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Abstract. We consider a stage life testing model and assume that the information
at which levels the failures occurred is not available. In order to find estimates for
the lifetime distribution parameters, we propose an EM-algorithm approach which
interprets the lack of knowledge about the stages as missing information. Furthermore,
we illustrate the implementation difficulties caused by an increasing number of stages.
The study is supplemented by a data example as well as simulations.
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1 Introduction

The notion of stage life testing (SLT) has been proposed in Laumen (2017) and Laumen
and Cramer (2019b, 2021a) as an extension of progressive Type-I censoring (for a
version with random stage changing times, see Laumen and Cramer (2021b)). The
approach provides models that allow to incorporate additional life time information
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of progressively censored objects by performing additional testing of the removed
items (for comments in this direction, cf., e.g., Balakrishnan and Aggarwala 2000, p. 3,
Balakrishnan et al. 2011, p. 336, Balakrishnan and Cramer (2014, 2021), Cramer (2017)).
In fact, it is assumed that the progressively censored objects are further tested but under
different conditions (called stages) whereas the remaining items are continued to be
monitored under the initial conditions. An illustration of this concept is depicted in
Figure 1 for k − 1 stage changing times τ1 < · · · < τk−1 and an effectively applied stage
changing plan (r?1 , . . . , r

?
k−1). The experimental design of such a life test requires that

r?j objects are randomly withdrawn from the life test at time τ j, 1 ≤ j ≤ k − 1. Notice
that the stage changing plan may be specified in different ways. The life span test is
terminated when either the last remaining object in the life test fails or the last item is
removed from the test. Notice that we do not assume that the experiment is stopped at
time τk−1 as is commonly done in progressive Type-I censoring (cf. progressive Type-I
censoring with fixed censoring times discussed in Laumen and Cramer 2019a).

τ1 τi τk−1

s0

s1

si

sk−1

R?
1 = r?1
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i = r?i

R?
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Figure 1: Illustration of k-step SLT with stage-changing times τ1 < · · · < τk−1 and an
effectively applied stage changing plan (r?1 , . . . , r

?
k−1).

As can be seen from Figure 1, the sample is split at change-time τ1 in these items
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which are tested under the initial conditions (stage s0), and those which are tested on
stage s1 with a possibly different load (which, of course, may be higher or lower). This
process is continued for the items remaining on stage s0 at the following stage changing
times τ2, . . . , τk−1. The adaption of the load is modelled by the cumulative exposure
model approach (see, e.g., Kundu and Ganguly (2017)). Furthermore, it should be
mentioned that SLT can also be interpreted as a modified simple step-stress model (see
Balakrishnan (2009), Kundu and Ganguly (2017)) where only a proportion of the items
tested under initial conditions is selected for testing under other stress conditions. In
this regard, SLT can also be interpreted as a model of accelerated life testing. For details,
we refer to Laumen and Cramer (2019b, 2021a).

This paper is organized as follows. In Section 2, we introduce briefly the SLT
model and recall some results presented in Laumen and Cramer (2019b, 2021a). In
Section 3, we address maximum likelihood estimation in the SLT model under missing
stage information and present the likelihood for k-step SLT. Afterwards, we illustrate
the EM-algorithm approach for the 2- and 3-step SLT. In particular, we start with an
exponential distribution on both stages in Section 3.2.1. In Section 3.2.2, we consider
the combination of a Weibull and an exponential distribution for the stages of the SLT
model. In Section 4.1, we provide an illustrative example. Finally, we present the
results of a simulation study in Section 4.2.

2 SLT Model

Our discussion is based on the notation of k-step SLT order statistics as introduced
in Laumen and Cramer (2021a). Assume that n identical objects with iid lifetimes
X1, . . . ,Xn are placed on a life test at the initial stage s0. At the jth prefixed stage-change
time τ j, R?j ≥ 0 of the surviving items are randomly withdrawn (if possible) from the
sample and further tested on the changed stage s j, the remaining objects are further
tested under the conditions of stage s0, 1 ≤ j ≤ k − 1. The life test is terminated when
all n objects have failed.

The (random) numbers of failures observed on the initial stage s0 in the intervals

(−∞, τ1], (τ1, τ2], . . . , (τk−2, τk−1], (τk−1,∞),

are denoted by D1,D2, . . . ,Dk−1,Dk, where τ0 = −∞, τk = ∞ (see Figure 1).

Let M = D•k =
∑k

j=1 D j be the total number of observations failed on level s0 where
D•0 = 0. Arranging the data according to the stage levels s0, s1, . . . , sk−1, the observed
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failure times on these levels are denoted by

� Yh,Dh =
(
YD•h−1+1:M:n, . . . ,YD•h:M:n

)
denote the ordered failure times observed in

the interval (τh−1, τh] on stage s0, h = 1, . . . , k. Notice that Y1,D1 , . . . ,Yk,Dk forms a
progressively Type-I censored sample with fixed censoring times as discussed in
Laumen and Cramer (2019a). This connection is reflected by the notation used;

� Z j,R?j
=

(
Z j,1:R?j

, . . . ,Z j,R?j :R?j

)
with YD• j:M:n ≤ τ j < Z j,1:R?j

denote the ordered failure
times observed on stage s j, j = 1, . . . , k − 1.

The order statistics on stage s0 and the order statistics on the stages s1, . . . , sk−1 are
represented by the vectors Y =

(
Y1,D1 , . . . ,Yk,Dk

)
and Z =

(
Z1,R?1

, . . . ,Zk−1,R?k−1

)
, respectively.

The complete sample is given by (Y,Z). Notice that the partitioning of the sample
induces the assignment of failures to stages. But, in the following, we assume that the
information about this assignment is not available. In order to describe the situation,
we introduce random indicators Σ1, . . . ,Σn which provide the information about the
stage, that is,

Σi =


0, object i has failed on stage s0

1, object i has failed on stage s1
...

k − 1, object i has failed on stage sk−1

, i = 1, . . . ,n;

indicates whether an object has failed on stage s0, . . . , sk−1. Thus, each observation Xi is
accompanied by an indicator Σi so that we observe a pair (Xi,Σi) where Σi provides the
information about the stage. By considering the order statistics X∗ = (X1:n, . . . ,Xn:n) of
the sample X, the stage indicators can be interpreted as a concomitant (see David and
Nagaraja (1998), Bairamov and Eryılmaz (2006), Izadi and Khaledi (2007), Balakrishnan
and Cramer (2014)), that is, we get the (bivariate) ’ordered’ sample

(X1:n,Σ[1:n]), . . . , (Xn:n,Σ[n:n]).

Due to the construction of the sample, we know that Xh:n = Yh:M:n and Σ[h:n] = 0,
h = 1, . . . ,D1. For brevity, we subsequently write X∗i = Xi:n,Σ∗i = Σ[i:n], 1 ≤ i ≤ n. In the

present discussion, we use the following notation and assumptions:

� Throughout the manuscript, we use the notation w j = (w1, . . . ,w j) for the vector
of j components w1, . . . ,w j as well as w• j =

∑ j
i=1 wi for their partial sum.
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� The random censoring number R?j is generated by a (deterministic) function % j of
the failures observed before τ j, that is, R?j = % j(D j), 1 ≤ j ≤ k−1. In the following,
these functions may be chosen according to the needs of the experimenter. In
Laumen and Cramer (2019b, 2021a) two options to generate the withdrawal
number R?j , j = 1, . . . , k − 1, have been proposed:

% j(d j) =


⌊
π j ·

(
n − d• j −

∑ j−1
i=1 %i(di)

)⌋
, Type-P,

min
{
R0

j ,max{n − d• j −
∑ j−1

i=1 %i(di), 0}
}
, Type-M,

(2.1)

where d j = (d1, . . . , d j), 1 ≤ j ≤ k, and btc is defined as the largest integer not
exceeding t ∈ R. The proportions π j ∈ (0, 1) as well as the numbers R0

j ∈ N,
1 ≤ j ≤ k − 1, are specified in advance, respectively. These choices can be
interpreted as follows:

◦ Type-P: At τ j, a (prefixed) proportion π j of the surviving objects is selected
for testing on stage s j, j = 1, . . . , k − 1.

