating function in (2.2) into (2.3), we get

F̄(t, s) = exp{−α0t − β0s − θ(1 − e−α1t−β1s)}, t, s, α0, α1, β0, β1, θ > 0. (2.4)

where α0, α1, β0, β1, θ > 0. It is clear that when θ → 0, the survival function of (T,S)
concludes the independence case. The model in (2.4) is a bivariate version of negative
Gompertz–Makeham distribution in (1.1) and we denoted it by BNGM(α0, α1, β0, β1, θ).
Clearly, in order to decrease marginal parameters in the model and to gain a bivariate
model similar to univariate negative Makeham-Gompertz, the assumption θ1, θ2 → 0
is asserted for the bivariate Poisson probability generating function in (2.2).

The density function of (2.4) is

fT,S(t, s) = [θα1β1e−α1t−β1s + (β0 + θβ1e−α1t−β1s)(α0 + θα1e−α1t−β1s)]F̄T,S(t, s), (2.5)

and the corresponding distribution function is given by

F(t, s) = 1 − exp{−α0t + θ(e−α1t
− 1)} − exp{−β0s + θ(e−β1s

− 1)}
+ exp{−α0t − β0s + θ(e−α1t−β1s

− 1)}. (2.6)

Letψ1(t) = tα0 exp{θ(tα1 −1)} andψ2(s) = sβ0 exp{θ(sβ1 −1)}. Then F̄T(t) = ψ1(e−t) and
F̄S(s) = ψ2(e−s) and therefore F̄−1

T (t) = −Ln[ψ−1
1 (t)] and F̄−1

S (s) = −Ln[ψ−1
2 (s)]. Based on

Sklar theorem, its corresponding survival copula denoted by CBNGM(α0, α1, β0, β1, θ)
is obtained by

Ĉ(t, s) = [ψ−1
1 (t)]α0[ψ−1

2 (s)]β0 exp{−θ
(
1 − [ψ−1

1 (t)]α1[ψ−1
2 (s)]β1

)
}. (2.7)

It is evident that ψ(.) is an increasing and continuous function with ψ(0) = 0 and
ψ(1) = 1, so it’s a distortion function and Ĉ is a distortion copula.
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3 Dependence Properties

For understanding the functional relationship between random variables we have to
find the corresponding dependence structure. One of the dependence notions is RCSI
which implies positive dependence structure. Based on the definition, It is evident
that RCSI is equivalent to F̄(x, y) being totally positive of order 2 and F̄(x, y) is TP2 iff
∂2LnF̄(x,y)
∂x∂y > 0 (Nelsen 2007). Thus we have the following statement.

Proposition 3.1. Let (T,S) ∼ BNGM(α0, α1, β0, β1, θ). Then (T,S) is RCSI.

Proof. For the joint vector (T,S) distributed from (2.4), we have

∂2LnF̄(t, s)
∂t∂s

= θα1β1e−α1te−β1s > 0,

which is equivalent to F̄(t, s) being TP2. So, (T,S) is RCSI. �

Since, the joint random vector distributed from BNGM model is RCSI it concludes
notions such as positively quadrant dependence which indicates positive dependence
structure (Nelsen (2007)). In the following, we present two local association measures
which are useful in constructing independence tests for the BNGM model.

• (Clayton (1978) and Oakes (1989)) For any joint random variable (X,Y) Clayton-
Oakes measure of dependence is

Θ(x, y) =
F̄(x, y)D12F̄(x, y)

D1F̄(x, y)D2F̄(x, y)
,

where D12F̄(x, y) =
∂2F̄(x,y)
∂x∂y , D1F̄(x, y) =

∂F̄(x,y)
∂x and D2F̄(x, y) =

∂F̄(x,y)
∂y . Clearly, if

Θ(x, y) = 1, we will have the independence of (X,Y). Moreover, if Θ(x, y) > (<)1,
we will have positive (negative) dependence between (X,Y). The reason for
applying this measure was to check the association between the longevity of
fathers and their sons based on this measure.

• (Anderson et al. (1992)) For any joint random variable (X,Y), Anderson measure
is defined as

Ψ(x, y) =
F̄(x, y)

F̄(x)F̄(y)
.

Clearly, Ψ(x, y) = 1 implies independence of (X,Y) and Ψ(x, y) > (<)1 concludes
positive (negative) quadrant dependence.
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Based on the given definitions, we now present both association measures for the
BNGM model.

Proposition 3.2. Let (T,S) ∼ BNGM. Then, we have Θ(t, s) > 1 and Ψ(t, s) > 1 which
implies (T,S) have positive dependence structure.

