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1 Introduction

The selection of a suitable model for data analysis is generally quite challenging. If
a wrong model is applied to analyze the dataset it leads to loss of information and
invalid inferences. It is obligatory to identify the most suitable model for the given
dataset. In the recent decade, many continuous distributions have been introduced in
statistical literature. Some of these distributions, however, are not flexible enough for
analysis of lifetime data. Hence, more versatile models are needed. The generalization
techniques such as either inserting one or more shape parameters or transforming of the
parent distribution are useful to (i) increase the applicability of a parent distribution;
(ii) explore skewness and tail properties and (iii) improve the goodness-of-fit of the
generalized distributions.

The inverse Weibull distribution (Keller and Kanath, 1982), developed to study the
decay of mechanical components in survival and reliability analysis, is a highly flexible
yet simple model. Variations and generalizations of the inverse Weibull distribution
have been of great interest in literature: beta inverse Weibull (B-IW) (Khan , 2010),
Kumaraswamy-Inverse Weibull (Kw-IW) (Shahbaz, et al. , 2012), reflected generalized
beta inverse Weibull (Elbatal, et al. , 2016)), Topp-Leone inverse Weibull (Abbas, et
al. , 2017), Odd Frechet inverse Weibull (OF-IW) (Fayomi , 2019) and gamma inverse
Weibull(G-IW) (Abbas, et al. , 2020).

The main idea of the present paper is to incorporate the inverse Weibull distribution
into a larger family through an application of the Burr III distribution. In fact, based
on the T-X transform defined by Alzaatreh, et al. (2013), we construct the BIII-IW
distribution. The new model has flexible shapes to model various lifetime data sets.
Additionally, its special sub-models produce better fits than other well-known models.
Here we study the BIII-IW distribution with COVID-19 applications.

Our study of the BIII-IW distribution is based on the following motivations: (i)
to generate distributions with symmetrical, right-skewed, left-skewed, J, reverse-J,
exponential shaped as well as high kurtosis; (ii) to have monotone and non-monotone
failure rate function; (iii) to derive mathematical properties such as random number
generator, ordinary moments, conditional moments, residual life functions, reliability
measures and characterizations; (iv) to estimate the precision of the maximum likelihood
estimators via a simulation study; (v) to reveal the potentiality and utility of the BIII-IW
model; (vi) to work as the preeminent substitute model to other existing models; (vii)
to deliver better fits than other models and (viii) to infer empirically from goodness of
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fit statistics (GOFs) and graphical tools.

This article is structured as follows. Section 2 derives the BIII-IW model and studies
its basic structural properties, random number generator and sub-models. Section
3 presents certain mathematical properties such as ordinary moments, conditional
moments, residual life functions, reliability measures and characterizations. In Section
4, we address the maximum likelihood estimation for the BIII-IW parameters. We
evaluate the precision of the maximum likelihood estimators via a simulation study.
In Section 5, we consider applications to two COVID-19 data sets to elucidate the
potentiality of the BIII-IW model. In Section 6, we offer some concluding remarks.

2 The BIII-IW Distribution

We derive the BIII-IW distribution from the T-X family technique. We highlight the
shapes of the density and failure rate functions.

2.1 T-X Family Technique

The cumulative distribution function (cdf) and probability density function (pdf) of the
inverse Weibull distribution are given, respectively, by

G(x;λ, η) = exp(−λx−η), x ≥ 0,

and
g(x;λ, η) = ληx−η−1 exp(−λx−η), x > 0, λ > 0, η > 0,

The odds ratio for the inverse Weibull random variable X is

W
(
G(x;λ, η)

)
=

G(x;λ, η)

G(x;λ, η)
=

e−λx−η

1 − e−λx−η
= [exp(λx−η) − 1]−1.

The cdf of the T-X family (Alzaatreh, et al. , 2013) of distributions has the form

F(x) =

∫ W[G(x;ξ)]

a
r(t) dt, x ∈ R, (2.1)

where r(t) is the pdf of the random variable (rv) T, where T ∈ [a, b] for −∞ < a < b < ∞
and W[G(x; ξ)] is a function of the baseline cdf of a rv X with the parameter vector ξ,
which satisfies the conditions:
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• W[G(x; ξ)] ∈ [a, b],

• W[G(x; ξ)] is differentiable and monotonically non-decreasing and

• lim
x→−∞

W[G(x; ξ)]→ a and lim
x→∞

W[G(x; ξ)]→ b.

The pdf of the T − X family can be expressed as

f (x) =
{
∂
∂x

W
[
G(x; ξ)

]}
r
{
W[G(x; ξ)]

}
, x ∈ R. (2.2)

We derive the cdf of the BIII-IW distribution from the T-X family technique by setting

r(t) = αβt−β−1(1 + t−β)−α−1, t > 0, α > 0, β > 0,

and

W
(
G(x;λ, η)

)
=

G(x;λ, η)

G(x;λ, η)
=

e−λx−η

1 − e−λx−η
= [exp(λx−η) − 1]−1.