◦ Type-M: The second way to generate R?j , j = 1, . . . , k − 1, is similar to the
censoring procedure of progressive censoring with fixed failure times (see
Laumen and Cramer (2019a)). Given a prefixed number R0

j , it is intended

to select at τ j as many items as possible (at most R0
j ) for testing on stage s j,

j = 1, . . . , k − 1.

By construction, Dk is a (deterministic) function of D1, . . . ,Dk−1

(
and (R?1 , . . . ,R

?
k−1)

)
,

that is,

Dk = n −D•k−1 − R?
•k−1 = n −D•k−1 −

k−1∑
i=1

%i(Di).

� The support of (D1, . . . ,Dk) is represented by the set

D(k) =
{
ak ∈N

k
0

∣∣∣ ai ≤ max{n − a•i−1 − r?
•i−1(ai−1), 0}, i = 1, . . . , k − 1,

ak = max{n − a•k−1 − r?
•k−1(ak−1), 0}

}
;

� P∗ = (π1, . . . , πk−1) denotes the proportional stage-changing plan (see Type-P);

� R0
∗ = (R0

1, . . . ,R
0
k−1) denotes the initially planned stage-changing plan (see Type-

M);
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� F j denotes the absolutely continuous cumulative distribution function with density
function f j on stage s j, j ∈ {0, . . . , k − 1};

� The cumulative exposure model is supposed to hold, that is, the distribution
function F j on stage j is connected to the baseline distribution function F0 as
follows: For 1 ≤ j ≤ k − 1, we have values v1, . . . , vk−1 such that v j is the solution
of the equation

F0(τ j) = F j(v j).

Hence, given the stage-changing time τ j, the cumulative distribution function
and the corresponding probability density functions of a test unit on stage s j are
given by

F0, j(t) =

F0(t), t ≤ τ j

F j(t + v j − τ j), τ j < t
, f0, j(t) =

 f0(t), t ≤ τ j

f j(t + v j − τ j), τ j < t
. (2.2)

Details on the cumulative exposure model can be found in Kundu and Ganguly
(2017, Chapter 2).

Laumen and Cramer (2021a) have obtained the joint density function of k-step SLT
order statistics as given in Theorem 2.1.

Theorem 2.1. Let Y1,D1 , . . . ,Yk,Dk and Z1,R?1
, . . . ,Zk−1,R?k−1

be k-step SLTOSs and let Fi be an
absolutely continuous cumulative distribution function with density function fi, i ∈ {0, . . . , k−
1}. Further, let −∞ = τ0 < τ1 < · · · < τk−1 < τk = ∞.

Then, the joint density function f Y,Z,Dk
1...n of Y =

(
Y1,D1 , . . . ,Yk,Dk

)
, Z =

(
Z1,R?1

, . . . ,Zk−1,R?k−1

)
and Dk = (D1, . . . ,Dk) (w.r.t. the product of the n dimensional Lebesgue measure and the k
dimensional counting measure) is given by

f Y,Z,Dk(y, z,dk) =

k∏
j=1

(n − d• j−1 − r?
• j−1

d j

)
d j!

{ d• j∏
i=d• j−1+1

f0(yi:m:n)11(τ j−1,τ j](yi:m:n)
}

×

{ k−1∏
a=1

r?a !
r?a∏

b=1

fa(za,b:r?a + va − τa)11(τa,∞)(za,b:r?a )
}
, (2.3)

for dk ∈ D(k),

y =
(
y1,d1 , . . . , yk,dk

)
with y j,d j =

(
yd• j−1+1:m:n, . . . , yd• j:m:n

)
, 1 ≤ j ≤ k,

z =
(
z1,r?1

, . . . , zk−1,r?k−1

)
with za,r?a =

(
za,1:r?a , . . . , za,r?a :r?a

)
, 1 ≤ a ≤ k − 1.
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Notice that (Y,Z,Dk) are determined by (X,Σ) and vice versa. Therefore, using the
above notation, the density function in (2.3) can equivalently be written as

f X,Σ(x,σ) = c
∏

i:σi=0

f0(xi)
k−1∏
j=1

∏
i:σi= j

f j(xi + v j − τ j), (2.4)

with d j =
∑

i:σi=0 11(τ j−1,τ j](xi), j = 1, . . . , k, and normalizing constant c = c(dk). The
corresponding density function of the ordered data is given by

f X∗,Σ∗(x∗,σ∗) = c∗
∏

i:σ∗i =0

f0(x∗i )
k−1∏
j=1

∏
i:σ∗i = j

f j(x∗i + v j − τ j), (2.5)

with d j =
∑

i:σ∗i =0 11(τ j−1,τ j](x
∗

i ), j = 1, . . . , k, and normalizing constant c∗ = c∗(dk).

3 Maximum Likelihood Estimation in SLT under Missing Stage
Information

3.1 k-step SLT

Given a statistical model with parameter vector θ = (ϑ j) j=0,...,k−1 ∈ Θ =×
k−1
j=0 Θ j, the

likelihood function is obtained from (2.5) as

L(ϑ0, . . . ,ϑk−1 | x∗,σ∗) = f X∗,Σ∗
ϑ0,...,ϑk−1

(x∗,σ∗) ∝
∏

i:σ∗i =0

f0,ϑ0(x∗i )
k−1∏
j=1

∏
i:σ∗i = j

f j,ϑ j(x
∗

i + v j − τ j), (3.1)

with density functions f j,ϑ j , j = 0, . . . , k − 1. Assuming σ∗ as known, that is, we know
which failure occurred on which stage, likelihood inference has been discussed for
exponential and Weibull distributions in Laumen and Cramer (2019b, 2021a). However,
if the stage information Σ∗ = σ is not available, the respective likelihood is obtained
from (3.1) by summing over all possible values of σ so that the corresponding likelihood
is obtained as marginal density function of X∗. It reads

LMI(ϑ0, . . . ,ϑk−1 | x∗) =
∑
σ

f X∗,Σ∗
ϑ0,...,ϑk−1

(x∗,σ) ∝
∑
σ

∏
i:σi=0

f0,ϑ0(x∗i )
k−1∏
j=1

∏
i:σi= j

f j,ϑ j(x
∗

i + v j − τ j).

(3.2)
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Notice that the normalizing constant does not depend on the failure assignment σ. Due
to the sum representation, direct optimization of the likelihood (3.2) may be quite hard.

However, treating the values of Σ∗ = σ as missing information, allows to address the
maximization problem by an EM-algorithm type approach. In case of an exponential
distribution Exp(ϑ) with mean ϑ > 0, that is, the probability density function and the
cumulative distribution function are given by

f (x) =
1
ϑ

e−x/ϑ11(0,∞)(x), F(x) =
(
1 − e−x/ϑ

)
11(0,∞)(x), ϑ > 0, x ∈ R.

this approach is particularly useful since the resulting MLEs (under complete information)
are available in a closed form representation. Suppose the lifetime distributions on stage
s j are exponential with mean ϑ j, j = 0, . . . , k−1. Then, one gets v j = τ1

ϑ j

ϑ0
. Furthermore,

from (3.1), the likelihood function is given by

L(ϑ0, . . . , ϑk−1 | x∗,σ)

= c∗ϑ−m
0

k−1∏
a=1

ϑ
−r?j
a exp

{
−

k−1∑
a=1

r?a τa

( 1
ϑ0
−

1
ϑa

)
−

1
ϑ0

n∑
j=1

x∗j11{0}(σ j) −
k−1∑
a=1

1
ϑa

n∑
j=1

x∗j11{a}(σ j)
}
.