Proof. For any t, s ∈ (0,∞), we have

Θ(t, s) =
θα1β1e−α1t−β1s + (β0 + θβ1e−α1t−β1s)(α0 + θα1e−α1t−β1s)

(α0 + α1θe−α1t−β1s)(β0 + β1θe−α1t−β1s)
,

Ψ(t, s) = exp{θ(1 − e−α1t)(1 − e−β1s)}.

Both Θ(t, s) and Ψ(t, s) are greater than one, which implies (T,S) have positive dependence
structure. �
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Figure 1: (Left) Θθ(t, s) − 1 for BNGM(7, 3, 2, 6, 5) (Right) Anderson measure for
parameters α1 = 0.2, β1 = 0.3, θ = 0.9.

Based on Proposition 3.2, both measures Θ and Ψ, can be used to make independence
tests for (T,S). Also, regarding to Ψ(x, y), it is clear that θ = 0 implies independence
of T and S and if θ > 0, then we have positive dependence between T and S. Figure 1
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shows the surface of Θθ(t, s) − 1 is positive and the surface of Ψ is more than 1 for the
model in (2.4) concluding that the model in (2.4) has positive dependence structure.

Two famous measures of association are Kendall’s tau and Spearman’s rho which
measure the dependence in the center of bivariate data. For the BNGM model, the
direct computation of these measures are not easily tractable. For this reason, we
plotted these measures against the dependence parameter θ in Figure 2. According to
the figures it is clear that the values of ρ and τ are positive and the BNGM distribution
supports weak and intermediate dependence.
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Figure 2: (Left) Kendall’s τ and (Right) Spearman’s ρ against different dependence
parameter θ.

The lower and upper tail dependence coefficientsλL andλU measure the dependence
in the tails of bivariate data (Nelsen (2007)). The following statement provides the value
of these measures.

Proposition 3.3. Let (T,S) ∼ BNGM(α0, α1, β0, β1, θ). Then λL = λU = 0.

Proof. Letψ1(t) = tα0 exp{θ(tα1 −1)}, ψ2(s) = sβ0 exp{θ(sβ1 −1)}, φi(x) = ψ−1
i (1−x), i = 1, 2.

So, F−1
T (t) = F̄−1

T (1 − t) = −Ln[ψ−1
1 (1 − t)] and F−1

S (s) = F̄−1
S (1 − s) = −Ln[ψ−1

2 (1 − s)]. For
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every α0, α1, β0, β1, θ > 0, we have

λL = lim
t→0+

F(F−1
T (t),F−1

S (t))

t
,

= lim
t→0+

F(−Ln[ψ−1
1 (1 − t)],−Ln[ψ−1

2 (1 − t)])
t

,

= lim
t→0+

1
t

[1 − 2t + t2 exp{θ(φα1
1 (t) − 1)(φβ1

2 (t) − 1)}],

= 0.

Also,

λU = lim
t→1−

F̄(F−1
T (t),F−1

S (t))

1 − t
,

= lim
t→1−

F̄(−Ln[ψ−1
1 (1 − t)],−Ln[ψ−1

2 (1 − t)])
1 − t

,

= lim
t→1−

(1 − t) exp{θ(φα1
1 (t) − 1)(φβ1

2 (t) − 1)},

= 0.

Thus, the proof is completed. �

Consider two random vectors (X1,Y1) and (X2,Y2). They can be compared in terms
of their dependence structure via the upper orthant (UO) order. For every two vectors
such as (X1,Y1), (X2,Y2), we say (X1,Y1) is smaller than (X2,Y2) in upper orthant order
and write (X1,Y1) ≺UO (X2,Y2) whenever F̄X1,Y1(t, s) ≤ F̄X2,Y2(t, s) for all t, s ∈ R. On
noting that within the Frechet class, correlation order, upper orthant order and lower
orthant order conclude each other in the bivariate case (Denuit et al 2006, pp 288).
Based on the given definition, the following statement is given.

Proposition 3.4. Let η = (α0, α1, β0, β1), (T,S) ∼ BNMG(η, θ) and (T
′

,S
′

) ∼ BNMG(η, θ
′

).
For any fixed value η if θ < θ

′

then (T
′

,S
′

) ≺UO (T,S).

Proof. For any t, s ∈ R and θ < θ
′

, we have

F̄θ′ (t, s) = exp{−α0t − β0s − θ
′

(1 − e−α1t−β1s)}
≤ exp{−α0t − β0s − θ(1 − e−α1t−β1s)}
≤ F̄θ(t, s).

