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1 Introduction

In reliability and system lifetime data analysis, the study of coherent systems is one
of the important topics. Researchers and experimenters are interested in learning
the lifetime characteristic of the system as well as the lifetime characteristic of the
components that make up the system. There are numerous situations that the lifetimes
of k-component coherent systems can be observed but not the lifetimes of the components
(see, for example, Ng et al., 2012, Yang et al. 2016, 2019) and the prediction of the future
failures is of interest. Hence, in this paper, we consider the prediction of future system
failures based on Type-II censored system lifetime data.

When the component lifetime follows an absolutely continuous distribution, the
failure time of a k-component system corresponds to the failure time of one of the
k components. Let T be the lifetime of a k-component coherent system fromed by
k independent and identically distributed (i.i.d.) components in which the lifetimes
X1,X2, ...,Xk follow a distribution with a common absolutely continuous cumulative
distribution function (CDF) FX(·), probability density function (PDF) fX(·), and survival
function (SF) F̄X(·) = 1 − FX(·). We denote the corresponding order statistics of the
lifetimes of the k components as X1:k < X2:k < · · · < Xk:k. Furthermore, we denote the
SF of the i-th order statistic by F̄i:k(·). Suppose n independent k-component systems
with the same structure are placed on a life-test and the corresponding system lifetimes
T1,T2, . . . ,Tn are i.i.d. with CDF GT(·), PDF gT(·) and SF ḠT(·) = 1 − GT(·).

To describe the structure of a coherent system, we consider the concept of system
signature of a coherent system introduced by Samaniego (1985). Samaniego (1985)
defined the system signature p = (p1, p2, · · · , pk) of a coherent system with lifetime T as

p j = Pr(T = X j:k),

where the coefficients p1, p2, · · · , pk are some non-negative real numbers in [0, 1] that do
not depend on FX and satisfy

∑k
j=1 p j = 1. Samaniego (1985) showed that the system

signature p only depends on the structure function of the system but not on the lifetime
distribution of the components.

In this study, we assume that the system signature p of the systems under investigati-
on is known. Samaniego (1985) showed that the PDF and SF of the system lifetime T
can be written as (see also, Kochar et al., 1999 and Samaniego, 2007)

gT(t) =

k∑
j=1

p j f j:k(t) and ḠT(t) =

k∑
j=1

p jF̄ j:k(t),
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respectively, where

f j:k(t) =

(
k
j

)
j fX(t)[FX(t)] j−1[F̄X(t)]k− j,

and

F̄ j:k(t) =

j−1∑
l=0

(
k
l

)
[FX(t)]l[F̄X(t)]k−l,

are respectively the PDF and SF of the j-th ordered component lifetime X j:k. This
representation is called the Samaniego representation. An algorithm to obtain the
system signatures of a k-component coherent system is proposed by Navarro and
Rubio (2010). For instance, the system signatures for five-component coherent systems
are presented in Navarro and Rubio (2010).

From Navarro et al. (2007), the reliability function of a coherent system, ḠT(t), can
be expressed as

ḠT(t) =

k∑
j=1

a jF̄1: j(t) =

k∑
j=1

a j[F̄X(t)] j, (1.1)

where a1, a2, . . . , ak are integers (which can be positive or non-positive) that do not
depend on the component lifetime distribution and satisfy

∑k
j=1 a j = 1, and F̄1: j(·) is the

SF of the lifetime of a series system with j components, i.e., X1: j = min(X1,X2, . . . ,X j),
for j = 1, 2, . . . , k. The vector a = (a1, a2, . . . , ak) is called the minimal signature of
the system (Navarro et al., 2007). For a given system signature p, the corresponding
minimal signature a can be obtained. Similarly, for a given minimal signature a, the
corresponding system signature p can be obtained (see, for example, Navarro et al.,
2007, 2008).

In recent years, many authors studied the statistical inference of the component
lifetime distribution based on system lifetime data when the system signature is known;
see, for example, Bhattacharya and Samaniego (2010), Balakrishnan et al. (2011a),
Balakrishnan et al. (2011b), Ng et al. (2012), Chahkandi et al. (2014), Zhang et
al. (2015a), Zhang et al. (2015b) and Yang et al. (2016, 2019). Although extensive
work has been done on parametric and nonparamrtric statistical inference based on
system lifetime data with specified system signature, prediction problem with system
signature being available has not been studied. Therefore, the aim of this paper is
to consider the prediction problem for future failure times of coherent systems with
Type-II right-censored experiment when the system signature is known.

In a Type-II censored experiment, n independent k-components systems with the
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same system structure are placed on a life-testing experiment and the experiment is
terminated when the m-th (where m ≤ n is pre-fixed) failure is observed. In other words,
only the first m failures out of the n systems in the life-test will be observed. The ordered
system lifetime data obtained from such a life-test, denote as T1:n < T2:n < . . . < Tm:n, is
referred to as a Type-II censored sample. Based on the observed Type-II censored system
lifetime data, we aim to predict the future system failures T′ = Ts+m:n(s = 1, 2, . . . ,n−m)
when the system signature (or, equivalently, the minimal signature) is available. Under
the assumption that the component lifetime is modeled by the proportional reversed
hazard rate (PRHR) model, we derive the maximum likelihood predictor, the best
unbiased predictor, the conditional median predictor, and the Bayesian point predictor
for future system failures T′ = Ts+m:n(s = 1, 2, . . . ,n − m). Furthermore, we present the
prediction intervals (PIs) for future failures T′ = Ts+m:n(s = 1, 2, . . . ,n −m). To compare
the performances of different point and interval prediction methods, a Monte Carlo
simulation study is used.

The rest of the paper is organized as follows. Section 2 provides the model of
the component and system lifetimes and the maximum likelihood estimator of the
exponentiated parameter. In Section 3, we provide different point predictors for the
future system failures. Different PIs for the system failures are provided in Section 4.
An illustrative example and a Monte Carlo simulation study are presented in Section
5. Finally, some concluding remarks and practical recommendations are provided.

2 Model and Maximum Likelihood Estimation

In this paper, it is supposed that the common distribution of the k i.i.d. component
lifetimes in a coherent system is the PRHR model with CDF

FX(t) = [F0(t)]θ. (2.1)

whereθ > 0 is the unknown exponentiated (and also reverse proportionality) parameter
and F0(·) is the baseline CDF of a lifetime distribution which is completely specified
and does not depend on the parameter θ. This family of distributions is also known as
the exponentiated family of distributions, since F0(·) is exponentiated by θ. The PRHR
model is a flexible model that covers both monotonic and non-monotonic failure rates
in many cases.

Some members of the PRHR model which are commonly used in lifetime data
analysis are presented as follows:
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(i) Inverse exponential: IEXP(θ) with baseline CDF

F0(t) = e−
1
t , t > 0,

and the CDF is
FX(t) = e−

θ
t , t > 0, θ > 0.

(ii) Generalized exponential distribution: GE(θ) with baseline CDF

F0(t) = 1 − e−t, t > 0,

and the CDF is
FX(t) = (1 − e−t)θ, t > 0, θ > 0.

(iii) Generalized Rayleigh distribution: GR(θ) with baseline CDF

F0(t) = 1 − e−t
2

, t > 0,

and the CDF is
FX(t) = (1 − e−t2

)θ, t > 0, θ > 0.

(iv) Burr Type III distribution: Burr III(θ) with baseline CDF

F0(t) =
1

1 + t−c , t > 0, c > 0,

where the parameter c is assumed to be known, and the CDF is

FX(t) = (1 + t−c)−θ, t > 0, θ > 0.