(3.3)

Using results of Laumen and Cramer (2021a), the corresponding MLEs are given by

ϑ̂0 =
1
M

( n∑
i=1

X∗i 11{0}(Σi) +

k−1∑
j=1

R?j τ j

)
, (3.4)

and, provided R?h > 0,

ϑ̂h =
1

R?h

n∑
i=1

(X∗i − τh)11{h}(Σi), h ∈ {1, . . . , k − 1}. (3.5)

3.2 EM-Algorithm for Two-Step SLT

3.2.1 Exponential-Exponential Case

Let the sample (X∗1,Σ
∗

1), . . . , (X∗n,Σ∗n) be incomplete in the sense that the information on
which stage the observed failures occurred is missing, that is, the values of the stage
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indicators Σ∗’s are not available. The design of the life test is still known, i.e., we know
n, τ1, π1, and R0

1, respectively. Furthermore, the ordered failure times x∗1 ≤ . . . ≤ x∗n
are observed. This situation is depicted in Figure 2. The question marks indicate
that the assignment of the failure to the stage is not known. Notice that the failure
times x∗d1+1, . . . , x

∗
n could have been observed on stages s0 or s1. In order to estimate the

unknown parameters ϑ0 and ϑ1, we utilize an EM-algorithm (see, e.g., Dempster et al.
1977).

x∗1 x∗d1
τ1 x∗d1+1 x∗d1+2 x∗d1+3 x∗n

s0

s1
r1

d2 = n − d1 − r1d1

? ? ? ?

time

st
ag

e

Figure 2: 2-step SLTOSs with missing information. The observations x∗d1+1, . . . , x
∗
n could

have been observed on stages s0 or s1.

Using the observations x∗1, . . . , x
∗
n and the design of the life test, the quantities d1, d2,

and r?1 are obtained as

d1 =

n∑
i=1

11(−∞,τ1](x∗i ), r?1 = %(d1) =

bπ1 · (n − d1)c, Type-P
min

{
n − d1,R0

1

}
, Type-M

, d2 = n − d1 − r?1 .

Remark 1. (i) When d1 = n, we know that all observed failures occurred on stage s0.
Hence, ϑ̂0 can be determined from equation (3.4) and the MLE ϑ̂1 does not exist.
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(ii) When d1 ≥ 0, d2 > 0, and r?1 = 0, we know that all observed failures after τ1

occurred on stage s0. Thus, the MLE ϑ̂1 does not exist and ϑ̂0 can be determined
from equation (3.4).

(iii) When d1 > 0, d2 = 0, and r?1 > 0, we know that all observed failures after τ1

occurred on stage s1. Therefore, ϑ̂0 and ϑ̂1 can be obtained from (3.4) and (3.5),
respectively.

In order to define the EM-algorithm in the present situation, we consider first the
scenario of available stage information (X∗,Σ∗). Let θ = (ϑ0, ϑ1) and θ(t) =

(
ϑ(t)

0 , ϑ
(t)
1

)
,

t ∈ N0. Using equation (3.3), the likelihood function for the complete data (X∗,Σ∗) =
(x∗,σ∗) can be written in the form

L(θ | x∗,σ∗) = c∗
d1∏

i=1

f0(x∗i )
n∏

j=d1+1

[
11{0}(σ∗j) f0(x∗j) + 11{1}(σ∗j) f1(x∗j + v1 − τ1)

]
=

c∗

ϑd1
0

exp
{
−

1
ϑ0

d1∑
i=1

x∗i

}
exp

{ n∑
j=d1+1

11{0}(σ∗j)
[
−

x∗j
ϑ0
− log(ϑ0)

]}

× exp
{ n∑

j=d1+1

11{1}(σ∗j)
[
−

1
ϑ1

(
x∗j + τ1

ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]}
,

where
∑n

j=d1+1 σ
∗

j = r?1 . Notice that this simplification is possible since σ∗j ∈ {0, 1} for
k = 2. This yields the log-likelihood function for the complete data (X∗,Σ∗) = (x∗,σ∗)
given by

`(θ | x∗,σ∗) = log(c∗) − d1 log(ϑ0) −
1
ϑ0

d1∑
i=1

x∗i +

n∑
j=d1+1

11{0}(σ∗j)
[
−

x∗j
ϑ0
− log(ϑ0)

]
+

n∑
j=d1+1

11{1}(σ∗j)
[
−

1
ϑ1

(
x∗j + τ1

ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]
. (3.6)

In order to perform the E-step of the EM-algorithm, we have to calculate the expectation
of `(θ | X∗,Σ∗) w.r.t. PΣ∗|X∗=x∗

θ(t) for the current estimate θ(t). Thus, we get with (3.6)

Q
(
θ ;θ(t)

)
= Eθ(t)

[
`
(
θ | X∗,Σ∗

) ∣∣∣ X∗ = x∗
]
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= log(c∗) − d1 log(ϑ0) −
1
ϑ0

d1∑
i=1

x∗i +

n∑
j=d1+1

P(t)
0, j

[
−

x∗j
ϑ0
− log(ϑ0)

]
+

n∑
j=d1+1

P(t)
1, j

[
−

1
ϑ1

(
x∗j + τ1

ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]
,

where

P(t)
s, j = Eθ(t)

[
11{s}(Σ∗j)

∣∣∣ X∗ = x∗
]

= Pθ(t)

(
Σ∗j = s

∣∣∣ X∗ = x∗
)

=
f
Σ∗j,X

∗

θ(t) (s, x∗)

f X∗
θ(t)(x∗)

, s ∈ {0, 1},

j ∈ {d1 + 1, . . . ,n}, does not depend on θ. To proceed further, we introduce the sets

Sn =

{
σ∗ ∈ {0, 1}n

∣∣∣∣∣ σ∗1 = 0, . . . , σ∗d1
= 0,

n∑
j=d1+1

σ∗j = r?1

}
,

S
j,0
n = Sn ∩

{
σ∗j = 0

}
and S

j,1
n = Sn ∩

{
σ∗j = 1

}
, j ∈ {d1 + 1, . . . ,n}.

Hence, we have

f
Σ∗j,X

∗

θ(t) (0, x∗) =
1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

} d1∏
h=1

1

ϑ(t)
0

exp
{
−

x∗h
ϑ(t)

0

}
×

∑
σ∗n∈S

j,0
n

( n∏
i=d1+1

i, j

f 0,1
θ(t)(x

∗

i , σ
∗

i )
)
, (3.7a)

f
Σ∗j,X

∗

θ(t) (1, x∗) =
1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗j + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)} d1∏
h=1

1

ϑ(t)
0

exp
{
−

x∗h
ϑ(t)

0

}
×

∑
σ∗n∈S

j,1
n

( n∏
i=d1+1

i, j

f 0,1
θ(t)(x

∗

i , σ
∗

i )
)
, (3.7b)

j ∈ {d1 + 1, . . . ,n}, and

f X∗
θ(t)(x

∗) =

d1∏
h=1

1

ϑ(t)
0

exp
{
−

x∗h
ϑ(t)

0

} ∑
σ∗n∈Sn

( n∏
i=d1+1

f 0,1
θ(t)(x

∗

i , σ
∗

i )
)
, (3.8)
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with

f 0,1
θ(t)(x

∗

i , σ
∗

i ) = 11{0}(σ∗i )
1

ϑ(t)
0

exp
{
−

x∗i
ϑ(t)

0

}
+ 11{1}(σ∗i )

1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗i + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)}
.