So, the desired result is concluded. �
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4 Hazard Functions

One of the main reliability concepts is studying the behaviour of univariate and
bivariate hazard rates corresponding to (T,S). In the NGM model given in (1.2), T
and S have decreasing hazard rates (Marshall and Olkin (2007)). The conditional
survival function of T|S > s and T|S = s based on BNGM model are

F̄T|S>s(t|s) = exp{−α0t + θe−β1s(e−α1t
− 1)},

and

F̄T|S=s(t|s) =

∂F̄(t,s)
∂s
∂F̄(s)
∂s

=
β0 + β1e−β1sθe−α1t

β0 + β1θe−β1s F̄T|S>s(t|s).

respectively. So, the hazard function of T|S > s and T|S = s are

hT|S>s(t) = α0 + α1θe−α1t−β1s, (4.1)

and

hT|S=s(t) = hT|S>s(t) +
α1β1θe−α1t−β1s

β0 + β1θe−α1t−β1s , (4.2)

consequently, where α0, α1, β0, β1, θ, t, s > 0.

The next proposition gives the monotonicity behaviour of the hazard function for
T|S > s and T|S = s.

Proposition 4.1. Let (T,S) ∼ BNGM(α0, α1, β0, β1, θ). Then, the conditionals T|S > s,
S|T > t, T|S = s and S|T = t have decreasing failure rates.

Proof. Since T|S > s ∼ NGM(α0, α1, θe−β1s) and S|T > t ∼ NGM(β0, β1, θe−α1t), based on
Marshall and Olkin (2007), the NGM model has decreasing failure rate and hence both
T|S > s and S|T > t have decreasing failure rates. For T|S = s, we have

h
′

T|S=s(t|s) = h
′

T|S>s(t|s) −
α2

1β0β1θe−α1t−β1s

(β0 + β1θe−α1t−β1s)2
< 0,

and so T|S = s has decreasing failure rate. The result for S|T = t can be derived
similarly. �
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Figure 3: Plots of hT|S>s (left side) and hT|S=s (right side) of BNGM(2, 0.3, 2, 0.6, θ) for
θ = 0.5, 10, 25, 50.

For seeing the behaviour of hazard functions in proposition 4.1, some plots have
been obtained. Figure 3 shows that both hazard conditionals hT|S>s and hT|S=s have
decreasing rate. Clearly, the dependence parameter θ increases the hazard function.
Also the conditional hazard functions have decreasing rate.

For the bivariate case, Johnson and Kotz (1975) introduced the hazard gradient vector
(h1(x, y), h2(x, y)) where h1(x, y) is the hazard rate of the conditional distribution of
X given Y > y and h2(x, y) is the hazard rate of Y|X > x . Also, it can be shown
that h1(x, y) = − ∂

∂x LnF̄(x, y) and h2(x, y) = − ∂
∂y LnF̄(x, y). Based on their idea, bivariate

increasing (decreasing) failure rate is concluded for all (x, y) when the function h1 is an
increasing (decreasing) function of x and h2 is an increasing (decreasing) function of y.
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Proposition 4.2. Let (T,S) ∼ BNGM. Then the BNGM model has decreasing failure rate.

Proof. From (2.4), we get ∂
∂t h1(t, s) = −α2

1θe−α1t−β1s < 0 and h2(t, s) = −β2
1θe−α1t−β1s < 0

and this implies that F̄T,S in (2.4) has bivariate decreasing failure rate. �

5 Ageing Concepts

One of the main aspects in reliability theory is "ageing" which is an inherent property
of a unit that may be a system of components or even a living organism. Some notable
measures of ageing are failure rate, mean residual life, etc. Based on Szymkowiak
(2020), for any univariate absolutely continuous random variable X with survival
function F̄ and density function f , the univariate hazard function at time t is defined
as hX(t) =

f (t)
F̄(t) . The notion hX(t) can be interpreted as the local infinitesimal conditional

probability of an instantaneous failure occurring immediately after the time point t
given that the unit has survived until t. Jiang et al. (2003) states that the representation of
ageing of a system by failure rate is qualitative. In order to evaluate the ageing property
of a system quantitatively they developed a new notion, called ageing intensity (AI).
The AI for univariate absolutely continuous random variable X at time t, denoted by
LX(t), is defined as

LX(t) =
hX(t)
HX(t)

,

where hX(t) is the hazard function and HX(t) = 1
t

∫ t
0 hX(x)dx is the failure rate average.

The larger the ageing intensity, the stronger the tendency of ageing. For the model in
1.1 univariate AI is

LX(t) =
δt + λθe−λt

δt + θ(1 − e−λt)
.