(v) Inverse Weibull distribution: IW(θ) with baseline CDF

F0(t) = e−t−α , t > 0, α > 0,

where the parameter α is assumed to be known, and the CDF is

FX(t) = e−θt−α , t > 0, θ > 0.
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Based on the model in Eq. (2.1) and from Eq. (1.1), the PDF and SF of the system
lifetime are given by

gT(t) = θ
f0(t)
F0(t)

k∑
j=1

j a jFθ0 (t)
(
1 − Fθ0 (t)

) j−1
, (2.2)

and

ḠT(t) =

k∑
j=1

a j

(
1 − Fθ0 (t)

) j
, (2.3)

respectively, where f0(t) = dF0(t)/dt is the baseline PDF.

Suppose T1:n < T2:n < · · · < Tm:n is an ordered Type II censored sample from
a population with PDF gT(t;θ) and CDF GT(t;θ) in Eqs. (2.2) and (2.3). For notation
simplicity, we denote the observed values of T1:n < T2:n < · · · < Tm:n by t1 < t2 < · · · < tm
instead of t1:n < t2:n < · · · < tm:n. The joint PDF of T = (T1:n,T2:n, . . . ,Tm:n) is given by

L(θ|t) =
n!

(n −m)!

m∏
i=1

gT(ti;θ) [1 − GT(tm;θ)]n−m , (2.4)

where t = (t1, t2, . . . , tm) is the vector of observations. From Eqs. (2.2), (2.3) and (2.4),
the log-likelihood function can be expressed as

log L(θ|t) = log C + m logθ + θ
m∑

i=1

log F0(ti) +

m∑
i=1

log


k∑

j=1

ja j

(
1 − Fθ0 (ti)

) j−1


+(n −m) log


k∑

j=1

a j

(
1 − Fθ0 (tm)

) j

 , (2.5)

where C = n!
(n−m)!

∏m
i=1

f0(ti)
F0(ti)

is a constant that is independent of the parameter θ. Then,
we can obtain the likelihood equation as

d log L(θ|t)
dθ

=
m
θ

+

m∑
i=1

log F0(ti) −
m∑

i=1

log F0(ti)


∑k

j=1 j( j − 1)a jFθ0 (ti)
(
1 − Fθ0 (ti)

) j−2

∑k
j=1 ja j

(
1 − Fθ0 (ti)

) j−1


−(n −m) log F0(tm)


∑k

j=1 ja jFθ0 (tm)
(
1 − Fθ0 (tm)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j

 = 0. (2.6)
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Therefore, the maximum likelihood estimator (MLE) of θ, denoted as θ̂MLE can be
obtained by solving Eq. (2.6) with respect to θ. Since the likelihood equation is a
non-linear equation, therefore, the MLE of θ needs to be obtained by using numerical
methods.

3 Point Predictors

Because of the Markov property of the conditional order statistics, the conditional
distribution of T′ = Ts+m:n(s = 1, 2, . . . ,n−m), given T = t = (t1, t2, . . . , tm) is equal to the
conditional distribution of T′ given Tm:n = tm. As a result, the conditional PDF of T′

given Tm:n = tm is the same as the PDF of the s-th order statistic from a sample of size
n −m from the population with PDF g(t′;θ)/[1 − G(tm;θ)], t′ ≥ tm (i.e., a left-truncated
PDF with truncation point tm). Therefore, the conditional PDF of T′ given Tm:n = tm is

h(t′|tm;θ) = s
(
n −m

s

)
gT(t′;θ) [GT(t′;θ) − GT(tm;θ)]s−1

× [1 − GT(t′;θ)]n−m−s [1 − GT(tm;θ)]−(n−m) , t′ ≥ tm. (3.1)

For the PDF and SF of the system lifetime presented in Eqs. (2.2) and (2.3), the
conditional PDF in Eq. (3.1), for t′ ≥ tm, reduces to

h(t′|t;θ) = s
(
n −m

s

)
θ

f0(t′)
[F0(t′)]1−θ

×

 k∑
j=1

ja j

(
1 − Fθ0 (t′)

) j−1


 k∑

j=1

a j

(
1 − Fθ0 (t′)

) j


n−m−s

×

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j
−

k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


s−1

×

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j

−(n−m)

. (3.2)

Several different point predictors for T′ = Ts+m:n (s = 1, 2, . . . ,n − m) are discussed in
the following subsection.

3.1 Maximum Likelihood Predictor

In this subsection, the likelihood approach is used to obtain the maximum likelihood
predictor (MLP) for T′ = Ts+m:n (s = 1, 2, . . . ,n−m). The likelihood approach, introduced
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by Kaminsky and Rodhin (1985), has become a very useful tool to estimate the paramet-
ers involved in the model and to predict the future order statistics simultaneously; see,
e.g., Basak et al. (2006), Basak and Balakrishnan (2017), Asgharzadeh et al. (2015,
2018), Raqab et al. (2019) and Saadati Nik et al. (2020). Based on the observed Type-II
censored sample t = (t1, . . . , tm), the predictive likelihood function (PLF) of T′ and θ is
considered and maximized with respect to the future observations T′ and the unknown
parameter θ simultaneously. The PLF of T′ and θ, is given by

L(T′, θ|t) = h(t′|t;θ)L(t;θ). (3.3)

Suppose T̂′ = u(T) and θ̂ = ν(T) are statistics for which

L(u(t), ν(t)|t) = sup
(t′,θ)

L(t′, θ|t),

where u(t) and ν(t) are the values of the statistics T̂′ = u(T) and θ̂ = ν(T), respectively,
computed based on the observed data t. Then, u(T) is the MLP of T′ and ν(T) is the
predictive maximum likelihood estimator (PMLE) of θ. By using Eq. (2.5) and the
logarithm of (3.2), the log-PLF of T′ and θ can be expressed as

log L(t′, θ|t) = constant + (m + 1) logθ + log f0(t′) − log F0(t′) + θ log F0(t′)

+θ
m∑

i=1

log F0(ti) +

m∑
i=1

log

 k∑
j=1

ja j

(
1 − Fθ0 (ti)

) j−1


+ log

 k∑
j=1

ja j

(
1 − Fθ0 (t′)

) j−1

 + (n −m − s) log

 k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


+(s − 1) log

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j
−

k∑
j=1

a j

(
1 − Fθ0 (t′)

) j
 . (3.4)

By taking the first derivatives of the predictive log-likelihood function in Eq. (3.4)
with respect to t′ and θ, the predictive likelihood equations (PLEs) for T′ = Ts+m:n (s =
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1, 2, . . . ,n −m) and θ can be obtained as:

∂ log L(t′, θ|t)
∂t′

=
f ′0(t′)F0(t′) + (θ − 1) f 2

0 (t′)
f0(t′)F0(t′)

−


∑k

j=1 j( j − 1)a jθ f0(t′)Fθ−1
0 (t′)

(
1 − Fθ0 (t′)

) j−2

∑k
j=1 ja j

(
1 − Fθ0 (t′)

) j−1


−(n −m − s)


∑k

j=1 ja jθ f0(t′)Fθ−1
0 (t′)

(
1 − Fθ0 (t′)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j


+(s − 1)


∑k

j=1 ja jθ f0(t′)Fθ−1
0 (t′)

(
1 − Fθ0 (t′)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j
−

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j

 = 0, (3.5)

and

∂ ln L(t′, θ|t)
∂θ

=
m + 1
θ

+

m∑
i=1

log F0(ti) + log F0(t′)

−

m∑
i=1

log F0(ti)


∑k

j=1 j( j − 1)a jFθ0 (ti)
(
1 − Fθ0 (ti)

) j−2

∑k
j=1 ja j

(
1 − Fθ0 (ti)

) j−1


− log F0(t′)


∑k

j=1 j( j − 1)a jFθ0 (t′)
(
1 − Fθ0 (t′)

) j−2

∑k
j=1 ja j

(
1 − Fθ0 (t′)

) j−1


−(n −m − s) log F0(t′)


∑k

j=1 ja jFθ0 (t′)
(
1 − Fθ0 (t′)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j


−(s − 1)

{ ∑k
j=1 ja jFθ0 (tm) log F0(tm)

(
1 − Fθ0 (tm)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j
−

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j

−

∑k
j=1 ja jFθ0 (t′) log F0(t′)

(
1 − Fθ0 (t′)

) j−1

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j
−

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j

}
= 0. (3.6)

By solving Eqs. (3.5) and (3.6) with respect to t′ and θ simultaneously, the MLP of
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T′, denoted as T̂′MLP, and the PMLE of θ can be obtained. Numerical methods can be
used to solve Eqs. (3.5) and (3.6).