For the M-step, we have to maximize Q
(
θ ;θ(t)

)
w.r.t. θ. First, we have

Q
(
θ ;θ(t)

)
= Q̃0(ϑ0) + Q̃1(ϑ1),

where

Q̃0(ϑ0) = log(c∗) −
(
d1 + d(t)

2

)
log(ϑ0) −

1
ϑ0

d1∑
i=1

x∗i −
1
ϑ0

n∑
j=d1+1

P(t)
0, j x∗j −

r? (t)
1 τ1

ϑ0
,

Q̃1(ϑ1) = − r? (t)
1 log(ϑ1) −

1
ϑ1

n∑
j=d1+1

P(t)
1, j x∗j +

r? (t)
1 τ1

ϑ1
,

with

d(t)
2 =

n∑
j=d1+1

P(t)
0, j = Eθ(t)

[ n∑
j=d1+1

11{0}
(
Σ∗j

) ∣∣∣ X∗ = x∗
]

= n − d1 − r?1 and r? (t)
1 =

n∑
j=d1+1

P(t)
1, j = r?1 .

Thus, the updated estimates ϑ(t+1)
0 and ϑ(t+1)

1 in the (t + 1)th iteration step are given by

ϑ(t+1)
0 =

1
n − r?1

( d1∑
i=1

x∗i +

n∑
j=d1+1

P(t)
0, j x∗j + r?1 τ1

)
and ϑ(t+1)

1 =
1
r?1

( n∑
j=d1+1

P(t)
1, j x∗j − r?1 τ1

)
,

respectively. Possible initial values for the EM-algorithm are given by

ϑ(0)
0 =

1
d1

( d1∑
i=1

x∗i + (n − d1)τ1

)
and ϑ(0)

1 =
1

n − d1

( n∑
j=d1+1

x∗j − (n − d1)τ1

)
,

when d1 > 0, and by

ϑ(0)
0 = ϑ(0)

1 =
1
n

( n∑
j=1

x∗j − nτ1

)
,
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when d1 = 0.

Alternatively, the MLEs under missing stage information (IMLE) can be computed
by direct maximization of f X∗n

θ(t) w.r.t. θ(t) (see equations (3.2) and (3.8)). Notice that this
function is the marginal density function of X∗. In Section 4.2, we compare the results
of both approaches showing that they lead almost to the same estimates.

3.2.2 Exponential-Weibull Case

We assume the same situation of missing information as in Section 3.2.1 but with
Weibull lifetimes on stage s0. The probability density function and the cumulative
distribution function of the Weibull distribution Wei(ϑ, β) are given by

f (x) =
β

ϑ
xβ−1e−xβ/ϑ11(0,∞)(x), F(x) =

(
1 − e−xβ/ϑ

)
11(0,∞)(x), ϑ > 0, β > 0, x ∈ R.

We assume that the lifetimes on stage s0 are Wei(ϑ0, β)-distributes whereas they are
Exp(ϑ1)-distributed on stage s1. Therefore, v1 = τ

β
1
ϑ1
ϑ0

and, with θ = (ϑ0, β, ϑ1) and θ(t) =(
ϑ(t)

0 , β
(t), ϑ(t)

1

)
, t ∈N0, the log-likelihood function for the complete data (X∗,Σ∗) = (x∗,σ∗)

is given by

`(θ | x∗,σ∗) = log(c∗) + d1 log(β) − d1 log(ϑ0) −
1
ϑ0

d1∑
i=1

(x∗i )
β + (β − 1)

d1∑
i=1

log(x∗i )

+

n∑
j=d1+1

11{0}(σ∗j)
[
−

(x∗j)
β

ϑ0
+ log(β) − log(ϑ0) + (β − 1) log(x∗j)

]
+

n∑
j=d1+1

11{1}(σ∗j)
[
−

1
ϑ1

(
x∗j + τ

β
1
ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]
.

Hence, we get

Q
(
θ ;θ(t)

)
= log(c∗) + d1 log(β) − d1 log(ϑ0) −

1
ϑ0

d1∑
i=1

(x∗i )
β + (β − 1)

d1∑
i=1

log(x∗i )

+

n∑
j=d1+1

P(t)
β,0, j

[
−

(x∗j)
β

ϑ0
+ log(β) − log(ϑ0) + (β − 1) log(x∗j)

]
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+

n∑
j=d1+1

P(t)
β,1, j

[
−

1
ϑ1

(
x∗j + τ

β
1
ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]
,

where the weights

P(t)
β,s, j =

f
Σ∗j,X

∗

θ(t) (s, x∗)

f X∗
θ(t)(x∗)

, s ∈ {0, 1}, j ∈ {d1 + 1, . . . ,n},

do not depend on θ. Further, with obvious changes, the functions f
Σ∗j,X

∗

θ(t) and f X∗
θ(t) are as

defined in (3.7) and (3.8), respectively. Moreover, we have to maximize Q
(
θ ;θ(t)

)
w.r.t.

θ. First, we have

Q
(
θ ;θ(t)

)
= Q̃0(ϑ0, β) + Q̃1(ϑ1),

where

Q̃0(ϑ0, β) = log(c1) + (n − r?1 ) log(β)

+ (β − 1)
d1∑

i=1

log(x∗i ) + (β − 1)
n∑

j=d1+1

P(t)
β,0, j log(x∗j)

− (n − r?1 ) log(ϑ0) −
1
ϑ0

d1∑
i=1

(x∗i )
β
−

1
ϑ0

n∑
j=d1+1

P(t)
β,0, j (x∗j)

β
−

r?1 τ
β
1

ϑ0
,

Q̃1(ϑ1) = − r?1 log(ϑ1) −
1
ϑ1

n∑
j=d1+1

P(t)
β,1, j x∗j +

r?1 τ1

ϑ1
.

The updated estimates of ϑ0 and ϑ1 in the (t + 1)th iteration step are given by

ϑ(t+1)
0

(
β(t+1)

)
=

1
n − r?1

( d1∑
i=1

(x∗i )
β(t+1)

+

n∑
j=d1+1

P(t)
β,0, j (x∗j)

β(t+1)
+ r?1 τ

β(t+1)

1︸                                                 ︷︷                                                 ︸
=A

β(t+1) , say,

)
, (3.9)

and

ϑ(t+1)
1 =

1
r?1

( n∑
j=d1+1

P(t)
β,1, j x∗j − r?1 τ1

)
,
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respectively. The partial derivative of Q
(
θ ;θ(t)

)
w.r.t. β is given by

∂Q
(
θ ;θ(t)

)
∂β

=
d1

β
−

1
ϑ0

d1∑
i=1

(x∗i )
β log(x∗i )︸            ︷︷            ︸

=Bβ, say,

+

d1∑
i=1

log(x∗i ) −
1
ϑ0

r?1 τ
β
1 log(τ1)

−
1
ϑ0

n∑
j=d1+1

P(t)
β,0, j

[
(x∗j)

β log(x∗j)
]

︸                         ︷︷                         ︸
=Cβ, say,

+

n∑
j=d1+1

P(t)
β,0, j

[1
β

+ log(x∗j)
]

= 0.

Equation (3.9) plugged into the above equation yields

1
β(t+1)

−

Bβ(t+1) + Cβ(t+1) + r?1 τ
β(t+1)

1 log(τ1)

Aβ(t+1)
+

1
n − r?1

( d1∑
i=1

log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j log(x∗j)

)
= 0.