Figure 4 illustrated the behaviour of univariate AI.

Based on Figure 4, tendency of ageing for NGM(δ, λ, θ) decreases as time passes for
different values of δ, λ, θ.

For bivariate absolutely continuous random vector (X,Y) with survival function
F̄, the gradient of hazard functions is defined as hX,Y(x, y) = (h1(x, y), h2(x, y)), where
h1(x, y) = − ∂

∂x lnF̄(x, y) and h2(x, y) = − ∂
∂y lnF̄(x, y). Consequently, the vector of the

failure rate averages is defined as HX,Y(x, y) = (H1(x, y),H2(x, y)) where H1(x, y) =
1
x

∫ x
0 h1(u, y)du and H2(x, y) = 1

y

∫ y
0 h2(x, v)dv. Based on the preceding notions we define

the vector of ageing intensities as following:
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Figure 4: Ageing intensity of NGM(δ, λ, θ).

Definition 5.1. Let (X,Y) be a bivariate absolutely continuous random vector with
survival function F̄, gradient of hazard functions hX,Y and vector of the failure rate
averages HX,Y. The vector of ageing intensities for absolutely continuous random
vector (X,Y) (denoted by BAI(X,Y)) is defined as LX,Y(x, y) = (L1(x, y),L2(x, y)), where
Li(x, y) =

hi(x,y)
Hi(x,y) for i = 1, 2.

According to the given definition we now derive the ageing intensity for the BNGM
model.

Proposition 5.1. Let (T,S) ∼ BNGM(α0, α1, β0, β1, θ). Then, the bivariate ageing intensity
vector of (T,S) is

• L1(t, s) =
(α0t+α1θtS(t,α1)S(s,β1))

(α0t+θS(s,β1)(1−S(x,α1))) ,

• L2(t, s) =
(β0s+β1θsS(t,α1)S(s,β1))

(β0s+θS(t,α1)(1−S(y,β1))) ,

where S(x, γ) = exp(−γx) for all γ, x > 0.

Proof. For any α0, α1, β0, β1, θ > 0, we have

h1(t, s) = α0 + α1θe−α1t−β1s,
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and
h2(t, s) = β0 + β1θe−α1t−β1s.

Thus, we have

R1(t, s) =
1
t

∫ t

0
r1(x, s)dx

=
1
t

∫ t

0
α0 + α1θe−α1x−β1sdx

= α0 + θe−β1s.
1 − e−α1t

t
,

and similarly R2(t, s) = β0 +θe−α1t. 1−e−β1s

s . Based on the fact that (BAI1(T,S),BAI2(T,S)) =

( r1(t,s)
R1(t,s) ,

r2(t,s)
R2(t,s) ) we derive the given statement. �

Based on Figure 5, we have plotted the perspective and contour plot for BAI1(T,S;θ =
1) − BAI1(T,S;θ = 0.5) and BAI2(T,S;θ = 1) − BAI2(T,S;θ = 0.5) with fixed parameter
(α0, α1, β0, β1) = (5, 3, 5, 4). The figures indicate that both the plots are positive and
this shows that BAI1 and BAI2 are both increasing w.r.t. θ within the range of the
dependence parameter θ ∈ (0.5, 1).

Investigating ageing concepts for reliability distributions is of great importance. The
notion of having the lack of memory property is given in Lai and Xie (2006). In a two-
component system, lack of memory property states that the conditional probability
of two components surviving to times (x + t, y + t) given surviving to times (t, t) is
equal to the unconditional probability of these two components surviving to times
(x, y). The bivariate Marshall-Olkin exponential distribution is known for its extension
of exponential distribution and it’s the only bivariate distribution with exponential
marginals satisfying the bivariate lack of memory property. However, other bivariate
distributions don’t satisfy the lack of memory property and the notions BNWU-I
(BNBU-I) and BNWU-II (BNBU-II) are defined. This notion can be interpreted as the
conditional survival probability of two components of different ages being more (less)
than the corresponding survival probability H̄ of two new components. The following
corollary gives the relation of BNWU-I and BNWU-II and presents the corresponding
univariate concept.

Corollary 5.1. Based on the notions BNWU-I (BNBU-I) and BNWU-II (BNBU-II), we have

• If t1 = t2 = t, then BNWU-I and BNWU-II are equal.
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• If y, t2 → 0, then F̄T(x + t1) ≥ F̄T(x)F̄T(t1) that implies the notion new worse than used
(NWU) for random variable X.

