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1 Introduction

In information theory, in order to quantify the lost information in communication
channels a new concept was introduced by Shannon (1948) known as Shannons
entropy, similar to the entropy discussed in statistical thermodynamics. If X is a
non-negative random variable having an absolutely continuous distribution function
F(x) with probability density function f (x), then the entropy of X is defined as

H (X) = −

∞∫
0

f (x) log f (x) dx. (1.1)

H (X) measures the expected uncertainty in f about the predictability of an observation
of X. This measure finds application in various fields such as financial analysis,
data compression, molecular biology, hydrology, meteorology, computer science, and
information theory.

In life testing experiments, if a system has survived up to time t, then obviously
Shannon entropy does not suit well in measuring uncertainty as far as the remaining
lifetime of a system is considered. Accordingly, Ebrahimi (1996) introduced a measure
of uncertainty, known as residual entropy and is defined as

H(X; t) = −

∫
∞

t

f (x)

F(t)
log

f (x)

F(t)
dx, (1.2)

where F(x) is the survival function of X. That is, for the component which has survived
up to time t, (1.2) measures the expected uncertainty contained in the density of residual
lifetime about the predictability of the remaining lifetime of the component.

The measure of uncertainty associated with past lifetime plays an important role
in the context of reliability theory. There are many real situations in which uncertainty
is not necessarily related to the future but can also refer to the past. For instance,
consider a system whose state is observed only at certain preassigned inspection times.
At time t, if the system is inspected for the first time and is found to be ’down’, then the
uncertainty relies on the past, that is, it has failed somewhere on an instant in (0, t).Thus
it seems natural to introduce a notion of uncertainty that is dual to (1.2) in the sense that
it refers to the past time, not to the future time. Based on this idea, Di Crescenzo and
Longobardi (2002) introduced past entropy over (0, t), namely dynamic past entropy
(DPE) and is defined as

H(X; t) = −

∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx. (1.3)
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DPE defined in (1.3) measures the uncertainty about the past life given that the item has
been found failing at time t and can also be interpreted as the entropy of the inactivity
time.

Even though a lot of works have been carried out in the univariate case on the past
entropy function in reference to the residual or future lifetimes, very few works were
seen in higher dimensions. It is therefore of interest to study the reliability aspects of the
multi component system where the lifetimes of individual components are assumed to
be dependent on each other. Hence in such situations, we have to employ multivariate
lifetime distributions such that the reliability characteristics in the univariate case has
to be extended to the corresponding multivariate set up. Accordingly, Ebrahimi et al.
(2007) introduced a measure of uncertainty for the bivariate random variable, known
as joint residual entropy and is defined as

H
(

f , t1, t2
)

= −

∫
∞

t1

∫
∞

t2

f (x1, x2)

F (t1, t2)
log

f (x1, x2)

F (t1, t2)
dx1dx2. (1.4)

The residual entropy (1.4) is the direct extension of (1.2) to the bivariate random
variable and it measures the uncertainty of the remaining lifetimes of the random
variable when the ages of components are t1 and t2. The authors studied several
important properties such as monotonicity of the residual entropy of a system, transfor-
mations that preserve the monotonicity and the order of entropies between two systems.
The results also include the study of information properties of well-known bivariate
lifetime models discussed in Balakrishnan and Lai (2009) such as Marshall Olkin,
McKay bivariate gamma, bivariate Gumbel model, BEC model, and bivariate gamma.

However, when we consider bivariate measures, it should be noted that measureme-
nt based on one component is not affected by the missing or unreliable data on the other
component and hence it is necessary to consider component wise measures subject to
the condition that both of the components exceed the threshold value respectively.
Such a measure will be more reliable as the unreliable data are omitted. With this
motivation, Rajesh et al. (2009) proposed an alternative measure of uncertainty for the
bivariate random variable, known as bivariate vector valued residual entropy and is
defined as

H (X, t1, t2) = (H1 (X1, t1, t2) ,H2 (X2, t1, t2)) , (1.5)

where H1 (X1, t1, t2) and H2 (X2, t1, t2) are given respectively as

Hi

(
Xi, ti, t j

)
= −

∫
∞

ti

f
(
xi | X j > t j

)
F
(
ti | X j > t j

) log
f
(
xi | X j > t j

)
F
(
ti | X j > t j

) dxidx j, i , j = 1, 2.
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Similarly, Abdul-Sathar et al. (2009) proposed a more generalized measure of
uncertainty namely bivariate vector valued generalized residual entropy and is defined
as

Hβ (X, t1, t2) =
(
Hβ

1 (X, t1, t2) ,Hβ
2 (X, t1, t2)

)
, (1.6)

where

Hβ
i

(
X, ti, t j

)
=

1
1 − β

log
∫
∞

ti

 f
(
xi | X j > t j

)
F
(
ti | X j > t j

) 
β

dxi, i , j = 1, 2.