3.2 Conditional Predictors

Consider the statistic T̂′ for predicting T′ = Ts+m:n, if the prediction error (T̂′ − T′) has
a mean zero, then the statistic T̂′ is called an unbiased predictor of T′. Furthermore,
if its predictor error variance Var(T̂′ − T′) is smaller than or equal to that of any other
unbiased predictor of T′, then the statistic T̂′ is called the best unbiased predictor (BUP)
of T′. The BUP of T′ is the mean of conditional distribution of T′ given T = t. Therefore,
the BUP of T′ is given by

T̂′BUP = Eθ(T′|t) = Eθ(T′|tm). (3.7)

Using Eq. (3.2) and the binomial expansion, we have

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j
−

k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


s−1

=

s−1∑
l=0


(
s − 1

l

)
(−1)l

 k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


l  k∑
j=1

a j

(
1 − Fθ0 (tm)

) j


s−l−1 .
The conditional PDF of T′ given Tm:n = tm is given by

h(t′|tm;θ) = s
(
n −m

s

)
θ

f0(t′)
[F0(t′)]1−θ

 k∑
j=1

ja j

(
1 − Fθ0 (t′)

) j−1


×

s−1∑
l=0

{(
s − 1

l

)
(−1)l

 k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


n−m−s+l

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j


s−l−1−n+m }
, (3.8)
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for t′ > tm. Using Eqs. (3.7) and (3.8), the BUP of T′ can be obtained as

T̂′BUP =

∫
∞

tm

t′ h(t′|tm;θ) dt′

= s
(
n −m

s

)
θ

{ s−1∑
l=0

(
s − 1

l

)
(−1)l

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j


s−l−1−n+m

∫
∞

tm

t′ f0(t′)
[F0(t′)]1−θ

 k∑
j=1

ja j

(
1 − Fθ0 (t′)

) j−1


 k∑

j=1

a j

(
1 − Fθ0 (t′)

) j


n−m−s+l

dt′
}
.

(3.9)

When the parameter θ is unknown, one can approximate the BUP of T′ by replacing θ
with its corresponding MLE.

Another conditional predictor is the conditional median predictor (CMP). This
predictor was first proposed by Raqab and Nagaraja (1995) in the context of order
statistics. Consider a predictor T̂′ for T′, if T̂′ is the median of the conditional
distribution of T′ given Tm:n = tm, i.e.,

Prθ(T′ ≤ T̂′|Tm:n = tm) = Prθ(T′ ≥ T̂′|Tm:n = tm), (3.10)

then the predictor T̂′ is called a CMP of T′. For the PDF and SF of the system lifetime
presented in Eqs. (2.2) and (2.3), we can obtain

Prθ(T′ ≤ T̂′|Tm:n = tm)

= Prθ

 GT(T′) − GT(tm)
1 − GT(tm)

≤
GT(T̂′) − GT(tm)

1 − GT(tm)

∣∣∣∣∣∣ Tm:n = tm


= Prθ

1 −

∑k
j=1 a j

(
1 − Fθ0 (t′)

) j

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j ≤ 1 −

∑k
j=1 a j

(
1 − Fθ0 (T̂′)

) j

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j

∣∣∣∣∣∣∣∣ Tm:n = tm

 . (3.11)

By using the conditional PDF of T′ given Tm:n = tm in Eq.(3.1) , the conditional
distribution

GT(T′) − GT(tm)
1 − GT(tm)

= 1 −

∑k
j=1 a j

(
1 − Fθ0 (T′)

) j

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j .
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follows a beta distribution with parameters s and n−m− s + 1 (denote as Beta(s,n−m−
s + 1)). Therefore, by Eq. (3.11), the CMP of T′ can be obtained by solving

1 −

∑k
j=1 a j

(
1 − Fθ0 (T̂′)

) j

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j = Med(B), (3.12)

where B is a random variable follows Beta(s,n−m− s + 1) distribution and Med(B) is the
median of random variable B. From Eq. (3.12), the CMP of T′, T̂′CMP, can be computed
by solving the nonlinear equation k∑

j=1

a j

(
1 − Fθ0 (tm)

) j
 (1 −Med(B)) −

 k∑
j=1

a j

(
1 − Fθ0 (T̂′)

) j
 = 0. (3.13)

When θ is unknown, we can substitute θ with its MLE and derive an approximation
of the CMP of T′.

3.3 Bayesian Point Predictor

In this subsection, we consider the Bayesian point prediction for the future system
failures T′ = Ts+m:n, (s = 1, 2, . . . ,n − m), based on the observed Type-II censored
sample t = (t1, t2, · · · , tm). To the ease of mathematical manipulation of the posterior
distribution, it is assumed that the exponentiated parameter θ in PRHR model has a
gamma prior distribution with parameters α and β (denoted as Γ(α, β)) with PDF

π(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0, β > 0, α > 0. (3.14)

Note that Jeffrey’s prior can be obtained as a special case of Eq. (3.14) by taking
α = β = 0. Combining Eqs. (2.5) and (3.14), the posterior PDF of θ given the data is

π(θ|t) ∝ θm+α−1 e−βθ
m∏

i=1

Fθ0 (ti)
m∏

i=1


k∑

j=1

ja j

(
1 − Fθ0 (ti)

) j−1




k∑
j=1

a j

(
1 − Fθ0 (tm)

) j


n−m

.

(3.15)
For the Bayesian prediction of T′ = Ts+m:n, (s = 1, 2, . . . ,n − m), we first obtain the

Bayesian predictive PDF of T′ given Tm = tm. This Bayesian predictive PDF at any
point t′ (t′ > tm) is

h∗(t′|tm) =

∫
∞

0
h(t′|tm;θ)π(θ|t)dθ. (3.16)



Prediction Based on System Lifetime Data under a PRHR Model 165

By substituting Eqs. (3.8) and (3.15) into Eq. (3.16), the Bayesian predictive PDF, for
t′ > tm, is

h∗(t′|tm) =

∫
∞

0
s
(
n −m

s

)
θm+αe−βθ

f0(t′)
[F0(t′)]1−θ

m∏
i=1

Fθ0 (ti)

×

 k∑
j=1

ja j

(
1 − Fθ0 (t′)

) j−1

 m∏
i=1

 k∑
j=1

ja j

(
1 − Fθ0 (ti)

) j−1


×

s−1∑
l=0

(
s − 1

l

)
(−1)l

 k∑
j=1

a j

(
1 − Fθ0 (t′)

) j


n−m−s+l

×

 k∑
j=1

a j

(
1 − Fθ0 (tm)

) j


s−l−1

dθ.