(3.10)

Therefore, we get the update variable β(t+1) of β for the (t+1)th iteration step by solving
equation (3.10) numerically for β(t+1). As shown in Section A.1, equation (3.10) has a
unique solution for β(t+1) > 0. Possible initial values for the EM-algorithm are given by

ϑ(0)
0

(
β(0)

)
=

1
d1

( d1∑
i=1

(x∗i )
β(0)

+ (n − d1)τβ
(0)

1

)
and ϑ(0)

1 =
1

n − d1

( n∑
j=d1+1

x∗j − (n − d1)τ1

)
,

when d1 > 0, where β(0) is the (unique) numerical solution of

1
β(0)
−

(n − d1)τβ
(0)

1 log(τ1) +
∑d1

i=1(x∗i )
β(0)

log(x∗i )

(n − d1)τβ
(0)

1 +
∑d1

i=1(x∗i )
β(0)

+
1
d1

d1∑
i=1

log(x∗i ) = 0.

For d1 = 0, one may choose the initial values

β(0) = 1 and ϑ(0)
0 = ϑ(0)

1 =
1
n

( n∑
j=1

x∗j − nτ1

)
.
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3.3 EM-Algorithm for Three-Step SLT

For k > 2, the situation is more involved. In order to illustrate the additional difficulties
caused by more stages, we discuss the case of two fixed stage-change times, i.e., the
case k = 3. An extension to more stages may be developed in the same manner. In
particular, the EM-algorithm proposed in Section 3.2.1 is extended to a second stage-
change time. As above, we assume that the design of the life test is still known, that is,
n, τ1, τ2, P∗ = (π1, π2), and R0

∗ = (R0
1,R

0
2) are given. The sample is given by the ordered

failure times x∗1 ≤ · · · ≤ x∗n only. Since the estimators for ϑ1 and ϑ2 do not exist if no
failures have been observed, our calculations are conditional on R?1 > 0 and R?2 > 0.
For R?1 = 0 and/or R?2 = 0, the following EM-algorithm can be used with the necessary
adjustments.

Using the sample x∗1, . . . , x
∗
n and the design of the life test, we have

d1 =

n∑
i=1

11(−∞,τ1](x∗i ) and r?1 = %1(d1) =

bπ1 · (n − d1)c, Type-P,

min
{
n − d1,R0

1

}
, Type-M.

Further, we introduce the following counters:

� Number of observations in the interval (τ1, τ2]: b1 =
∑n

i=1 11(τ1,τ2](x∗i );

� Number of observations in the interval (τ2,∞): b2 =
∑n

i=1 11(τ2,∞)(x∗i );

� Number of observations on stage s1 in the interval (τ2,∞): r1 = r?1 + d2 − b1.

Note that we can generally not determine d2 from the available information. Therefore,
we have to consider all possible values d2 ∈ {max{b1 − r?1 , 0}, . . . , b1} in our calculations
so that

r?2 = %2(d2) =

 bπ2 · (n − d1 − d2 − r?1 )c, Type-P

min
{
n − d1 − d2 − r?1 ,R

0
2

}
, Type-M

 > 0.

The situation is illustrated in Figure 2. Note that the failure times x∗d1+1, . . . , x
∗

d1+b1
could

have been observed on stages s0 or s1, whereas the failure times x∗d1+b1+1, . . . , x
∗
n could

have been observed on stages s0, s1, or s2. Thus, in the intervals (τ1, τ2] and (τ2,∞),
we have two and three options for each observation to allocate the observed data,
respectively.
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τ1 x∗d1+1 x∗d1+b1
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Figure 3: 3-step SLTOSs with missing information. The observations x∗d1+1, . . . , x
∗

d1+b1
could have been observed on stages s0 or s1. The observations x∗d1+b1+1, . . . , x

∗
n could

have been observed on stages s0, s1, or s2.

Additional and supplementary computations as well as the corresponding notation
are presented in the appendix. Applying an EM-procedure, these computations yield
the updated estimates in the (t + 1)th iteration step given by

ϑ(t+1)
0 =

1

d1 + d(t)
2 + d(t)

3

×

( d1∑
a=1

x∗a +

d1+b1∑
h=d1+1

P(t)
2,0,h x∗h +

n∑
i=d1+b1+1

P(t)
3,0,i x∗i +

(
r? (t)

1 + r(t)
1

)
τ1 + r? (t)

2 τ2

)
,

(3.11a)

ϑ(t+1)
1 =

1

r? (t)
1 + r(t)

1

( d1+b1∑
h=d1+1

P(t)
2,1,h x∗h +

n∑
i=d1+b1+1

P(t)
3,1,i x∗i −

(
r? (t)

1 + r(t)
1

)
τ1

)
, (3.11b)

ϑ(t+1)
2 =

1

r? (t)
2

( n∑
i=d1+b1+1

P(t)
3,2,i x∗i − r? (t)

2 τ2

)
. (3.11c)
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Possible initial values for the EM-algorithm are given by

ϑ(0)
0 =

1
d1

( d1∑
a=1

x∗a +

2∑
j=1

b j τ j

)
, ϑ(0)

1 =
1
b1

d1+b1∑
h=d1+1

x∗h, ϑ(0)
2 =

1
b2

n∑
i=d1+b1+1

x∗i ,

when d1 > 0, b1 > 0 and b2 > 0.

Note that during the calculations of the conditional probabilities (cf. (A.2), (A.3))
for all possible values d2 ∈

{
max{b1 − r?1 , 0}, . . . , b1

}
in each iteration, the following

combinatorial counts result:

� Number of possibilities to allocate the data in the interval (τ1, τ2]:
( b1
b1−d2

)
;

� Number of possibilities to allocate the data in the interval (τ2,∞):
(b2
r?2

)
·
(b2−r?2

r1

)
.

As above, the MLEs under missing stage information (IMLE) may be computed by
direct maximization of the likelihood f X∗

θ(t) w.r.t. θ(t) (see equation (A.4)).

4 Illustrative Example and Simulations

4.1 Illustrative Example

In order to illustrate the approach, we consider the data given in Laumen and Cramer
(2019b), Section 5, where a cumulative exposure model with exponential distributions
is discussed. The respective parameters are given by n = 16, ϑ0 = 40, ϑ1 = 20, and
τ1 = 15. The resulting SLT order statistics for the two scenarios Type-P and Type-M are
given in Tables 1 and 2, respectively. Notice that the stage information is available.

Table 1: Stage life testing sample with p1 = 0.5 and τ1 = 15 (Type-P).

s0, ≤ τ1 2.55 7.77 9.01 9.23 12.34
s0, > τ1 18.61 19.39 27.54 39.67 43.25 91.46

s1, > τ1 24.51 30.73 36.88 55.26 65.39
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Table 2: Stage life testing sample with R0
1 = 8 and τ1 = 15 (Type-M).

s0, ≤ τ1 2.55 7.77 9.01 9.23 12.34
s0, > τ1 39.67 43.25 95.53

s1, > τ1 16.81 17.19 21.27 24.51 30.73 36.88 53.23 65.39

In particular, we get for both options Type-P and Type-M the number of observations
on each stage:

Type-P: d1 = 5, d2 = 6, and r?1 = 5,
Type-M: d1 = 5, d2 = 3, and r?1 = 8.