The cdf of the BIII-IW distribution takes the form

F(x) =
[
1 + (eλx−η

− 1)β
]−α

x ≥ 0, (2.3)

where α, β, λ, η are the parameters. The BIII-IW density can be expressed as

f (x) = αβληx−η−1eλx−η
(
eλx−η

− 1
)β−1[

1 +
(
eλx−η

− 1
)β]−α−1

x > 0. (2.4)

Hereafter, a random variable with pdf (2.4) is denoted by X ∼ BIII − IW(α, β, λ, η). If
X ∼ BIII − IW(α, β, λ, η), the survival function, failure rate, reverse failure rate and
cumulative failure rate of X are given, respectively, by (for x > 0)

S(x) = 1 −
[
1 + (eλx−η

− 1)β
]−α
,

λ(x) =
αβληx−η−1eλx−η

(
eλx−η

− 1
)β−1[

1 +
(
eλx−η

− 1
)β]−α−1

1 −
[
1 + (eλx−η − 1)β

]−α ,

r(x) =
d
dx

ln
[
1 + (eλx−η

− 1)β
]−α
,

and
Λ(x) = − ln

{
1 −

[
1 + (eλx−η

− 1)β
]−α}

.
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The quantile function of X (for 0 < q < 1) follows from

xq =
{

ln
[
(q−

1
α − 1)

1
β + 1

] 1
λ
}− 1

η

,

and its random number generator with Z ∼Uniform (0,1) is the solution of the nonlinear
equation

X =
{

ln
[
(Z−

1
α − 1)

1
β + 1

] 1
λ
}− 1

η

.

The sub-models of BIII-IW distribution are (i) For η = 2, the BIII-IW distribution
reduces to Burr III-inverse Rayleigh (BIII-IR); (ii) For η = 1, the BIII-IW distribution
reduces to Burr III-inverse exponential (BIII-IE); (iii) For β = 1, the BIII-IW distribution
reduces to inverse Lomax-inverse Weibull (IL-IW); (iv) For β = 1 and η = 2,the BIII-IW
distribution reduces to inverse Lomax- inverse Rayleigh (IL-IR); (v) For β = η = 1,
the BIII-IW distribution reduces to inverse Lomax- inverse exponential (IL-IE); (vi) For
α = 1, the BIII-IW distribution reduces to the log-logistic -inverse Weibull (LL-IW);
(vii) For α = 1 and η = 2, the BIII-IW distribution reduces to the log-logistic-inverse
Rayleigh (LL-IR) and (viii) For α = η = 1, the BIII-IW distribution reduces to the
log-logistic-inverse exponential (LL-IE) distribution.

2.2 Shapes of the BIII-IW Density and Hazard Rate Functions

We plot the density and failure rate functions of the BIII-IW distribution for selected
parameter values. The BIII-IW density can display numerous shapes such as bimodal,
symmetrical, right-skewed, left-skewed, J, reverse-J and exponential (Figure 1). The
failure rate function can highlight shapes as modified bathtub, inverted bathtub,
decreasing, increasing (Figure 2). Therefore, the BIII-IW distribution is quite flexible
and can be applied to numerous data sets.

2.3 Useful Expansions

Consider the two binomial series

(1 + z)−α =

∞∑
i=0

(−1)i
(
α + i − 1

i

)
zi

|z| < 1, α > 0, (2.5)

and

(1 − z)α =

∞∑
m=0

(−1)m
(
α
m

)
zm. (2.6)
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The pdf in (2.4) can be expressed as

f (x) = αβληx−η−1 exp(λx−η)
[ exp(−λx−η)
1 − exp(−λx−η)

]−β+1 {
1 +

[1 − exp(−λx−η)
exp(−λx−η)

]β}−α−1

︸                               ︷︷                               ︸
A(x)

, (2.7)

applying (2.5) to A(x) in (2.7), we obtain

f (x) = αβληx−η−1 exp(λx−η)
∞∑

i=0

(−1)i
(
α + i

i

)[1 − exp(−λx−η)
exp(−λx−η)

]β(i+1)−1
,

f (x) = αβληx−η−1 exp(λx−η)
∞∑

i=0

(−1)i
(
α + i

i

)[
exp(−λx−η)

]β(i+1)−1 [
1 − exp(−λx−η)

]β(i+1)−1

︸                        ︷︷                        ︸
B(x)

.