• If x, t1 → 0, then F̄S(y + t2) ≥ F̄S(y)F̄S(t2) that implies the notion NWU for random
variable Y.
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Figure 5: (First row) On the left, contour plot and on the right perspective plot for
BAI1(T,S;θ = 1) − BAI1(T,S;θ = 0.5) when (α0, α1, β0, β1) = (5, 3, 5, 4). (Second row)
On the left, contour plot and on the right perspective plot for BAI2(T,S;θ = 1) −
BAI2(T,S;θ = 0.5) when (α0, α1, β0, β1) = (5, 3, 5, 4).

Based on the given definition, we present some ageing concepts for the BNGM
model.

Proposition 5.2. Let (T,S) ∼ BNGM(α0, α1, β0, β1, θ). Then

• (T,S) satisfies BNWU-I,
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• (T,S) satisfies BNWU-II,

• T is new worse than used (NWU),

• S is NWU.

Proof. For all x, y, t1, t2 > 0, we have

F̄T,S(x + t1, y + t2)
F̄T,S(x, y)

= exp{−α0t1 − β0t2 − θ(1 − e−α1t1−β1t2)},

× exp{θ[1 − e−α1t1−β1t2 + θe−α1(x+t1)−β1(y+t2)]},
= F̄T,S(t1, t2). exp{θ(1 − e−α1t1−β1t2)(1 − e−α1x−β1 y) + θe−α1x−β1 y

},

≥ F̄T,S(t1, t2).

Thus, we have BNWU-II and if we set t1 = t2 = t we get BNWU-I. Using the definition
of BNWU-I (BNBU-I) and BNWU-II (BNBU-II), we can obtain the third and fourth
statement. So, the proof is complete. �

6 Stress-Strength Based on Competing Risks

In the reliability literature, stress-strength model is marked out as an analysis for a
reliability system in terms of random variables X indicating stress (supply) exposed to
the system and Y as the strength (demand) of the system available to bear the stress.
The system breaks down whenever the stress surpasses the strength. So, the index
R = P(X < Y) is the reliability considering the failure mode described by the stress-
strength relation. The stress-strength index can be computed in terms of competing
risk given in Shih and Emura (2019). Based on competing risk models, failure times X
and Y are called latent failure times. According to the failure time R = min(X,Y) and
failure cause C = 1 if X < Y or C = 2 if X > Y, we give the sub-distribution functions as

F∗(1, r) = P(C = 1,T ≤ r) =

∫ r

0
f ∗(1, z)dz,

and

F∗(2, r) = P(C = 2,T ≤ r) =

∫ r

0
f ∗(2, z)dz,

where f ∗(1, t) = −∂F̄(x, y)/∂x|x=y=t and f ∗(2, t) = −∂F̄(x, y)/∂y|x=y=t that are called sub-
density functions. Then the stress-strength index is given by P(X < Y) = F∗(1,∞) and
P(X > Y) = F∗(2,∞). First we will present the following lemma that will help us in
finding the stress-strength index.
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Lemma 6.1. Let ω(γ, θ, b) =
∫
∞

0 exp{−γt + θe−bt
− θ}dt. Then

ω(γ, θ, b) =
1
b

E(
b

γ + bN
),

where N is a Poisson random variable with parameter θ.

Proof. Using the transformation w = e−bt, we get

ω(γ, θ, b) =
e−θ

b

∫ 1

0
wγ/b−1eθwdw.

Based on the Maclaurin series we have

ω(γ, θ, b) =
e−θ

b

∫ 1

0
wγ/b−1

∞∑
n=0

(θw)n

n!
dw,

=
e−θ

b

∞∑
n=0

θn

n!
1

γ/b + n
,

=
1
b

E(
b

γ + bN
).

So, the proof is complete. �

Based on obtaining the reliability of an equipment or the survival of a living object,
it is crucial to consider the stress conditions of the functioning environment. That is,
uncertainty about the main surrounding stress to be encountered should considered as
random. In the simplest stress-strength model, the component (or living object) X is the
stress placed on the unit by the operating environment and the component (or living
object) Y is the strength of the unit. A unit (or living object) will perform its intended
function if the strength is greater than the stress imposed upon it. Then, reliability
would be defined as the probability that the unit (or living object) has the strength to
overcome the stress. On the basis of competing risk model, stress-strength index for
the BNGM model is given in the proceeding statement.