Based on the values in Tables 1 and 2, the MLEs (with stage information) are given
by ϑ̂0 = 32.35, ϑ̂1 = 27.55 (Type-P) and ϑ̂0 = 42.42, ϑ̂1 = 18.25 (Type-M), respectively.
Using the initial values suggested in Section 3.2.1, we find the following values for
the MLEs under missing stage information applying both the proposed EM-algorithm
(EME) as well as the direct optimization (IMLE):

Type-P: initial values: ϑ(0)
0 = 41.18 and ϑ(0)

1 = 26.16

ϑ̂0,EME = 34.93, ϑ̂0,IMLE = 34.92 and ϑ̂1,EME = 21.88, ϑ̂1,IMLE = 21.92,

Type-M: initial values: ϑ(0)
0 = 41.18 and ϑ(0)

1 = 25.41

ϑ̂0,EME = 38.40, ϑ̂0,IMLE = 38.48 and ϑ̂1,EME = 22.27, ϑ̂1,IMLE = 22.25.

It turns out that the estimates obtained by the EM-algorithm as well as by the direct
optimization are quite close.

4.2 Simulation Study: Missing Stage Information

4.2.1 Exponential Distributions

In order to illustrate the EM-algorithm, we present the results of a simulation study in
Table 3 for a 2-step SLT. The results are based on N = 1000 samples from the exponential
distribution with ϑ0 = 1.0 on stage s0 and ϑ1 = 2.0 on stage s1 as well as sample size
n = 12. We computed the EMEs and the IMLEs as mentioned above. We used
the package “maxLik” from the statistical software R to maximize the log-likelihood
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function numerically. The implemented procedure for the Newton-Raphson method
is called “maxNR”. This procedure is always used with the default options (i.e., grad
= NULL, hess = NULL, tol = 10−8, steptol = 10−10, iterlim = 150). In addition to the

average estimates, we computed the standard deviation SD
ϑ̂

=

√
1

N−1
∑N

i=1

(
ϑ̂(i) − ϑ̂

)2
.

Further, the counter N∗1 ≤ N denotes the number of samples where at least one failure
has been observed on stage s1, that is, r?1 > 0.

Table 3: EMEs and IMLEs (“maxNR”) for ϑ0 = 1.0 and ϑ1 = 2.0 with τ1 = 0.5, n = 12,
N = 103, and ε = 10−10 (SLT for exponential distributions).

EME IMLE

Model π1 R0
1 ϑ̂0 ϑ̂1 ϑ̂0 ϑ̂1 d1 d2 r?1 N∗1(

SDϑ̂0

) (
SDϑ̂1

) (
SDϑ̂0

) (
SDϑ̂1

)
0.25 1.08088914 1.66217278 1.08122775 1.65280462 4.73 5.83 1.44 984

(0.385702) (1.750974) (0.386620) (1.728466)

Type-P 0.50 – 1.14755232 1.81071981 1.14755349 1.80981357 4.73 3.90 3.37 1000
(0.519729) (1.210331) (0.519732) (1.208123)

0.75 1.20856106 1.89482235 1.20856105 1.89453765 4.73 2.20 5.07 1000
(0.683318) (0.962973) (0.683318) (0.961835)

3 1.09765251 1.63414105 1.09783365 1.63327092 4.73 4.27 3.00 1000
(0.443357) (1.166364) (0.444094) (1.167054)

Type-M – 6 1.16272888 1.83580770 1.16272892 1.83580772 4.73 1.50 5.77 1000
(0.584143) (0.878168) (0.584143) (0.877168)

9 1.21788872 1.96632143 1.21788877 1.96632142 4.73 0.11 7.16 1000
(0.750887) (0.758704) (0.750887) (0.758704)

For a 3-step SLT, we conducted a simulation study based on N = 1000 samples and
sample size n = 16. The results are presented in Table 4. The value N∗2 = 583 indicates
that, for the first case with option Type-P, the estimate of ϑ2 does not exist in 417 cases
of the 1000 samples. We make the following observations:

� The EMEs are close to the IMLEs;

� The higher the number of observations on a stage, the closer the corresponding
estimate is to the true value.

� For the 3-step SLT, the estimates for ϑ0 and ϑ2 are overestimating the true values,
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whereas the estimates for ϑ1 are underestimating them. This reflects the influence
of the data being allocated to the “wrong” stage.

Further, note that the computation of the IMLEs with “maxNR” (package “maxLik”
from the statistical software R (cf. Henningsen and Toomet, 2011)) is faster than the
computation of the EMEs, since the Newton-Raphson method needs less iterations than
the EM-algorithm. However, further investigations of the simulated results indicate
that, for a few samples, the “maxNR” procedure generates values that are significantly
different from those computed with the EM-algorithm. This observation might be an
explanation for the discrepancy of the computed means in Table 4.

Table 4: EMEs and IMLEs (“maxNR”) for ϑ0 = 1.0, ϑ1 = 3.0 and ϑ2 = 2.0 with τ1 = 0.5,
τ2 = 1.0, n = 16, N = 103 and ε = 10−8 (3-step SLT for exponential distributions).

EME IMLE

Model P∗/R0
∗

ϑ̂0 ϑ̂1 ϑ̂2 ϑ̂0 ϑ̂1 ϑ̂2 d1 r?1 b1 b2 N∗1 N∗2
(SDϑ̂0

) (SDϑ̂1
) (SDϑ̂2

) (SDϑ̂0
) (SDϑ̂1

) (SDϑ̂2
)

(0.2, 0.2) 1.225756 1.145561 2.460058 1.226914 1.089701 2.504700 6.28 1.57 3.48 6.25 993 583
(0.4203) (1.5705) (3.1364) (0.4152) (1.3850) (3.2546)

Type-P (0.4, 0.4) 1.468713 1.375882 2.977349 1.475549 1.361291 2.937543 6.28 3.50 3.04 6.69 1000 809
(0.7119) (1.3933) (2.5674) (0.7094) (1.3905) (2.5725)

(0.6, 0.6) 1.436692 2.114799 3.394885 1.445394 2.087464 3.389059 6.28 5.45 2.55 7.18 1000 822
(0.8099) (1.3725) (2.8515) (0.8096) (1.3574) (2.8564)

(2, 2) 1.217683 1.065040 2.649664 1.221743 1.052376 2.654893 6.28 2.00 3.42 6.31 1000 996
(0.4179) (1.3832) (2.1505) (0.4231) (1.3510) (2.1651)

Type-M (4, 4) 1.394729 1.479444 2.870876 1.398108 1.480421 2.862943 6.28 4.00 2.94 6.79 1000 973
(0.6738) (1.3648) (1.8156) (0.6814) (1.3652) (1.8165)

(6, 6) 1.291120 2.355805 2.954240 1.291120 2.355804 2.954241 6.28 5.97 2.43 7.29 1000 880
(0.8376) (1.3080) (2.0452) (0.8376) (1.3080) (2.0452)

4.2.2 Weibull-Exponential Case

To illustrate the presented EM-algorithm, we conducted a simulation study. We applied
the Newton-Raphson method by using the procedure “nleqslv” with initial value β̃ = 1
to solve equation (3.10). The results and the model parameters of a simulation study
for the EM-algorithm are given in Table 5. We used the conjugate gradient method (cf.
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Atkinson, 1989, pp. 562–569) for the derivation of the IMLEs by applying the procedure
“maxCG” with the default options (i.e., grad = NULL, hess = NULL, tol = 10−8, iterlim
= 500). The outcome of the simulations leads to similar conclusions as those in Section
4.2.1 (cf. Table 3). The presented EM-algorithm works well despite the efforts caused
by the numerical computation of the updates for β during each iteration.

Table 5: EMEs (“nleqslv”) and IMLEs (“maxCG”) for ϑ0 = 2.0, β = 4.0 and ϑ1 = 3.0 with
τ1 = 1.1, n = 24, N = 103, and ε = 10−8 (SLT for Weibull and exponential distribution).