(2.8)

Now applying (2.6) to B(x) in (2.8), we obtain

f (x) = ληx−η−1
∞∑

i,m=0

ci,m exp
{
− λ[m − β(i + 1)]x−η

}
, (2.9)

which is density of exponentiated inverse Weibull distribution with scale parameter
λ[m − β(i + 1)] and

ci,m = ci,m(α, β) = αβ(−1)i+m
(
α + i

i

)(
β(α + i) − 1

m

)
.

Equation (2.9) is the main result of this section. It reveals that the BIII-IW density is a
linear combination of IW density. So, some of its mathematical properties can be easily
determined from those of IW model.
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Figure 1: Plots of the BIII-IW density.

Figure 2: Plots of the BIII-IW hazard rate.

3 Mathematical Properties

We derive some of its mathematical properties including the ordinary moments, conditi-
onal moments, residual life functions, reliability measures and characterizations.

3.1 Moments

The moments are significant tools for statistical analysis in pragmatic sciences. The rth

ordinary moment of X with the BIII-IW distribution is,

E(Xr) =

∫
∞

0
xrληx−η−1

∞∑
i,m=0

ci,m exp
{
− λ

[
m − β(i + 1)

]
x−η

}
dx,

E(Xr) = λη
∞∑

i,m=0

ci,m

∫
∞

0
xrx−η−1 exp

{
− λ

[
m − β(i + 1)

]
x−η

}
dx,



108 F. Bhatti et al.

Letting λ
[
m − β(i + 1)

]
x−η = w, −ληx−η−1dx = dw[

m−β(i+1)
] , xr = λ

r
η
[
m − β(i + 1)

] r
ηw

r
η , we

will have

E(Xr) = λ
r
η

∞∑
i,m=0

ci,m[m − β(i + 1)]
r
η−1

∫
∞

0
w1− r

η−1e−wdw

= λ
r
η

∞∑
i,m=0

ci,m[m − β(i + 1)]
r
η−1

Γ(1 −
r
η

), (3.1)

where r < η and Γ(·) is the gamma function.

The rth cenaral moment (µr), skewness (γ1) and kurtosis (γ2) for the BIII-IW model
are obtained from

µr =

r∑
l=1

(−1)l
(
r
l

)
µ′lµ

′

r−l , γ1 =
µ3

(µ2)
3
2

and β2 =
µ4

(µ2)2 .

3.2 Conditional Moments

Life expectancy, mean waiting time and inequality measures can be obtained from the
incomplete moments.

The rth lower incomplete moment EX≤z(Xr) is

M′r(z) =EX≤z(Xr) =

∫ z

0
xrληx−η−1

∞∑
i,m=0

ci,m exp
{
− λ

[
m − β(i + 1)

]
x−η

}
dx,

EX≤z(Xr) = λ
r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1

∫
∞

0
w1− r

η−1e−wdw,

M′r(z) =EX≤z(Xr) = λ
r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1
γ
[(

1 −
r
η

)
, z

]
, (3.2)

where
∫ w

0 w1− r
η−1e−wdw = γ

[(
1 − r

η

)
,w

]
is the lower incomplete gamma function.

The rth conditional moment E
(
Xr
|X > z

)
is

E
(
Xr
|X > z

)
=

1
S(z)

{
λ

r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1

Γ
[(

1 −
r
η

)
, z

]}
,
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where
∫
∞

w w1− r
η−1e−wdw = Γ

[(
1 − r

η

)
,w

]
is the upper incomplete gamma function.

The rth conditional moment E
(
Xr
|X ≤ z

)
is

E
(
Xr
|X ≤ z

)
=

1
F(z)

{
λ

r
η

∞∑
i,m=0

ci,m[m − β(i + 1)]
r
η−1γ

[(
1 −

r
η

)
, z

]}
.

The mean deviation about the mean (δ1 = E|X − µ|) and about the median(δ2 =

E|X − µ̃|)) can be written as δ1 = 2µ
(
F(µ) −M′1(µ)

)
and δ2 = µ − 2M′1(µ̃), respectively,

whereµ = E(X) and µ̃ = x0.5. The quantities M′1(µ) and M′1(µ̃) can be obtained from (3.2).

For specific probability p, Lorenz and Bonferroni curves are computed as L(p) =
M′1(q)
µ

and B(p) = L(p)|p, where q = Q(p).

3.3 Residual Life Functions

The nth moments about origin of residual life, say Mn(z) = E
[
(X − z)n

|X > z
]
, of X is

mn(z) =
1

S(z)

∫
∞

z
(x − z)r f (x)dx

=
1

S(z)

n∑
r=0

(
n
r

)
(−z)n−rEX>z(Xr)

=
1

1 − F(z)

n∑
r=0

(
n
r

)
(−z)n−r

{
λ

r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1

Γ
[(

1 −
r
η

)
, z

]}
.