Therefore, the Bayesian point predictor of T′ = Ts+m:n (s = 1, 2, . . . ,n − m), under the
squared error loss, can be obtained as

T′Bayes =

∫
∞

tm

t′h∗(t′|tm)dt′. (3.17)

Due to the complicated form of h∗(t′|tm), the Bayesian point predictor in Eq. (3.17)
cannot be computed explicitly. Here, we propose using the Metropolis-Hastings
algorithm (see, for example, Roberts and Casella, 2004) with Gaussian (normal) proposal
distribution to find a simulation-based consistent estimator of h∗(t′|tm). For our situation,
we first generate a Monte Carlo (MC) sample of size N, (θ1, θ2, . . . , θN), fromπ(θ|t) using
the Metropolis-Hastings algorithm. Then, by using Eq. (3.16), a simulation-based
consistent estimator of h∗(t′|tm) can be obtained as

ĥ∗(t′|tm) =
1
N

N∑
i=1

h(t′|tm;θi). (3.18)

Hence, by using Eqs. (3.17) and (3.18), the Bayesian point predictor can be approximated
as

T̂′Bayes =

∫
∞

tm

t′ ĥ∗(t′|tm)dt′ =
1
N

N∑
i=1

∫
∞

tm

t′ h(t′|tm;θi)dt′, (3.19)

where h(t′|tm;θi) is given in Eq. (3.8) with θ = θi. The Metropolis-Hastings algorithm
for generating the MC sample of size N from π(θ|t) is described as follows:
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Step A1. Provide an initial guess θ(0) of θ;

Step A2. Set ν = 1;

Step A3. Based on the Metropolis-Hastings algorithm, generate θ(ν) from π(θ(ν−1)
|t) using

the Gaussian distribution with mean θ(ν−1) and variance S2
θ (i.e., N(θ(ν−1),S2

θ)) as
the proposal distribution, where S2

θ can be obtained as the inverse of the Fisher
information;

Step A4. Set ν = ν + 1;

Step A5. Repeat Steps A3 and A4 N times to obtain the sample θ1, θ2, . . . , θN.

3.4 Illustration with Inverse Exponential Distribution

In this subsection, the prediction methods discussed in Sections 3.1–3.3 are illustrated
by considering inverse exponential distributed components with baseline CDF F0(t) =

e−
1
t , t > 0.

Maximum likelihood predictor: For k-component systems with inverse exponential
distributed components, the MLP for T′ = Ts+m:n(s = 1, 2, . . . ,n−m) and the PMLE of θ
can be computed by solving the Eqs. (3.5) and (3.6) which can be expressed as

∂ log L(t′, θ|t)
∂t′

=
−2t′ + θ

t′2
−
θ

t′2
e−θ/t

′


∑k

j=1 j( j − 1)a j(1 − e−θ/t
′

) j−2∑k
j=1 ja j(1 − e−θ/t′) j−1


−(n −m − s)

θ

t′2
e−θ/t

′


∑k

j=1 ja j(1 − e−θ/t
′

) j−1∑k
j=1 a j(1 − e−θ/t′) j


+(s − 1)

θ

t′2
e−θ/t

′


∑k

j=1 ja j(1 − e−θ/t
′

) j−1∑k
j=1 a j(1 − e−θ/tm) j −

∑k
j=1 a j(1 − e−θ/t′) j

 = 0,
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and

∂ log L(t′, θ|t)
∂θ

=
m + 1
θ
−

1
t′
−

m∑
i=1

1
ti

+

m∑
i=1

1
ti

e−θ/ti


∑k

j=1 j( j − 1)a j(1 − e−θ/ti) j−2∑k
j=1 ja j(1 − e−θ/ti) j−1


+

1
t′

e−θ/t
′


∑k

j=1 j( j − 1)a j(1 − e−θ/t
′

) j−2∑k
j=1 ja j(1 − e−θ/t′) j−1


+ (n −m − s)

1
t′

e−θ/t
′


∑k

j=1 ja j(1 − e−θ/t
′

) j−1∑k
j=1 a j(1 − e−θ/t′) j


+ (s − 1)

{ 1
tm

e−θ/tm
∑k

j=1 ja j(1 − e−θ/tm) j−1
−

1
t′ e
−θ/t′ ∑k

j=1 ja j(1 − e−θ/t
′

) j−1∑k
j=1 a j(1 − e−θ/tm) j −

∑k
j=1 a j(1 − e−θ/t′) j

}
= 0.

Best unbiased predictor: For k-component systems with inverse exponential distributed
components, the BUP can be obtained from Eq. (3.9) as

T̂′BUP = s
(
n −m

s

)
θ

s−1∑
l=0

(
s − 1

l

)
(−1)l

 k∑
j=1

a j

(
1 − e−θ/tm

) j


s−l−1−n+m

×

∫
∞

tm

1
t′

e−θ/t
′

 k∑
j=1

ja j

(
1 − e−θ/tm

) j−1


 k∑

j=1

a j

(
1 − e−θ/tm

) j


n−m−s+l

dt′.

Conditional median predictor: For k-component systems with inverse exponential
distributed components, since F0(t) = e−t, the CMP for T′ = Ts+m:n(s = 1, 2, . . . ,n − m)
can be obtained from Eq. (3.13) by solving the nonlinear equation k∑

j=1

a j

(
1 − e−θ/tm

) j
 (1 −Med(B)) −

 k∑
j=1

a j

(
1 − e−θ/T̂

′

) j
 = 0.

Bayesian point predictor: For inverse exponential distributed components, the Bayesian
point predictor of the future failure T′ = Ts+m:n(s = 1, 2, . . . ,n−m) can be obtained from
Eq. (3.19) as

T̂′Bayes =
1
N

N∑
i=1

s−1∑
l=0

s
(
n −m

s

)(
s − 1

l

)
(−1)lθi

 k∑
j=1

a j

(
1 − e−θi/tm

) j


s−l−n+m−1

ξ(tm;θi),
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where

ξ(tm;θ) =

∫
∞

tm

1
t′

e−θ/t
′

 k∑
j=1

ja j

(
1 − e−θ/t

′
) j−1


 k∑

j=1

a j

(
1 − e−θ/t

′
) j


n−m−s+l

dt′.

4 Interval Prediction

In this section, we consider two approaches to obtain the PIs for T′ = Ts+m:n (1, 2, . . . ,n−
m) based on the observed Type-II censored sample t = (t1, t2, . . . , tm).