EME IMLE

Model π1 R0
1 ϑ̂0 β̂ ϑ̂1 ϑ̂0 β̂ ϑ̂1 d1 d2 r?1 N∗1

(SDϑ̂0
) (SDβ̂) (SDϑ̂1

) (SDϑ̂0
) (SDβ̂) (SDϑ̂1

)

0.25 2.161087 4.240794 2.960759 2.161612 4.240911 2.952323 12.55 8.96 2.49 999
(0.6731) (0.8078) (1.9616) (0.6736) (0.8075) (1.9297)

Type-P 0.50 – 2.159399 4.276169 2.954151 2.160377 4.274265 2.952445 12.55 5.99 5.46 1000
(0.7018) (0.9315) (1.2849) (0.7028) (0.9353) (1.2865)

0.75 2.162283 4.315022 2.986807 2.162283 4.315021 2.986805 12.55 3.25 8.20 1000
(0.6987) (1.1030) (1.0456) (0.6987) (1.1030) (1.0456)

6 2.150220 4.340566 2.955920 2.150220 4.340566 2.955919 12.55 5.46 5.99 1000
(0.6969) (0.9774) (1.2063) (0.6969) (0.9774) (1.2063)

Type-M – 12 2.144948 4.390657 2.999659 2.144948 4.390657 3.002483 12.55 0.69 10.76 1000
(0.6889) (1.2480) (0.9331) (0.6889) (1.2480) (0.9322)

18 2.157151 4.362316 3.004980 2.157151 4.362316 3.004980 12.55 0.00 11.45 1000
(0.7056) (1.2631) (0.9014) (0.7056) (1.2631) (0.9014)

5 Conclusion and Outlook

We have presented an EM-algorithm approach under SLT to compute estimates for the
distribution parameters when the stage information of the failures is not available.
Furthermore, we have illustrated our approach by a data set as well as by some
simulations for a 2- and 3-step SLT, respectively. In particular, an extension of the
presented EM-algorithm to three or more fixed stage-change times results in an increase
of relevant counting variables (cf. b1, b2, and r1). Therefore, the set Sn representing all
possible outcomes of Σ∗ becomes significantly more complex. Furthermore, additional
possibilities for allocating the data to the “right” stage have to be taken into account.
Therefore, an implementation of the EM-algorithm for more than two stage-change
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times is generally possible but leads to very complex expressions and has to incorporate
combinatorial identities. In particular, the number of possible combinations will grow
fast. Thus, a more efficient implementation of the algorithm should be subject of future
research. Additionally, further lifetime distributions can be discussed. For instance,
the case of Weibull distributions on each stage is under investigation. So far, it turns
out that the computational complexity grows considerably leading to instabilities in
the computations. Thus, further research is also necessary in this direction.

As mentioned in the introduction, stage life testing can be considered as an extension
of simple step stress testing. In this regard, it seems to be possible that a similar
approach can also be applied to simple step stress assuming that the stress changing
time τ1 may be not known for some reason. Therefore, it would be interesting to see
whether the ideas of the present paper can be utilized in such a model.

Finally, it has to be mentioned that the SLT model discussed in the present paper
can be subject to additional censoring. In particular, the present setting can be extended
to a Type-I censoring of the data, that is, an additional termination time τk > τk−1 can
be introduced where the SLT experiment is stopped. Of course, one may choose an
overall stopping time which is applied to any stage. But, one may also consider a stage
dependent termination time. Such models will also be subject of future research.
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A Appendix

A.1 Existence of a Unique Solution for Equation (3.10)

We prove the existence of a unique solution of equation (3.10) for β(t+1) > 0 by analogy
with Balakrishnan and Kateri (2008). First, we define the (continuous) function H for
α > 0 (cf. (3.10))

H(α ; x∗) =

∑d1
i=1(x∗i )

α log(x∗i ) +
∑n

j=d1+1 P(t)
β,0, j(x

∗

j)
α log(x∗j) + r?1 τ

α
1 log(τ1)

r?1 τ
α
1 +

∑d1
i=1(x∗i )

α +
∑n

j=d1+1 P(t)
β,0, j (x∗j)

α

−
1

n − r?1

( d1∑
i=1

log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j log(x∗j)

)
.

Now, we can write equation (3.10) as

α−1 = H(α ; x∗).

We know that α−1 is a monotone decreasing function in α with a limit +∞ at 0 and a
limit 0 at +∞.

In the following, we show that H is a monotone increasing function in α with a
positive upper limit at +∞. This ensures the existence and uniqueness of β(t+1). In
order to verify the monotonicity of H, we have to ensure that

∂H(α ; x∗)
∂α

=
h(α ; x∗)(

r?1 τ
α
1 +

∑d1
i=1(x∗i )

α +
∑n

j=d1+1 P(t)
β,0, j (x∗j)

α
)2 ≥ 0,

or, equivalently, that

h(α ; x∗) =

( d1∑
i=1

(x∗i )
α +

n∑
j=d1+1

P(t)
β,0, j (x∗j)

α + r?1 τ
α
1

)

×

( d1∑
i=1

(x∗i )
α log2(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j(x

∗

j)
α log2(x∗j) + r?1 τ

α
1 log2(τ1)

)

−

( d1∑
i=1

(x∗i )
α log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j(x

∗

j)
α log(x∗j) + r?1 τ

α
1 log(τ1)

)2

≥ 0. (A.1)
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Let an+1 = (a1, . . . , an+1) and bn+1 = (b1, . . . , bn+1) with

ai = (x∗i )
α/2, i = 1, . . . , d1, a j =

(
P(t)
β,0, j

)1/2
(x∗j)

α/2, j = d1 + 1, . . . ,n, an+1 = (r?1 )1/2τα/21 ,

and

bi = ai log(x∗i ), i = 1, . . . , d1, b j = a j log(x∗j), j = d1 + 1, . . . ,n, bn+1 = an+1 log(τ1).

Then, equation (A.1) reads

h(α ; x∗) =

n+1∑
i=1

a2
i

n+1∑
i=1

b2
i −

( n+1∑
i=1

ai bi

)2

.

By using the Cauchy-Schwarz inequality, we conclude that h
(
α ; x∗n

)
≥ 0. Therefore, the

function H is a monotone increasing function in α with an upper limit

lim
α→+∞

H(α;x∗) = lim
α→+∞

r?1 τ
α
1 log(τ1) +

∑n
i=1 a2

i log(x∗i )∑n+1
i=1 a2

i

−
1

n − r?1

( d1∑
i=1

log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j log(x∗j)

)

= log(x∗n) −
1

n − r?1

( d1∑
i=1

log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j log(x∗j)

)
> 0.

The latter expression is positive since x∗1 ≤ · · · ≤ x∗n and

1
n − r?1

( d1∑
i=1

log(x∗i ) +

n∑
j=d1+1

P(t)
β,0, j log(x∗j)

)

<
1

n − r?1

(
d1 · log(x∗n) + log(x∗n) ·

n∑
j=d1+1

P(t)
β,0, j

)

=
1

n − r?1

(
d1 · log(x∗n) + log(x∗n) · (n − d1 − r?1 )

)
= log(x∗n).