The average remaining lifetime of a component at time z, say m1(z), or life expectancy
called mean residual life (MRL) function is

m1(z) =
1

1 − F(z)

1∑
r=0

(
1
r

)
(−z)1−r

{
λ

r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1

Γ
[(

1 −
r
η

)
, z

]}
.

The nth moments about origin reverse residual life, say Mn(z) = E
[
(z − X)n

|X ≤ z
]
, of X
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with BIII-IW distribution is

Mn(z) =
1

F(z)

∫ z

0
(z − x)r f (x)dx

=
1

F(z)

n∑
r=0

(−1)r
(
n
r

)
(z)n−rEX≤z(Xr)

=
1

F(z)

n∑
r=0

(−1)r
(
n
r

)
(z)n−r

{
λ

r
η

∞∑
i,m=0

ci,m

[
m − β(i + 1)

] r
η−1
γ
[(

1 −
r
η

)
, z

]}
.

The waiting time z for failure of a component has passed with condition that this
failure had happened in the interval [0, z] is called mean waiting time (MWT) or mean
inactivity time. The waiting time z for failure of a component for the BIII-IW distribution
is defined by

M1(z) =
1

F(z)

1∑
r=0

(−1)r
(
1
r

)
(z)1−r

{
λ

r
η

∞∑
i,m=0

ci,m[m − β(i + 1)]
r
η−1γ

[(
1 −

r
η

)
, z

]}
.

3.4 Reliability Estimation in Multi-Component Stress-Strength Model

The multi-component stress-strength model provides about the awareness of life of a
component or a system in reliability. Consider a system with κ identical elements, out
of which s elements are operative. Let Xi, i = 1, 2...κ, represent strengths of κ elements
with the cdf F while, the stress Y enforced on the elements has the cdf G. The strengths
Xi and stress Y are independently and identically distributed (i.i.d.). The probability
that system operates properly, is the reliability of the system, i.e.

Rs,κ = P
[
strengths(Xi, i = 1, 2, ...., κ) > stress(Y)

]
= P

[
at the minimum‘s′of (Xi, i = 1, 2, ...., κ) exceed (Y)

]
.

Then, we can write this probability (Bhattacharyya and Johnson , 1974) as follows:

Rs,κ =

κ∑
`=s

(
κ
`

) ∫
∞

−∞

[1 − F(y)]`[F(y)]κ−`dG(y). (3.3)

Let X ∼BIII-IW (α1, β, λ, η), Y ∼BIII-IW (α2, β, λ, η) with unknownα1 andα2, common β,
λ, ηwhere X and Y are independent. The reliability in multi-component stress-strength
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for the BIII-ME distribution is given by

Rs,κ =

κ∑
`=s

(
κ
`

) ∫
∞

0

{
1 −

[
1 + (eλx−η

− 1)β
]−α1

}`[
1 + (eλx−η

− 1)β
]−α1(κ−`)

α2βληx−η−1
(
eλx−η

− 1
)β−1[

1 +
(
eλx−η

− 1
)β]−α2−1

dx.

Letting u =
[
1 + (eλx−η

− 1)β
]−α2

, we obtain

Rs,κ =

κ∑
`=s

(
κ
`

) ∫ 1

0
(1 − uν)`uν(κ−`)du,

where ν = α1
α2

.

Let w = uν, u = w
1
ν , du = 1

νw
1
ν−1dw, then we have

Rs,κ =

κ∑
`=s

(
κ
`

) ∫ 1

0
(1 − w)`w(κ−`) 1

ν
w

1
ν−1dw,

=
1
ν

κ∑
`=s

(
κ
`

)
B(` + 1, κ − ` +

1
ν

), (3.4)

where B(·) is the Beta function and ν = α1
α2

. The probability in (3.4) is known as
the reliability in multi-component stress-strength model. For s = k = 1, the multi-
component stress-strength model reduces to the stress-strength model (Kotz, et al. ,
2003) R1,1 = α1

(α1+α2) , where α1 + α2 > 0.

3.5 Characterization via Truncated Moment

We characterize the BIII-IW distribution via truncated moment (Glänzel , 1987).

Proposition 3.1. Let X : Ω → (0,∞) be a continuous random variable and let h1(x) =
1
α [1 + (eλx−η

− 1)β]α+1, x > 0 and h2(x) = 2
α (eλx−η

− 1)β[1 + (eλx−η
− 1)β]α+1, x > 0.

The random variable X has the pdf (2.4) iff, the function ν(x) =
E[h1(X)|X≥x]
E[h2(X)|X≥x] has the form

ν(x) = (eλx−η
− 1)β, x > 0.

Proof. if X has the pdf (2.4), then(
1 − F(x)

)
E
(
h1(x)|X ≥ x

)
= (eλx−η

− 1)β, x > 0,(
1 − F(x)

)
E
(
h2(x)|X ≥ x

)
= (eλx−η

− 1)2β, x > 0,

E[h1(X)|X ≥ x]
E[h2(X)|X ≥ x]

= ν(x) = (eλx−η
− 1)−β, x > 0.
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Conversely, if ν(x) has the given form, then ν′(x) = βληx−η−1eλx−η(eλx−η
−1)−β−1, x > 0.