4.1 Conditional Prediction Interval

Consider the random variable Z given Tm:n = tm as

Z = 1 −

∑k
j=1 a j

(
1 − Fθ0 (T′)

) j

∑k
j=1 a j

(
1 − Fθ0 (tm)

) j , (4.1)

in Section 3, we have shown that the distribution of Z given T = t (or simply Tm:n = tm)
follows a Beta(s,n −m − s + 1) distribution. Therefore, we can consider Z|Tm:n = tm as a
pivotal quantity and find a 100(1 − γ)% PI for T′ from the relation

Pr(B γ
2
< Z < B1− γ2

|Tm:n = tm) = 1 − γ,

where Bγ is the 100γ-th upper percentile of Beta(s,n−m− s + 1) distribution. By solving
the inequalities for T′, an exact 100(1 − γ)% PI for T′ is (L1(T),U1(T)), where the lower
bound L1(T) and upper bound U1(T) are the solutions of k∑

j=1

a j

(
1 − Fθ0 (tm)

) j
 (1 − B1− γ2

) −

 k∑
j=1

a j

(
1 − Fθ0 (T′)

) j
 = 0, (4.2)

and  k∑
j=1

a j

(
1 − Fθ0 (tm)

) j
 (1 − B γ

2
) −

 k∑
j=1

a j

(
1 − Fθ0 (T′)

) j
 = 0, (4.3)

respectively. However, since θ is unknown, the prediction limits L1(T) and U1(T) can
be approximated by replacing θ with its corresponding MLE.
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Using the highest conditional density (HCD) method, we can construct another
conditional PI for T′. The conditional distribution of Z given Tm:n = tm follows a
Beta(s,n −m − s + 1) distribution with PDF

g(z|tm) =
1

B(s,n −m − s + 1)
zs−1(1 − z)n−m−s, 0 < z < 1,

which is a unimodal function of z for s = 1, 2, . . . ,n−m, where B(a, b) =
∫ 1

0 xa−1(1−x)b−1dx
is the beta function. Therefore, a 100(1 − γ)% HCD PI for T′ is (L2(T),U2(T)), where
L2(T) and U2(T) are respectively the solutions of k∑

j=1

a j

(
1 − Fθ0 (tm)

) j
 (1 − w1) −

 k∑
j=1

a j

(
1 − Fθ0 (T′)

) j
 = 0, (4.4)

and  k∑
j=1

a j

(
1 − Fθ0 (tm)

) j
 (1 − w2) −

 k∑
j=1

a j

(
1 − Fθ0 (T′)

) j
 = 0, (4.5)

with w1 and w2 satisfy ∫ w2

w1

g(z|tm)dz = 1 − γ, (4.6)

and
g(w1|tm) = g(w2|tm). (4.7)

Here, Eqs. (4.6) and (4.7) can be simplified as

Bw2(s,n −m − s + 1) − Bw1(s,n −m − s + 1) = 1 − γ,

and (1 − w2

1 − w1

)n−m−s
=

(w1

w2

)s−1
,

where Bt(a, b) = 1
B(a,b)

∫ t
0 xa−1(1 − x)b−1 dx is the incomplete beta function.

It should be mentioned here that for the case that s = 1 or s = n − m, the function
g(z|tm) is not unimodal and the HCD prediction interval cannot be obtained in these
cases.
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4.2 Bayesian Prediction Interval

A 100(1 − γ)% Bayesian prediction interval for T′ can be obtained from the Bayesian
predictive density h∗(t′|tm;θ). The 100(1−γ)% Bayesian PI for T′ is given by (L(tm),U(tm)),
where L(tm) and U(tm) can be obtained by solving the following nonlinear equations
simultaneously:

Pr(T′ > L(tm)|tm) =

∫
∞

L(tm)
h∗(t′|tm)dt′ = 1 −

γ

2
, (4.8)

Pr(T′ > U(tm)|tm) =

∫
∞

U(tm)
h∗(t′|tm)dt′ =

γ

2
. (4.9)

By using ĥ∗(t′|tm) defined in Eq. (3.18) to approximate h∗(t′|tm) and using the MC sample
of size N, (θ1, θ2, . . . , θN), from π(θ|t), we can compute the lower and upper bounds
L(tm) and U(tm) from the relations

1 −
γ

2
=

1
N

N∑
i=1

∫
∞

L(tm)
h(t′|tm;θi)dt′,

and

γ

2
=

1
N

N∑
i=1

∫
∞

U(tm)
h(t′|tm;θi)dt′,

respectively. For the inverse exponential distribution considered in Section 3.4, different
PIs can be obtained as described in this section by taking F0(t) = e−

1
t .

5 Numerical Illustration and Monte Carlo Simulation Study

In this section, a numerical example is considered for illustrative purposes and a Monte
Carlo simulation study is performed to compare the point and interval prediction
methods presented in Sections 3 and 4. It is assumed that the lifetimes of the components
are i.i.d. inverse exponential distributed with CDF

FX(t) = e−
θ
t , t > 0, θ > 0,

which is equivalent to setting F0(t) = e−
1
t in Eq. (2.1).
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5.1 Algorithm to Generate System Lifetimes

We first discuss the algorithm to generate a random sample of n i.i.d. system lifetimes
T1,T2, . . . ,Tn for systems with inverse exponential distributed components. For a given
system signature p = (p1, p2, . . . , pk) (0 < p j < 1,

∑k
j=1 p j = 1), the following algorithm

can be used to generate the system lifetimes T1,T2, . . . ,Tn with inverse exponential
distributed components with specified value of θ:

Step B1. Generate u, v1, v2, . . . , vk independently from uniform distribution in
[0, 1];

Step B2. Set x j = θ/[− log(v j)], j = 1, 2, . . . , k;

Step B3. Sort x1, x2, . . . , xk in ascending order to obtain x1:k < x2:k < . . . < xk:k;

Step B4. Take t = xi:k if
∑i−1

j=1 p j < u <
∑i

j=1 p j, ( j = 1, 2, . . . , k), i.e.,

T =



x1:k 0 < u < p1,
x2:k p1 < u < p1 + p2,
x3:k p1 + p2 < u < p1 + p2 + p3,
...

...

xk:k
∑k−1

j=1 p j < u <
∑k

j=1 p j.

Step B5. Repeat Steps 1–4 n times to obtain the system lifetimes t = (t1, t2, . . . , tn).

To obtain a Type-II censored sample based on the simulated system lifetimes t =
(t1, t2, . . . , tn), we sort (t1, t2, . . . , tn) in ascending order to obtain t1:n < t2:n < . . . < tn:n
and take the first m order statistics t1:n < t2:n < . . . < tm:n as the Type-II censored sample.

5.2 Numerical Example

Using the algorithm provided in Section 5.1, we generate a sample of n = 30 from a 5-
component system with system signature p = (1/5, 7/10, 1/10, 0, 0) and the corresponding
minimal signature is a = (0, 0, 1, 2,−2). The component lifetimes are assumed to
follow the inverse exponential distribution with exponentiated parameter θ = 0.5.
The simulated system lifetimes are given in Table 1.

We consider the case when we observe the first 20 observations and the rest are
censored, i.e., a Type-II censored sample with n = 30 and m = 20 is observed. With
this Type-II censored sample, we compute the point and interval prediction for future
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Table 1: Simulated 5-component system lifetimes with system signature p =
(1/5, 7/10, 1/10, 0, 0) with inverse exponential distributed components (θ = 0.5).

0.136 0.146 0.190 0.201 0.204 0.224 0.237 0.249 0.250 0.258
0.280 0.283 0.296 0.335 0.371 0.401 0.402 0.428 0.452 0.465
0.543 0.550 0.563 0.617 0.735 0.788 0.830 0.846 1.106 1.147

system failures T′ = Ts+20:30(s = 1, 2, . . . , 10) as described in Sections 3 and 4. Specifically,
we compute the MLP, BUP, CMP, Bayesian prediction and we also compute the 95% PIs
for T′ = Ts+20:30(s = 1, 2, . . . , 10) based on the pivotal quantity method, HCD method
and Bayesian interval predictor. The results are presented in Table 2.

For the Bayesian prediction, we use the Metropolis-Hastings algorithm to compute
the Bayesian point prediction of T′ = Ts+20:30 (s = 1, 2, . . . , 10). In the Metropolis-
Hastings algorithm, the MLE θ̂ is considered as the initial value of the chain and
the variance of the proposal distribution, S2

θ, is obtained by inverting the Fisher
information. We sample N = 50000 values by Metropolis-Hastings algorithm with
S2
θ = 0.0027 and the acceptance rate is about 0.70%. We discard the initial M = 5000 as

burn-in samples and compute the Bayesian prediction T̂′Bayes based on averaging the
remaining N −M = 45000 values. The resulting PIs are also presented in Table 2. For
computing the Bayesian PIs, we consider the case that the prior of θ is almost improper,
i.e., α = β = 0.0001.