A.2 Formulas for 3-Step SLT with Missing Stage Information

In the following, we present the formulas needed to implement of the EM-algorithm
addressed in Section 3.3. We consider the complete information (X∗,Σ∗) to define the
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EM-algorithm in the present situation. Let θ = (ϑ0, ϑ1, ϑ2) and θ(t) =
(
ϑ(t)

0 , ϑ
(t)
1 , ϑ

(t)
2

)
,

t ∈ N0. Then, the log-likelihood function for the complete data (X∗,Σ∗) = (x∗,σ∗) is
given by

`(θ | x∗,σ∗) = log(c∗) − d1 log(ϑ0) −
1
ϑ0

d1∑
a=1

x∗a

+

d1+b1∑
h=d1+1

(
11{0}(σ∗h)

[
−

x∗h
ϑ0
− log(ϑ0)

]
+ 11{1}(σ∗h)

[
−

1
ϑ1

(
x∗h + τ1

ϑ1

ϑ0
− τ1

)
− log(ϑ1)

])

+

n∑
i=d1+b1+1

(
11{0}(σ∗i )

[
−

x∗i
ϑ0
− log(ϑ0)

]
+ 11{1}(σ∗i )

[
−

1
ϑ1

(
x∗i + τ1

ϑ1

ϑ0
− τ1

)
− log(ϑ1)

]
+ 11{2}(σ∗i )

[
−

1
ϑ2

(
x∗i + τ2

ϑ2

ϑ0
− τ2

)
− log(ϑ2)

])
.

We use the following sets

Sn =

{
σ∗ ∈ {0, 1, 2}n

∣∣∣∣∣ σ∗1 = 0, . . . , σ∗d1
= 0,

σ∗a ∈ {0, 1}, a ∈ {d1 + 1, . . . , d1 + b1},
d1+b1∑

h=d1+1

σ∗h = b1 − d2,

σ∗b ∈ {0, 1, 2}, b ∈ {d1 + b1 + 1, . . . ,n},
n∑

i=d1+b1+1

11{0}(σ∗i ) = d3,
n∑

i=d1+b1+1

11{1}(σ∗i ) = r1,
n∑

i=d1+b1+1

11{2}(σ∗i ) = r?2

}
,

S
h,0
n = Sn ∩

{
σ∗h = 0

}
and S

h,1
n = Sn ∩

{
σ∗h = 1

}
, h ∈ {d1 + 1, . . . , d1 + b1},

S
i,0
n = Sn ∩

{
σ∗i = 0

}
, Si,1

n = Sn ∩
{
σ∗i = 1

}
and S

i,2
n = Sn ∩

{
σ∗i = 2

}
,

i ∈ {d1 + b1 + 1, . . . ,n}.

Further, we have the conditional probabilities

P(t)
2,s,h = Eθ(t)

[
11{s}(Σ∗h)

∣∣∣ X∗ = x∗
]

=
f
Σ∗h,X

∗

θ(t) (s, x∗)

f X∗
θ(t)(x∗)

, s ∈ {0, 1}, (A.2)
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h ∈ {d1 + 1, . . . , d1 + b1}, and

P(t)
3,s,i = Eθ(t)

[
11{s}(Σ∗i )

∣∣∣ X∗ = x∗
]

=
f
Σ∗i ,X

∗

θ(t) (s, x∗)

f X∗
θ(t)(x∗)

, s ∈ {0, 1, 2}, (A.3)

i ∈ {d1 + b1 + 1, . . . ,n}. Moreover, we have the density functions

f
Σ∗h,X

∗

θ(t) (0, x∗) =
1

ϑ(t)
0

exp
{
−

x∗h
ϑ(t)

0

} d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}

×

∑
σ∗n∈S

h,0
n

( d1+b1∏
a=d1+1

a,h

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
,

f
Σ∗h,X

∗

θ(t) (1, x∗) =
1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗h + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)} d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}

×

∑
σ∗n∈S

h,1
n

( d1+b1∏
a=d1+1

a,h

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
,

h ∈ {d1 + 1, . . . , d1 + b1},

f
Σ∗i ,X

∗

θ(t) (0, x∗) =
1

ϑ(t)
0

exp
{
−

x∗i
ϑ(t)

0

} d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}

×

∑
σ∗n∈S

i,0
n

( d1+b1∏
a=d1+1

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1
b,i

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
,

f
Σ∗i ,X

∗

θ(t) (1, x∗) =
1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗i + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)} d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}

×

∑
σ∗n∈S

i,1
n

( d1+b1∏
a=d1+1

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1
b,i

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
,

f
Σ∗i ,X

∗

θ(t) (2, x∗) =
1

ϑ(t)
2

exp
{
−

1

ϑ(t)
2

(
x∗i + τ2

ϑ(t)
2

ϑ(t)
0

− τ2

)} d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}
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×

∑
σ∗n∈S

i,2
n

( d1+b1∏
a=d1+1

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1
b,i

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
,

i ∈ {d1 + b1 + 1, . . . ,n}, and

f X∗
θ(t)(x

∗) =

d1∏
j=1

1

ϑ(t)
0

exp
{
−

x∗j

ϑ(t)
0

}
×

∑
σ∗n∈Sn

( n∏
a=d1+1

f 0,1
θ(t)(x

∗

a, σ
∗

a)
n∏

b=d1+b1+1

f 0,1,2
θ(t) (x∗b, σ

∗

b)
)
, (A.4)

with

f 0,1
θ(t)(x

∗

a, σ
∗

a) = 11{0}(σ∗a)
1

ϑ(t)
0

exp
{
−

x∗a
ϑ(t)

0

}
+ 11{1}(σ∗a)

1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗a + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)}
,

f 0,1,2
θ(t) (x∗b, σ

∗

b) = 11{0}(σ∗b)
1

ϑ(t)
0

exp
{
−

x∗b
ϑ(t)

0

}
+ 11{1}(σ∗b)

1

ϑ(t)
1

exp
{
−

1

ϑ(t)
1

(
x∗b + τ1

ϑ(t)
1

ϑ(t)
0

− τ1

)}
+ 11{2}(σ∗b)

1

ϑ(t)
2

exp
{
−

1

ϑ(t)
2

(
x∗b + τ2

ϑ(t)
2

ϑ(t)
0

− τ2

)}
.

For the E-step, we have to calculate the expectation of `(θ |X∗,Σ∗) w.r.t. PΣ∗|X∗=x∗

θ(t) for
the current estimates θ(t). Therefore, we have

Q
(
θ ;θ(t)

)
= Q̃0(ϑ0) + Q̃1(ϑ1) + Q̃2(ϑ2),

where

Q̃0(ϑ0) = log(C) −
(
d1 + d(t)

2 + d(t)
3

)
log(ϑ0)
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−
1
ϑ0

( d1∑
a=1

x∗a +

d1+b1∑
h=d1+1

P(t)
2,0,h x∗h +

n∑
i=d1+b1+1

P(t)
3,0,i x∗i +

(
r? (t)

1 + r(t)
1

)
τ1 + r? (t)

2 τ2

)
,

Q̃1(ϑ1) = −
(
r? (t)

1 + r(t)
1

)
log(ϑ1)

−
1
ϑ1

( d1+b1∑
h=d1+1

P(t)
2,1,h x∗h +

n∑
i=d1+b1+1

P(t)
3,1,i x∗i −

(
r? (t)

1 + r(t)
1

)
τ1

)
,

and

Q̃2(ϑ2) = − r? (t)
2 log(ϑ2) −

1
ϑ2

( n∑
i=d1+b1+1

P(t)
3,2,i x∗i − r? (t)

2 τ2

)
,

with

d(t)
2 =

d1+b1∑
h=d1+1

P(t)
2,0,h and d(t)

3 =

n∑
i=d1+b1+1

P(t)
3,0,i,

and

r? (t)
1 =

d1+b1∑
h=d1+1

P(t)
2,1,h, r(t)

1 =

n∑
i=d1+b1+1

P(t)
3,1,i and r? (t)

2 =

n∑
i=d1+b1+1

P(t)
3,2,i.

For the M-step, we have to maximize Q(θ ;θ(t)) w.r.t. θ. By using the same
arguments as in Section 3.2.1, we get the updated estimates ϑ(t+1)

0 , ϑ(t+1)
1 , and ϑ(t+1)

2
in the (t + 1)th iteration step given in (3.11).