The differential equation

s′(x) =
ν′(x)h2(x)

ν(x)h2(x) − h1(x)
=

2βληx−η−1eλx−η

(eλx−η − 1)
,

has soltion s(x) = ln (eλx−η
− 1)−2β, x > 0. Therefore, in light of Theorem G (Glänzel ,

1987), X has the pdf (2.4). �

Corollary 3.1. Let X : Ω→ (0,∞) be a continuous random variable and let h2(x) = 2
α (eλx−η

−

1)β[1 + (eλx−η
− 1)β]α+1, x > 0. The pdf of X is (2.4) iff there exist function ν(x) and h1(x)

satisfying the differential equation

ν′(x)h2(x)
ν(x)h2(x) − h1(x)

= αβληx−η−1eλx−η(eλx−η
− 1)−β−1

[
1 + (eλx−η

− 1)β
]−α−1

. (3.5)

Remark 1. The general solution of (3.5) is given by

ν(x) = (eλx−η
− 1)−2β

{∫ [
− αβληx−η−1eλx−η(eλx−η

− 1)β−1
[
1 + (eλx−η

− 1)β
]−α−1

h1(x)
]
dx + D

}
where D is a constant.

4 Statistical Inference

First, we adopt the maximum likelihood estimation technique for the BIII-IW parameters.
We evaluate the behavior of the maximum likelihood estimators of the BIII-IW parameters
via a simulation study. We explain the utility of the BIII-IW model among its family
and class using real data set.

4.1 Parameter Estimation

Let ξ = (α, β, λ, η)T be the unknown parameter vector. The log-likelihood function `(ξ)
for the BIII-IW distribution is

` = ln L(ξ) =n ln (α) + n ln (β) + n ln (λ) + n ln (η) − (η + 1)
n∑

i=1

ln xi + λ
n∑

i=1

ln x−ηi

+ (β − 1)
n∑

i=1

ln
(
eλx−ηi − 1

)
− (α + 1)

n∑
i=1

ln
[
1 +

(
eλx−ηi − 1

)β]
. (4.1)
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The first derivatives of `(ξ) with respect to α, β, λ and η are as given below.

∂`
∂α

=
n
α
−

n∑
i=1

ln
[
1 +

(
eλx−ηi − 1

)β]
,

∂`
∂β

=
n
β

+

n∑
i=1

ln
(
eλx−ηi − 1

)
+ (α + 1)

n∑
i=1

[
1 +

(
eλx−ηi − 1

)−β]−1
ln

(
eλx−ηi − 1

)
,

∂`
∂λ

=
n
λ

+

n∑
i=1

x−ηi −(β+1)
n∑

i=1

x−ηi

1 − e−λx−ηi

+(α+1)β
n∑

i=1

[
1+

(
eλx−ηi −1

)β]−1(
eλx−ηi −1

)β−1
x−ηi eλx−ηi ,

∂`
∂η

=
n
η
−

n∑
i=1

ln xi−λ
n∑

i=1

x−ηi ln xi +(β+1)λ
n∑

i=1

x−ηi ln xi(
1 − e−λx−ηi

) +(α+1)β
n∑

i=1

(
eλx−ηi − 1

)β−1
x−ηi eλx−ηi ln xi[

1 +
(
eλx−ηi − 1

)β] .

One can compute the maximum likelihood estimators (MLEs) of ξ = (α, β, λ, η)T by
solving the following equations ∂`

∂α = 0, ∂`
∂β = 0, ∂`

∂λ = 0 and ∂`
∂η = 0 simultaneously,

either directly or using quasi-Newton procedure, computer packages/softwares such
as R, SAS, Ox, MATHEMATICA, MATLAB and MAPLE.

5 Simulation Study

We evaluate the behavior of the MLEs of the BIII-IW parameters regarding the sample
size n. We generate 10000 samples of sizes n =30, 50, 100, 200, 300, 500 from the
inverse cdf of the BIII-IW distribution with true parameter settings (α, β, λ, η) =(0.1,
1.25, 0.75, 0.1), (0.25, 1.5, 1.1, 0.25), (0.5, 1.75, 1.50, 0.5) and (0.75, 2.0, 1.75, 0.75).
We estimate the MLEs (α̂, β̂, λ̂, η̂) for 10000 samples from the non-linear optimization
techniques. We also compute the means, biases and mean squared errors (MSE) of the
MLEs. We infer from the simulation results (Table 1) that as the sample size n increases,
the means approach to the true parameter value, the estimated MSE decrease, and
estimated biases drop to zero. We observe that as the shape parameter increases, MSE
of estimated parameters increases. Finally, we infer that the MLEs for the BIII-IW
distribution are consistent.
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Table 1: Mean, Bias and MSE of BIII-IW distribution