The histogram of the Metropolis-Hastings sequence for θ after burn-in is presented
in Figure 1. The histogram in Figure 1 can be considered as an approximation of the
posterior density of θ and we can observe that choosing the Gaussian distribution as a
proposal distribution is quite appropriate. To evaluate the convergence of Metropolis-
Hastings, graphical diagnostics tools such as the trace plot and autocorrelation function
(ACF) plot can be used. The trace plot and ACF plot for the Metropolis-Hastings
sequence of values of θ are also presented in Figure 1. From Figure 1, the trace plot
shows the values of θ are randomly scattered around the average. Furthermore, the
ACF plot shows that the sequence has low autocorrelations.

As pointed out in Section 3, the distribution of Z given Tm:n = tm is a unimodal
function of z, for s = 1, 2, . . . ,n−m. Therefore, the HCD prediction method is applicable
here for all T′ = Ts+25:30 (s = 2, 3, 4, 5, 6, 7, 8, 9) except for s = 1 and s = 10. From Table 2,
we observe that the BUP and Bayes point predictor are close to the realized censored
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lifetimes. We also observe that the PI’s obtained using the Bayesian method are shorter
than the PI’s obtained from other techniques, and the prediction intervals considered
here contain the realized censored lifetimes.

Table 2: Point predictors and 95% prediction intervals for T′ based on the data set in
Table 1.

Exact Point predictors Prediction intervals
s value MLP BUP CMP Bayes Pivotal HCD Bayesian
1 0.543 0.465 0.494 0.485 0.494 (0.466, 0.581) — (0.466, 0.574)
2 0.550 0.495 0.527 0.516 0.527 (0.473, 0.652) (0.468, 0.625) (0.473, 0.643)
3 0.563 0.528 0.564 0.552 0.565 (0.487, 0.728) (0.480, 0.703) (0.485, 0.717)
4 0.617 0.566 0.608 0.594 0.609 (0.505, 0.816) (0.500, 0.796) (0.502, 0.801)
5 0.735 0.611 0.661 0.644 0.663 (0.530, 0.924) (0.527, 0.915) (0.525, 0.905)
6 0.788 0.665 0.728 0.706 0.730 (0.560, 1.064) (0.563, 1.077) (0.552, 1.038)
7 0.830 0.733 0.817 0.787 0.820 (0.599, 1.263) (0.609, 1.328) (0.589, 1.232)
8 0.846 0.825 0.948 0.902 0.950 (0.652, 1.585) (0.673, 1.810) (0.637, 1.538)
9 1.106 0.959 1.178 1.090 1.182 (0.727, 2.251) (0.767, 3.455) (0.709, 2.182)
10 1.147 1.201 1.841 1.525 1.848 (0.861, 4.943) — (0.836, 4.778)
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Figure 1: Plots of Metropolis-Hastings Markov chains for θ .
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5.3 Monte Carlo Simulation Study

In order to compare the performance of different point and interval prediction methods
presented in this paper, we perform a Monte Carlo simulation study for systems
with inverse exponential distributed components. In this simulation, we consider
7 different 5-component systems. The minimal path sets, system signatures, and
minimal signatures of the 5-component systems considered in the simulation study
are presented in Table 3 (see, for example, Navarro and Rubio, 2010).

For different choices of sample size n and effective sample size m, we generated
1000 sets of censored system lifetimes T1:n < T2:n < . . . < Tm:n with inverse exponential
distributed components with parameter θ = 0.5 using the algorithm in Section 5.1. We
then obtained the point predictors MLP, BUP, CMP for the s-th future system failure
time T′ = Ts+m:n(s = 1, 2, . . . ,n −m). We also obtained Bayesian point prediction under
two different priors:

Prior I: α = 2, β = 4;
Prior II: α = β = 0.0001.

The performances of the different point predictors of T′ are then compared in terms of
the prediction biases and mean squares prediction errors (MSPEs) which are computed
by

Bias =
1

1000

1000∑
i=1

(T̂′i − T′) and MSPE =
1

1000

1000∑
i=1

(T̂′i − T′)2,

respectively, where T̂′i is the point prediction of T′ obtained in the i-th simulation. In
Table 4, the estimated biases and MSPEs for different point predictors based on 1000
replications for sample sizes (n = 10, m = 7) and (n = 25, m = 20). The computations
are performed in R (R Core Team, 2019) with the MHadaptive package (Chivers, 2012).

For interval prediction, we compute the 95% PIs for T′ = Ts+m:n (1, 2, . . . ,n − m)
based on the pivotal quantity method, the HCD Method and the Bayesian interval
predictor based on the Priors I and II. These prediction intervals are compared in terms
of their simulated average widths and simulated coverage probabilities based on 1000
replications. The results for sample sizes (n = 10, m = 7) and (n = 25, m = 20) are
reported in Tables 5 and 6, respectively.

For point prediction, from Table 4, we observe that BUP performs better that the
MLP and CMP in terms of biases and MSPEs. The MSPEs of CMP and the MSPEs of BUP
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are close to each other. For fixed value of m and n and the system structure, the MSPEs
of all the point predictors are increasing with s as expected. Comparing the Bayesian
point predictions based on different priors, the Bayesian point predictors based on
informative priors (i.e., Prior I) perform better than the Bayesian point predictors based
on the non-informative prior (i.e., Prior II), in terms of biases and MSPEs. However,
the biases and MSPEs of the two Bayesian point predictors are similar. We also observe
that the MLP does not perform well because it provides the largest biases and MSPEs
among all the point predictors considered here.

For prediction intervals, we observe from Tables 5 and 6 that the simulated coverage
probabilities are close to the nominal level 95% in most cases. It can be seen that
Bayesian PIs are wider than the PIs obtained by the pivotal quantity method and the
HCD method. When the informative Prior I is used, the average length of the PIs
become smaller. For fixed values of n and m and the system structure, the average
widths of different prediction intervals increase as s increases. Among the methods
for constructing prediction intervals considered here, the pivotal quantity method can
provide prediction intervals for all the censored system failures and it gives the best
performance in terms of coverage probabilities and average widths.

Table 3: Minimal path sets, system signatures, and minimal signatures of the 5-
component systems considered in the simulation study.

System No. Minimal Path Sets Signature p Minimal Signature a
1 {1, 2, 3, 4, 5} (1, 0, 0, 0, 0) (0, 0, 0, 0, 1)
2 {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5} ( 2

5 ,
3
5 , 0, 0, 0) (0, 0, 0, 3,−2)

3 {1, 2, 3, 4}, {1, 2, 3, 5} ( 3
5 ,

2
5 , 0, 0, 0) (0, 0, 0, 2,−1)

4 {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5} ( 1
5 ,

3
10 ,

1
2 , 0, 0) (0, 0, 5,−6, 2)

5 {1, 2, 3}, {1, 2, 4}, {1, 2, 5} ( 2
5 ,

3
10 ,

3
10 , 0, 0) (0, 0, 3,−3, 1)

6 {1, 2}, {1, 3, 4, 5}, {2, 3, 4, 5} (0, 7
10 ,

1
5 ,

1
10 , 0) (0, 1, 0, 2,−2)

7 {1, 2, 3}, {1, 2, 4, 5} ( 2
5 ,

1
2 ,

1
10 , 0, 0) (0, 0, 1, 1,−1)
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Table 4: Biases and MSPEs (in parentheses) of point predictions for T′ = Ts+m:n(s =
1, 2, . . . ,n −m).