Proposition 6.1. If (T,S) ∼ BNGM(α0, α1, β0, β1, θ), then

P(S < T) = β0ω(α0 + β0, θ, α1 + β1) + β1θω(α0 + β0 + α1 + β1, θ, α1 + β1),

where ω(γ, θ, b) = 1
b E( b

γ+bN ) such that N ∼ P(θ). In particular, as θ → 0, then P(S < T) =
β0

α0+β0
.
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Proof. Based on the proposed model (2.4), we have

f ∗(2, r) = −
∂F̄T,S(t, s)

∂t
|t=s=r = (β0 + β1θe−(α1+β1)r)F̄T,S(r, r)

So,

F∗(2, r) =

∫ r

0
(β0 + β1θe−(α1+β1)x)F̄T,S(x, x)dx (6.1)

Thus,

P(S < T) =

∫
∞

0
(β0 + β1θe−(α1+β1)x)F̄T,S(x, x)dx,

= β0

∫
∞

0
exp{−(α0 + β0)x + θe−(α1+β1)x

− θ}dx

+β1θ

∫
∞

0
exp{−(α0 + β0 + α1 + β1)x + θe−(α1+β1)x

− θ}dx, (6.2)

By plugging lemma 6.1 in (6.2) we get the first statement. For the the second statement,
using (6.1) and θ→ 0, we have

P(S < T) =

∫
∞

0
β0 exp{−(α0 + β0)x}dx =

β0

α0 + β0
.

So, the proof is complete. �

To illustrate the variation of the stress-strength index for BNGM(α0, α1, β0, β1, θ)
model, different curves are given in Figure 6. The plot is the stress-strength index versus
the dependence parameter with a variation in any of the four marginal parameters
(α0, α1, β0, β1). Clearly as θ→ 0, the stress-strength index converges to β0

α0+β0
.

7 Estimation and Simulation

Throughout this section, we study the behaviour of the BNGM model by presenting an
algorithm to generate random data and give suitable plots to illustrate their variation.
Next, estimators for the marginal and dependence parameters are given. Finally, a
performance analysis for the introduced estimators are given and they are compared
based on some criteria.
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Figure 6: Stress-Strength index versus the dependence parameter θ for
BNGM(α0, α1, β0, β1, θ).

7.1 Random Number Generation

We can obtain samples from the BNGM model based on the construction in (2.1). So,
the following algorithm is presented.

Algorithm 1 Random number generation from BNGM(α0, α1, β0, β1, θ).

Step 1. Generate (n1,n2) from a bivariate Poisson distribution with parameters
(θ1, θ2, θ12) for small values of θ1, θ2 such that θ1, θ2 → 0.

Step 2. Generate x0 and y0 from exponential distributions with parameters α0 and β0,
respectively.

Step 3. Generate x1, . . . , xn1 and y1, . . . , yn2 from exponential distributions with
parameters α1 and β1, respectively.

Step 4. Set t = min{x0, x1, . . . , xn1} and s = min{y0, y1, . . . , yn2}.

Step 5. The desired pair is (t, s).

Based on Algorithm 1 scatter plots and contour plots are given in Figure 7. Based
on Figure 2, the dependency of the generated data first increase and then decline as θ
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increases. This can also be seen in Figure 7. Since, the generated data are of Gompertz-
Makeham type, they are centralized near zero in each axis. Clearly, as the value of
dependency decreases the generated data become more concentrated near zero.
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Figure 7: Scatter plots (first row) and contour plots (second row) for different values
of dependence parameter θ for BNGM(1, 1, 1, 1, θ). The value of Kendall’s τ is given in
the scatter plots.

7.2 Estimation and Performance Analysis

Suppose we have a bivariate random sample (T1,S1), . . . , (Tn,Sn) distributed as (T,S).
We want to estimate the marginal parameters (α0, α1, β0, β1) of BNGM model using
maximum likelihood estimation (MLE) and estimate the dependence parameterθusing
MLE, Rho-inversion and Tau-inversion methods. We will explain these these methods
as following.

7.2.1 MLE

Suppose we have the observations (t1, s1), . . . , (tn, sn) distributed from the pdf given in
(2.5). Let γ = (α0, α1, β0, β1, θ), g j(α1, β1) = exp{−αt j − βs j} and

∆ j(α0, α1, β0, β1, θ) = θα1g j(α1, β1) + [(β0 + θβ1g j(α1, β1))(α0 + θα1g j(α1, β1))].
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So, the log-likelihood function based on observations is

l(γ) =

n∑
j=1

log[∆ j(α0, α1, β0, β1, θ)] − α0

n∑
j=1

t j − β0

n∑
j=1

s j − nθ + θ
n∑

j=1

g j(α1, β1). (7.1)

Now, we want to find MLE ofγ by maximizing (7.1). The estimates ofγ can be obtained
by solving the following non-linear equations simultaneously:

∂l(γ)
∂α0

=

n∑
j=1

[ β0 + θβ1g j(α1, β1)
∆ j(α0, α1, β0, β1, θ)

− t j

]
= 0,

∂l(γ)
∂β0

=

n∑
j=1

[ α0 + θα1g j(α1, β1)
∆ j(α0, α1, β0, β1, θ)

− s j

]
= 0,

∂l(γ)
∂α1

=

n∑
j=1

g j(α1, β1)
∆ j(α0, α1, β0, β1, θ)

[
θβ1 − θα1β1t j − θβ1t j(α0 + θα1g j(α1, β1))

+(β0 + θβ1g j(α1, β1))(θ − θα1t j)
]
− θ

n∑
j=1

t jg j(α1, β1) = 0,

∂l(γ)
∂β1

=

n∑
j=1

g j(α1, β1)
∆ j(α0, α1, β0, β1, θ)

[
θα1 − θα1β1s j − θα1s j(β0 + θβ1g j(α1, β1))

+(α0 + θα1g j(α1, β1))(θ − θβ1s j)
]
− θ

n∑
j=1

s jg j(α1, β1) = 0,

∂l(γ)
∂θ

=

n∑
j=1

g j(α1, β1)
∆ j(α0, α1, β0, β1, θ)

[
α1β1 + β1(α0 + θα1g j(α1, β1)) + α1(β0 + θβ1g j(α1, β1))

]
−n +

n∑
j=1

g j(α1, β1) = 0.

However, this method is less efficient than the direct maximization of log-likelihood.
In order to maximize the log-likelihood function we use the function optim in the
R software. Initial values for optimization are calculated based on global non-linear
optimization package "Rsolnp" in R software version 3.6.1.
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7.2.2 Rho-Inversion

The dependence measure Spearman Rho (ρ) is defined as the correlation of the ranks
from joint observations. Let F̄θ be the bivariate survival function with dependence
parameter θ and F̄1, F̄2 be its corresponding marginals, then the population version of
Spearman’s Rho is

ρθ = 12
∫

(0,∞)2
[F̄θ(x, y) − F̄1(x)F̄2(y)]dF̄1(x)dF̄2(y),

whereθ is the dependence parameter of the population. Let (Ri,Si) be ranks correspond-
ing to observations. Then sample version of Spearman’s Rho is defined as

ρn =

∑n
i=1(Ri − R̄)(Si − S̄)√∑n

i=1(Ri − R̄)2
∑n

i=1(Si − S̄)2
,

where R̄ = S̄ = n+1
2 . Also, we can re-write the Spearman’s Rho as

ρn =
12

n(n − 1)(n + 1)

n∑
i=1

RiSi −
n + 1
n − 1

.

For the BNGM(α0, α1, β0, β1, θ) model we estimate the marginal parameters (α0, α1, β0, β1)
using MLE and then estimate dependence parameterθbased on Rho-inversion method.
To estimate θ, first, we calculate ρn based on the generated sample from BNGM model.
Afterwards, we solve equation (7.2) w.r.t θ.

ρθ = 12
∫

(0,∞)2
[F̄θ(x, y) − F̄1(x)F̄2(y)]dF̄1(x)dF̄2(y). (7.2)

7.2.3 Tau-inversion

The dependence measure Kendall’s Tau (τ) is defined based on concordance. Let
F̄θ be the bivariate survival function with dependence parameter θ and F̄1, F̄2 be its
corresponding marginals, then the population version of Kendall’s Tau is

τ = 4
∫

(0,∞)2
F̄θ(x, y)dF̄θ(x, y) − 1,
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where θ is the dependence parameter of the population. The sample version of
Kendall’s Tau is defined as

τn =
4

n(n − 1)
Qn − 1,

such that Qn is the number of concordant pairs. The pairs (Xi,Yi) and (X j,Y j) are
concordant when (Xi − X j)(Yi − Y j) > 0. For the BNGM(α0, α1, β0, β1, θ) model we
estimate the marginal parameters (α0, α1, β0, β1) based on MLE and then estimate
dependence parameter θ based on Tau-inversion method. To estimate θ, first, we
calculate τn based on the generated sample from BNGM model. Afterwards, we solve
equation (7.3) w.r.t θ.