Sample Statistics α = 0.1 β = 1.25 λ = 0.75 η = 0.1 α = 0.25 β = 1.5 λ = 1.1 η = 0.25

Mean 0.1616 3.2743 1.1538 0.0778 0.2702 4.9168 1.8524 0.2966
30 Bias 0.0616 2.0243 0.4038 -0.0222 0.0202 3.4168 0.7524 0.0466

MSE 0.0549 22.3957 1.0981 8 E-04 0.1218 72.8266 3.6263 0.0135

Mean 0.1649 2.2468 1.1830 0.0758 0.2846 2.9445 1.7614 0.2799
50 Bias 0.0649 0.9968 0.4330 -0.0242 0.0346 1.4445 0.6614 0.0299

MSE 0.0505 6.7098 1.1651 8 E-04 0.1134 14.880 3.3008 0.0063

Mean 1.4220 1.0979 0.0745 0.2893 0.2893 1.7197 1.3438 0.2716
200 Bias 0.0398 0.1720 0.3479 -0.0255 0.0393 0.2197 0.2438 0.0216

MSE 0.0197 0.2796 0.6033 7 E-04 0.0643 0.3111 1.0288 0.0017

Mean 0.1319 1.3633 1.0789 0.0746 0.2821 1.6322 1.2172 0.2723
300 Bias 0.0319 0.1133 0.3289 -0.0254 0.0321 0.1322 0.1172 0.0223

MSE 0.0126 0.1452 0.5064 7 E-04 0.0442 0.1184 0.5211 0.0013

Mean 0.1273 1.3146 1.0364 0.0746 0.2695 1.5732 1.1383 0.2733
500 Bias 0.0273 0.0646 0.2864 -0.0254 0.0195 0.0732 0.0383 0.0233

MSE 0.0087 0.0611 0.3623 7 E-04 0.0245 0.0434 0.2682 0.0010

Sample Statistics α = 0.5 β = 1.75 λ = 1.5 η = 0.5 α = 0.75 β = 2.0 λ = 1.75 η = 0.75

Mean 0.4792 4.1390 2.2859 0.9614 1.0345 3.4565 2.0767 2.341
30 Bias -0.0208 2.3890 0.7859 0.4614 0.2845 1.4565 0.3267 1.591

MSE 0.3300 58.812 7.0945 0.6397 4.8049 33.970 5.5384 8.557

Mean 0.4777 2.8230 2.0593 0.8383 0.9115 2.6572 1.9040 1.8318
50 Bias -0.0223 1.0730 0.5593 0.3383 0.1615 0.6572 0.1540 1.0818

MSE 0.2705 11.248 4.7741 0.2486 2.6098 7.0496 3.5698 3.3994

Mean 0.5114 2.2001 1.6104 0.7673 0.7628 2.3556 1.6278 1.5034
100 Bias 0.0114 0.4501 0.1104 0.2673 0.0128 0.3556 -0.1222 0.7534

MSE 0.1799 1.4944 1.9890 0.1212 0.7491 1.7569 1.7727 1.0839

Mean 0.5250 1.9752 1.3225 0.7492 0.7366 2.2318 1.3774 1.3909
200 Bias 0.0250 0.2252 -0.1775 0.2492 -0.0134 0.2318 -0.3726 0.6409

MSE 0.1212 0.4107 0.8442 0.0909 0.2205 0.8524 0.8580 0.608

Mean 0.5204 1.8994 1.2061 0.7468 0.7460 2.1856 1.2524 1.3557
300 Bias 0.0204 0.1494 -0.2939 0.2468 -0.0040 0.1856 -0.4976 0.6057

MSE 0.0867 0.2259 0.4776 0.0822 0.1486 0.5962 0.6426 0.5145

Mean 0.5170 1.8369 1.1116 0.7468 0.7637 2.1559 1.1407 1.3246
500 Bias 0.0170 0.0869 -0.3884 0.2468 0.0137 0.1559 -0.6093 0.5746

MSE 0.0537 0.1071 0.3046 0.0744 0.1061 0.4183 0.5442 0.4419
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6 COVID-19 Applications

We consider two applications with real datasets to assess the interest in the BIII-IW
model. The considered data, called the COVID-19 datasets, are presented below. Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the strain of Coronavirus
that causes respiratory illness known as coronavirus disease 2019 (COVID-19). COVID-
19 is recalled as the ‘the flu of 2020’. SARS-CoV-2 is a positive-sense single stranded
RNA virus (contagious in humans). Here, in the first data set, the daily new COVID-19
confirmed cases in Pakistan from 21 March to 29 May 2020 (inclusive) are analyzed
(Bantan, et al. , 2020). The second data set presents the analysis of the daily new deaths
due to COVID-19 in China from 23 January to 28 March 2020 (Eliwa, et al. , 2020).
Table 2 reports some descriptive measures for two data sets.