Classic point predictions Bayesian point predictions
n m no. s MLP BUP CMP Prior I Prior II
10 7 1 1 -0.0526(0.0058) 0.0010(0.0032) -0.0159(0.0034) 0.0019(0.0032) 0.0021(0.0032)

2 -0.0843(0.0194) -0.0069(0.0125) -0.0343(0.0135) -0.0052(0.0125) -0.0049(0.0126)
3 -0.1616(0.0969) 0.0147(0.0720) -0.0591(0.0746) 0.0178(0.0720) 0.0189(0.0721)

2 1 -0.0910(0.0177) 0.0010(0.0095) -0.0291(0.0102) 0.0030(0.0095) 0.0032(0.0095)
2 -0.1280(0.0482) 0.0130(0.0333) -0.0391(0.0340) 0.0160(0.0333) 0.0170(0.0335)
3 -0.3430(0.4291) 0.0071(0.3198) -0.1480(0.3368) 0.0140(0.3189) 0.0160(0.3206)

3 1 -0.0834(0.0152) -0.0002(0.0084) -0.0274(0.0090) 0.0008(0.0084) 0.0013(0.0084)
2 0.1267(0.0521) 0.0002(0.0367) -0.0464(0.0385) 0.0024(0.0366) 0.0034(0.0368)
3 -0.3092(0.3806) 0.0096(0.2898) -0.1321(0.3040) 0.0141(0.2888) 0.0160(0.2901)

4 1 -0.1700(0.0645) 0.0008(0.0362) -0.0578(0.0390) 0.0034(0.0361) 0.0049(0.0363)
2 -0.2713(0.2316) 0.0223(0.1652) -0.0921(0.1693) 0.0281(0.1643) 0.0321(0.1662)
3 -0.8372(4.1520) 0.0284(3.4825) -0.3957(3.6114) 0.0392(3.4778) 0.0502(3.4873)

5 1 -0.1464(0.0498) -0.0009(0.0282) -0.0512(0.0306) 0.0002(0.0281) 0.0011(0.0283)
2 -0.2385(0.1748) 0.0078(0.1209) -0.0883(0.1265) 0.0099(0.1204) 0.0123(0.1211)
3 -0.7161(3.2973) 0.0106(2.7838) -0.3454(2.8949) 0.0138(2.7782) 0.0221(2.7856)

6 1 -0.1730(0.0698) 0.0150(0.0393) -0.0550(0.0418) 0.0160(0.0393) 0.0170(0.0394)
2 -0.3640(0.4488) 0.0030(0.3078) -0.1590(0.3345) 0.0050(0.3077) 0.0060(0.3080)
3 -1.1980(3.5293) 0.3010(2.4380) -0.5991(2.4895) 0.3054(2.4352) 0.3132(2.4456)

7 1 -0.1110(0.0282) -0.0020(0.0158) -0.0390(0.0172) -0.0010(0.0158) 0.0000(0.0159)
2 -0.1700(0.0901) 0.0080(0.0628) -0.0610(0.0654) 0.0111(0.0626) 0.0133(0.0630)
3 -0.5001(1.3592) 0.0100(1.0973) -0.2380(1.1561) 0.0172(1.0981) 0.0200(1.0993)

25 20 1 1 -0.0337(0.0023) -0.0012(0.0011) -0.0115(0.0013) -0.0011(0.0011) -0.0010(0.0011)
2 -0.0386(0.0047) 0.0010(0.0032) -0.0124(0.0034) 0.0013(0.0032) 0.0014(0.0032)
3 -0.0495(0.0092) 0.0032(0.0069) -0.0153(0.0071) 0.0038(0.0069) 0.0038(0.0070)
4 -0.0852(0.0294) -0.0023(0.0223) -0.0331(0.0233) -0.0016(0.0223) -0.0014(0.0224)
5 -0.2152(0.1939) -0.0138(0.1492) -0.1005(0.1583) -0.0125(0.1490) -0.0122(0.1492)

2 1 -0.0580(0.0075) -0.0010(0.0041) -0.0200(0.0044) -0.0010(0.0041) -0.0010(0.0041)
2 -0.0680(0.0134) 0.0030(0.0089) -0.0211(0.0093) 0.0040(0.0089) 0.0040(0.0089)
3 -0.1030(0.0363) -0.0040(0.0259) -0.0391(0.0273) -0.0030(0.0259) -0.0020(0.0260)
4 -0.1560(0.0977) 0.0080(0.0742) -0.0550(0.0767) 0.0091(0.0742) 0.0100(0.0744)
5 -0.4210(0.7360) 0.0081(0.5565) -0.1870(0.5916) 0.0110(0.5567) 0.0111(0.5569)

3 1 -0.0518(0.0062) -0.0008(0.0035) -0.0173(0.0038) -0.0006(0.0035) -0.0006(0.0035)
2 -0.0578(0.0100) 0.0065(0.0068) -0.0156(0.0069) 0.0069(0.0068) 0.0070(0.0068)
3 -0.0864(0.0250) 0.0018(0.0177) -0.0299(0.0185) 0.0025(0.0177) 0.0028(0.0178)
4 -0.1408(0.0820) 0.0080(0.0629) -0.0491(0.0649) 0.0090(0.0629) 0.0094(0.0631)
5 -0.3857(0.9031) -0.0012(0.7516) -0.1760(0.7831) 0.0010(0.7512) 0.0012(0.7513)

4 1 -0.1072(0.0234) 0.0032(0.0119) -0.0334(0.0129) 0.0038(0.0119) 0.0039(0.0119)
2 -0.1446(0.0751) 0.0023(0.0540) -0.0499(0.0565) 0.0035(0.0540) 0.0038(0.0543)
3 -0.2059(0.1750) 0.0091(0.1336) -0.0712(0.1379) 0.0112(0.1336) 0.0119(0.1338)
4 -0.3751(0.4784) 0.0074(0.3374) -0.1471(0.3580) 0.0106(0.3373) 0.0117(0.3378)
5 -1.1285(6.1137) 0.0004(4.8550) -0.5616(5.1527) 0.0073(4.8499) 0.0085(4.8564)

5 1 -0.0865(0.0160) 0.0058(0.0085) -0.0248(0.0091) 0.0061(0.0085) 0.0062(0.0085)
2 -0.1247(0.0458) -0.0015(0.0304) -0.0453(0.0323) -0.0009(0.0304) -0.0007(0.0304)
3 -0.1794(0.1103) 0.0016(0.0779) -0.0660(0.0821) 0.0025(0.0779) 0.0029(0.0780)
4 -0.3046(0.3378) 0.0133(0.2473) -0.1150(0.2587) 0.0150(0.2472) 0.0158(0.2474)
5 -1.000(4.6531) -0.0465(3.6695) -0.5211(3.9258) -0.0432(3.6674) -0.0425(3.6706)

6 1 -0.1327(0.0407) -0.0084(0.0231) -0.0513(0.0257) -0.0081(0.0231) -0.0080(0.0231)
2 -0.1778(0.0982) 0.0011(0.0666) -0.0668(0.0708) 0.0025(0.0666) 0.0029(0.0668)
3 -0.2931(0.3045) 0.0000(0.2131) -0.1190(0.2286) 0.0013(0.2132) 0.0016(0.2135)
4 -0.5510(1.0862) 0.0470(0.7758) -0.2230(0.8239) 0.0480(0.7753) 0.0481(0.7762)
5 -1.4480(3.4496) 0.8840(2.2851) -0.7750(2.7290) 0.8830(2.2794) 0.8891(2.2944)

7 1 -0.0710(0.0107) -0.0020(0.0057) -0.0251(0.0063) -0.0020(0.0057) -0.0020(0.0057)
2 -0.0881(0.0236) 0.0020(0.0161) -0.0301(0.0169) 0.0020(0.0161) 0.0021(0.0162)
3 -0.1260(0.0564) 0.0051(0.0409) -0.0442(0.0425) 0.0060(0.0408) 0.0060(0.0409)
4 -0.2372(0.1983) -0.0080(0.1431) -0.1000(0.1523) -0.0071(0.1431) -0.0071(0.1432)
5 -0.6310(1.5894) 0.0342(1.1836) -0.2960(1.2713) 0.0370(1.1841) 0.0380(1.1844)
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Table 5: Simulated average widths (AW) and coverage probabilities (CP) of 95% PIs of
T′.