τn = 4
∫

(0,∞)2
F̄θ(x, y)dF̄θ(x, y) − 1. (7.3)

7.2.4 Performance Analysis

Now, we want to specify the finite sample performance of marginal parameters (α0, α1,
β0, β1) and dependence parameter θ. The evaluation is based on bias and mean square
error (MSE) of the mentioned estimators. A specific sample size n has been taken from
BNGM(1, 1, 1, 1, 3) (as an example) and estimators have been calculated based on 10000
iterations. The marginal parameters have been estimated based on MLE method and
their results are given in Figure 8. We can see as the sample size increases the MSE
of estimators become smaller and the values of bias become more stable near zero.
The dependence parameter has been estimated with MLE, Tau-inversion and Rho-
inversion methods. Their results are given in Figure 9. Clearly, the ML estimator is the
best estimator for the dependence parameter θ and after that Rho-inverse estimator
and Tau-inverse estimator is the worst estimator of θ. Evidently, the values of bias
becomes more stable around zero as the sample size increases.

We must note that For MLE, the global maximum was unique all the time and
did not correspond to the boundary of the parameter space. The computational time
required to identify the global maximum after trying out all combinations of the initial
values did not exceed 4 hours. For Rho-inverse and Tau-inverse method, the root of the
equations (7.2) and (7.3) was unique depending on the value of θ being in the interval
(0, ρmax(θ)) or (ρmax(θ),∞) for Spearman’s rho and θ being in the interval (0, τmax(θ)) or
(τmax(θ),∞) for Kendall’s tau, where ρmax(θ) and τmax(θ) are the maximum amount of
τ and ρ for different values of θ (see Figure 2).
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Figure 8: MSE (first row) and bias (second row) of ML estimators for marginal
parameters (α0, α1, β0, β1).
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Figure 9: MSE (left) and bias (right) of three estimators (MLE, Tau-inversion and Rho-
inversion) for dependence parameter θ.

8 The Multivariate Case

Let X( j)
0 ∼ Exp(α( j)

0 ) and X( j)
i

iid
∼ Exp(α( j)

1 ) for j = 1, . . . ,n, i = 1, . . . ,m j such that X( j)
i and

X(p)
k are independent for j , p, i , k, j = p = 1, . . . ,n, i = 0, . . . ,m j and k = 0, . . . ,mp. Put
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T j = min{X( j)
0 ,X

( j)
1 , . . . ,X

( j)
M j
} where M = (M1, . . . ,Mn) is distributed from a multivariate

Poisson distribution introduced in Johnson et al. (1997). Let the probability generating
function of multivariate Poission distribution given as

AM(t1, . . . , tn) = exp{
n∑

i=1

θiti +
∑∑

i< j

θi jtit j + . . . + θ12..nt1t2 . . . tn − A},

with A =
∑n

i=1 θi +
∑∑

i< j θi j +
∑∑∑

i< j<k θi jk + . . . + θ12..n. Rewritting AM, we have

AM(t1, . . . , tn) = exp{−
n∑

i=1

θi(1 − ti) −
∑∑

i< j

θi j(1 − tit j)

−

∑∑∑
i< j<k

θi jk(1 − tit jtk) − . . . − θ12..n(1 − t1t2 . . . tn)}.

Consider the case where all parameters except θ12..n tend to zero, then we get

AM(t1, . . . , tn) = exp{−
n∑

i=1

θi(1 − ti) − θ12..n(1 − t1t2 . . . tn)}.

We want to find the distribution of T = (T1, . . . ,Tn) such that T and M are independent.
So,

F̄T(t1, . . . , tn) = P(T1 > t1, . . . ,Tn > tn),

=
∑

m

P(X(1)
0 > t1, . . . ,X

(n)
mn
> tn|M = m)P(M = m),

= exp{−
n∑

k=1

α(k)
0 tk}

∑
m

n∏
j=1

(e−α
( j)
1 t j)m jP(M = m),

= exp{−
n∑

k=1

α(k)
0 tk}AM(e−α

(1)
1 t1 , . . . , e−α

(n)
1 tn), (8.1)

9 Conclusion

In Demography literature, Golubev (2009 pp. 4) proposes the Gompertz–Makeham
law for homogeneous populations as

h(t) = C(t) + Λ exp{−E(t)},
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where irresistible stresses are considered in C(t) and resistible stresses are captured by
Λ exp{−E(t)}. We have extended the Gompertz–Makeham law to bivariate case where
dependence parameter makes the model more flexible. Some dependence properties
are derived. Also, the behaviour of conditional and bivariate hazard rate functions
are investigated. Some reliability indexes such as ageing intensity and stress-strength
are computed and their variation are illustrated. We plotted the variability and the
flexibility of the BNGM model and presented methods to estimate the parameters.
Finally, a performance analysis on the estimators of dependence parameters is given.
For future studies we will focus on the multivariate version of BNGM model.
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