Table 2: Descriptive Statistics of two datasets

Data Sets n Min Max Mean Median Standard Skewness Kurtosis
deviation

Daily New Confirmed cases 70 89 2636 941.7571 767 743.526 0.6172 2.182
Daily New Deaths 66 3 150 49.7424 33 43.8730 0.8365 2.450

We compare the BIII-IW distribution with models such as BIII-IR, Burr XII inverse
Weibull (BXII-IW), Burr XII inverse Rayleigh (BXII-IR) (Hafida and Haitham , 2019),
odd Frechet inverse Weibull (OF-IW) (Fayomi , 2019), Kumaraswamy-Inverse Weibull
(Kw-IW) (Shahbaz, et al. , 2012), W-IW, Weibull and inverse Weibull. For selection of
the optimum distribution, we compute the estimate of goodness of statistics such as
Cramer-von Mises W∗), Anderson Darling (A∗) and Kolmogorov- Smirnov (K-S) statistic
with p-values and various model selection criteria such as the estimate of likelihood
ratio statistic (−2 ˆ̀), Akaike information criterion (AIC), corrected Akaike information
criterion (CAIC) and Bayesian information criterion (BIC) for all competing and sub
distributions. We compute the MLEs for the parameters and their standard errors (SEs)
(in parentheses).

6.1 Daily New COVID-19 Confirmed Cases in Pakistan

The Total Time on Test (TTT) plot for daily new confirmed cases is first convex and
then concave (Figure 3 [left]) which infers shaped modified tub shaped hazard rate.
The boxplot for daily new confirmed cases is positively skewed (Figure 3 [right]). So,
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the BIII-IW distribution is suitable to model daily new confirmed cases data.

Table 3 reports the MLEs (SE) and measures W∗,A∗, K-S (p-values). Table 4 displays
−2 ˆ̀, AIC, CAIC and BIC.

From the Tables 3 and 4, it is clear that our proposed model is best fitted, with the
smallest values for all statistics and maximum p-value.
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Figure 3: The Total Time on Test (TTT) plot (left), Boxplot for daily new COVID-19
confirmed cases in Pakistan (right).

Table 3: MLE (SE) and W∗,A∗, K-S (p-values) for daily new COVID-19 confirmed cases
in Pakistan

Model α β λ η W∗ A∗ K-S p-value
BIII-IW 0.0091 (0.0061) 45.5689 (33.4263) 221.63 (103.29) 0.7314 (0.0602) 0.0496 0.3390 0.0738 (0.8139)
BIII-IR 92.528 (517.01) 0.5135 (0.0473) 20.926 (234.19) —– 0.3859 2.3401 0.1376 (0.1286)
BXII-IW 32.155 (51.379) 2.5230 (2.6114) 7.7965 (12.2749) 0.2313 (0.1453) 0.1726 1.1537 0.1151 (0.2895)
BXII-IR 0.0030 (0.0001) 78.493 (18.875) 5416.41 (128.3) —– 0.5300 3.1422 0.2239 (0.0015)
KIW 89.1834 (54.506) 0.2853 (0.1560) 183.66 (2.5263) 3.5573 (1.7404) 0.3892 2.3574 0.1455 (0.0931)
WIW 0.0034 (0.0009) 0.6860 (0.2698) 5.6749 (3.7754) 1.4694 (0.4970) 0.1604 1.0863 0.1153 (0.2871)
OF-IW —– 0.0680 (0.0377) 10.840 (6.0189) 1.0360 (0.2307) 0.4003 2.4195 0.1404 (0.1147)
BIII 426.272 (218.155) 1.0224 (0.0914) —– —– 0.3875 2.3487 0.138 (0.1265)
IW 423.106 (218.146) 1.0215 (0.0919) —– —– 0.3880 2.351 0.1382 (0.1252)
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Table 4: −2 ˆ̀, AIC, CAIC, BIC and HQIC for daily new COVID-19 confirmed cases in
Pakistan

Model −2 ˆ̀ AIC CAIC BIC HQIC
BIII-IW 1077.652 1085.652 1086.267 1094.646 1089.224
BIII-IR 1111.445 1117.445 1117.809 1124.191 1120.125
BXIII-IW 1095.391 1103.391 1104.006 1112.385 1106.963
BXII-IR 1140.84 1146.84 1147.204 1153.585 1149.519
KIW 1114.757 1122.757 1123.372 1131.751 1126.329
WIW 1098.409 1106.409 1107.025 1115.403 1109.982
OF-IW 1112.548 1118.548 1118.912 1125.293 1121.227
BIII 1111.525 1115.525 1115.704 1120.022 1117.311
IW 1111.547 1115.547 1115.726 1120.044 1117.334

Figure 4 infers that the proposed model is closely fitted to daily new COVID-19
confirmed cases.
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Figure 4: Fitted pdf (left), cdf (center) and P-P(right) plots of the BIII-IW distribution
for daily new COVID-19 confirmed cases in Pakistan

6.2 Daily New COVID-19 Deaths in China

The TTT plot for daily new deaths data is first convex and then concave (Figure 5 [left])
which infers modified tub shaped hazard rate.