Prediction Intervals
n m no. s Pivotal HCD Prior I Prior II
10 7 1 1 AW 0.199 — 0.208 0.209

CP 0.944 — 0.937 0.937
2 AW 0.401 0.401 0.420 0.422

CP 0.959 0.959 0.957 0.955
3 AW 0.988 — 1.031 1.033

CP 0.949 — 0.947 0.948
2 1 AW 0.346 — 0.360 0.363

CP 0.936 — 0.939 0.939
2 AW 0.727 0.727 0.757 0.761

CP 0.958 0.958 0.955 0.954
3 AW 1.992 — 2.070 2.081

CP 0.964 — 0.959 0.958
3 1 AW 0.313 — 0.327 0.329

CP 0.956 — 0.956 0.955
2 AW 0.649 0.649 0.673 0.677

CP 0.944 0.944 0.943 0.941
3 AW 1.783 — 1.833 1.842

CP 0.939 — 0.937 0.935
4 1 AW 0.675 — 0.705 0.713

CP 0.938 — 0.943 0.944
2 AW 1.502 1.502 1.554 1.570

CP 0.960 0.960 0.960 0.958
3 AW 4.759 — 4.897 4.935

CP 0.941 — 0.945 0.944
5 1 AW 0.562 — 0.583 0.587

CP 0.954 — 0.959 0.955
2 AW 1.271 1.271 1.322 1.332

CP 0.940 0.940 0.939 0.941
3 AW 4.037 — 4.152 4.179

CP 0.949 — 0.957 0.956
6 1 AW 0.762 — 0.777 0.779

CP 0.947 — 0.947 0.948
2 AW 1.939 1.939 1.963 1.969

CP 0.947 0.947 0.946 0.944
3 AW 8.547 — 8.639 8.659

CP 0.951 — 0.952 0.952
7 1 AW 0.420 — 0.437 0.441

CP 0.953 — 0.956 0.959
2 AW 0.926 0.926 0.964 0.972

CP 0.931 0.930 0.933 0.933
3 AW 2.890 — 2.976 2.992

CP 0.945 — 0.942 0.939

25 20 1 1 AW 0.121 — 0.122 0.123
CP 0.952 — 0.953 0.952

2 AW 0.206 0.183 0.208 0.209
CP 0.949 0.945 0.944 0.943

3 AW 0.319 0.319 0.324 0.324
CP 0.953 0.953 0.952 0.952

4 AW 0.525 0.704 0.531 0.532
CP 0.950 0.955 0.950 0.950

5 AW 1.216 — 1.226 1.227
CP 0.953 — 0.949 0.948

2 1 AW 0.212 — 0.214 0.215
CP 0.944 — 0.943 0.943

2 AW 0.371 0.327 0.377 0.378
CP 0.956 0.956 0.956 0.957

3 AW 0.587 0.587 0.596 0.597
CP 0.963 0.963 0.960 0.961

4 AW 1.006 1.383 1.021 1.022
CP 0.946 0.948 0.942 0.943

5 AW 2.535 — 2.566 2.570
CP 0.936 — 0.940 0.942
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Table 6: Continued.
Prediction Intervals

n m no. s Pivotal HCD Prior I Prior II
25 20 3 1 AW 0.191 — 0.193 0.193

CP 0.943 — 0.945 0.945
2 AW 0.334 0.294 0.338 0.339

CP 0.950 0.956 0.954 0.954
3 AW 0.528 0.528 0.537 0.538

CP 0.955 0.955 0.956 0.955
4 AW 0.904 1.243 0.918 0.919

CP 0.964 0.959 0.965 0.964
5 AW 2.284 — 2.306 2.306

CP 0.957 — 0.950 0.949
4 1 AW 0.420 — 0.426 0.427

CP 0.946 — 0.946 0.948
2 AW 0.755 0.660 0.765 0.766

CP 0.959 0.964 0.960 0.958
3 AW 1.257 1.257 1.277 1.280

CP 0.954 0.954 0.953 0.953
4 AW 2.255 3.233 2.274 2.276

CP 0.943 0.941 0.943 0.942
5 AW 6.653 — 6.730 6.737

CP 0.958 — 0.955 0.955
5 1 AW 0.352 — 0.357 0.358

CP 0.945 — 0.946 0.947
2 AW 0.636 0.555 0.645 0.646

CP 0.957 0.947 0.951 0.952
3 AW 1.046 1.046 1.061 1.062

CP 0.961 0.961 0.963 0.963
4 AW 1.911 2.741 1.939 1.940

CP 0.954 0.953 0.954 0.953
5 AW 5.594 — 5.657 5.662

CP 0.963 — 0.963 0.964
6 1 AW 0.483 — 0.484 0.484

CP 0.954 — 0.955 0.955
2 AW 0.923 0.791 0.925 0.926

CP 0.958 0.950 0.959 0.959
3 AW 1.643 1.643 1.648 1.649

CP 0.945 0.945 0.943 0.943
4 AW 3.472 5.458 3.482 3.487

CP 0.942 0.942 0.941 0.941
5 AW 8.851 — 8.885 8.889

CP 0.951 — 0.954 0.954
7 1 AW 0.261 — 0.264 0.266

CP 0.954 — 0.952 0.952
2 AW 0.464 0.406 0.469 0.470

CP 0.944 0.950 0.948 0.949
3 AW 0.759 0.759 0.769 0.770

CP 0.949 0.949 0.950 0.950
4 AW 1.368 1.951 1.383 1.384

CP 0.959 0.951 0.960 0.960
5 AW 3.910 — 3.941 3.942

CP 0.942 — 0.940 0.940

6 Concluding Remarks

In this paper, we discuss the prediction problem based on Type-II censored system
lifetime data when the system structure is known and the component lifetime follows
the proportional reversed hazard model. Different point predictors for censored system
failures, including the maximum likelihood predictor, the best unbiased predictor,
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the conditional median predictor, and the Bayesian point predictor, are developed.
We also developed the prediction intervals for the censored system failures using
pivotal quantity method, highest conditional density method and Bayesian method.
A numerical example is presented to illustrate the prediction methods by considering
the component lifetimes follow the inverse exponential distribution. Monte Carlo
simulation study is used to evaluate the performance of the point and interval prediction
methods considered in this paper. Based on the simulation results, we would recommend
using the best unbiased predictor for point prediction unless reliable prior information
on the unknown parameter is available. For interval prediction, we suggest using
the pivotal quantity method to construct prediction intervals for the censored system
failures.
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