The boxplot for daily new deaths due to COVID-19 data is positively skewed
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(Figure 5 [right]). So, the BIII-IW distribution is suitable to model these data.

Figure 6 infers that the proposed model is closely fitted to daily new deaths. Table 5
reports the MLEs (SE) and measures W∗,A∗, K-S (p-values).Table 6 displays −2 ˆ̀, AIC,
CAIC and BIC.

From the Tables 5 and 6, it is clear that our proposed model is best fitted, with the
smallest values for all statistics and maximum p-value.
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Figure 5: The Total Time on Test (TTT) plot (left), Boxplot for daily new deaths due to
COVID-19 in China (right).

Table 5: MLE (SE) and W∗,A∗, K-S (p-values) for daily new COVID-19 confirmed cases
in Pakistan

Model α β λ η W∗ A∗ K-S p-value
BIII-IW 0.0057 (0.0023) 67.6042 (33.9034) 21.8514 (9.4536) 0.6870 (0.0858) 0.0239 0.1749 0.0683 (0.9176)
BIII-IR 5.0489 (2.8062) 0.4807 (0.0403) 12.6634 (14.2521) —– 0.2592 1.6224 0.1276 (0.2324)
BXII-IW 84.976 (250.66) 2.9006 (2.9932) 3.3697 (3.7244) 0.1722 (0.1074) 0.0905 0.7054 0.0914 (0.6402)
BXII-IR 0.4935 (0.1376) 0.6869 (0.1438) 69.5780 (23.8442) —– 0.3968 2.4200 0.196 (0.0126)
KIW 84.9999 (47.6766) 0.5911 (0.8534) 0.0406 (0.1846) 1.5365 (2.2344) 0.2859 1.7669 0.1348 (0.1814)
WIW 0.1212 (0.0675) 0.3714 (0.1894) 139.90 (286.04) 2.7208 (1.4777) 0.0547 0.4410 0.0876 (0.6914)
OF-IW —– 25.4543 (22.2713) 0.7462 (0.0480) 0.0260 (0.0226) 0.2900 1.7893 0.1298 (0.2159)
BIII 15.6815 (3.4122) 0.9489 (0.0810) —– —– 0.2695 1.6797 0.1258 (0.247)
IW 13.5316 (3.1093) 0.9159 (0.0837) —– —– 0.2843 1.7583 0.1284 (0.2263)
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Table 6: −2 ˆ̀, AIC, CAIC, BIC and HQIC for daily new COVID-19 confirmed cases

Model −2 ˆ̀ AIC CAIC BIC HQIC
BIII-IW 629.9200 637.9201 638.5758 646.6787 641.381
BIII-IR 660.2998 666.2997 666.6868 672.8687 668.8954
BXIII-IW 646.6522 654.6523 655.308 663.4109 658.1132
BXII-IR 673.3036 679.3036 679.6906 685.8725 681.8993
KIW 665.4548 673.4548 674.1106 682.2134 676.9158
WIW 640.0214 648.0214 648.6771 656.7800 651.4823
OF-IW 662.657 668.6569 669.044 675.2259 671.2526
BIII 661.3306 665.3306 665.5211 669.7099 667.0611
IW 662.2032 666.2032 666.3936 670.5825 667.9336
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Figure 6: Fitted pdf (left), cdf (center) and P-P(right) plots of the BIII-IW distribution
for daily new COVID-19 confirmed cases in China

7 Conclusion

We proposed a new probability distribution, called BIII-IW distribution, based on
inverse Weibull and Burr III distribution via T-X family method. Its pdf and hrf shapes
have very flexible forms. We studied certain mathematical properties such as random
number generator, sub-models, ordinary moments, conditional moments, residual life
functions, reliability measures and characterizations. We addressed the maximum
likelihood estimation for the BIII-IW parameters and evaluated the precision of the
maximum likelihood estimators via a simulation study. We considered applications to
daily new COVID-19 confirmed cases in Pakistan and daily new COVID-19 deaths in
China. We computed various model selection criteria for the BIII-IW distribution. The
BIII-IW distribution is flexible, competitive and parsimonious with potential for wide
ranging applications.
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