The authors have discussed uniquely determined property of the measure and
established several characterization results for some well-known bivaraite distribtuions
such as, Gumbels bivariate exponential, bivariate Pareto and bivariate beta.

However, some inefficiencies inherited by (1.1) motivated various authors to introd-
uce other suitable measures of information. Recently, Rao et al. (2004) introduced an
alternative measure of uncertainty called cumulative residual entropy (CRE). Asadi and
Zohrevand (2007) extended the concept of CRE for residual life, namely the dynamic
cumulative residual entropy (DCRE) and studied various properties of it. Recently,
Rajesh et al. (2014a), extended DCRE to bivariate setup and studied its different
properties. Some well-known bivariate distributions were also characterized. Several
generalizations to the concept of bivariate DCRE can also be found in Sunoj and Linu
(2012) and Rajesh et al. (2014b). Recently, Kundu and Kundu (2017) have considered
the extension of CPE, a dual measure of CRE to bivariate setup and obtained some of its
properties. The generalized version of cumulative past entropy can be seen in Kundu
and Kundu (2018).

Although the concepts of CRE and CPE have been extended to bivariate set-up, to
the best of our knowledge, it seems that past entropy (1.3) has not been extended yet
to bivariate set-up. In this paper our main aim is to extend DPE defined in (1.3) to
bivariate set-up and study its useful various properties in reliability.

The rest of the paper is organized as follows: in section 2, we provide two definitions
of bivariate past entropy and discussed the relationships of this measure with some
well-known reliability measures. We have also computed the measures for some
bivariate lifetime models. In section 3, we have derived several characterization
results for some bivariate lifetime models. In section 4, we define new classes of
life distributions based on the proposed measure and study various properties of the
new classes. We also proposed a non-parametric kernel estimator for the proposed
measure and illustrated the performance of the estimator using a numerical data in
section 5.
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2 Definition and Properties

In this section, we look into the problem of extending (1.3) to the bivariate setup. One
of the main problems encountered while extending a univariate concept to the higher
dimensions is that it cannot be done in a unique way. Accordingly, several extensions
are possible for (1.3) in the bivariate set-up. A direct extension of (1.3) to the bivariate
set-up is given below.

Definition 2.1. Let X = (X1,X2) be an absolutely continuous random vector with joint
distribution function F(x1, x2),where, for some real numbers a1, b1 and a2, b2 the support
of (X1,X2) is (a1, b1) × (a2, b2), then bivariate DPE is defined as

H (X; t1, t2) = −

t1∫
a1

t2∫
a2

f (x1, x2)
F(t1, t2)

log
f (x1, x2)
F(t1, t2)

dx2dx1, (2.1)

where t1 ≤ b1 and t2 ≤ b2. Alternatively, it can be shown that

H (X; t1, t2) = log F(t1, t2) − 1
F(t1,t2)

×

t1∫
a1

t2∫
a2

f (x1, x2) log f (x1, x2)dx2dx1.

Differentiating (2.1) with respect to t1 and t2 on both sides and simplifying, we have

∂2H(X; t1, t2)
∂t1∂t2

= h(X; t1, t2)
(
1 −H(X; t1, t2) − log h(X; t1, t2)

)
−

[
h1(X1; t1, t2)∂H(X;t1,t2)

∂t2
+ h2(X2; t1, t2)∂H(X;t1,t2)

∂t1

]
+ h1(X1; t1, t2)h2(X2; t1, t2),

where h(X; t1, t2) =
f (t1,t2)
F(t1,t2) is the bivariate reversed hazard rate proposed by Bismi (2005),

hi (Xi; t1, t2) = ∂
∂ti

log F (t1, t2) , i = 1, 2 are the components of the vector valued reversed
hazard rate proposed by Roy (2002). Given that at times t1 and t2, the components are
found to be down, H (X; t1, t2) measures the uncertainty about the past lifetimes of the
components. The next theorem shows that (2.1) is not invariant under non-singular
transformations.

Theorem 2.1. Let X = (X1,X2) and Y = (Y1,Y2) be bivariate random vectors. For a
differentiable one-to-one transformations, Yi = φi(Xi), i = 1, 2,
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H(Y;φ1(t1), φ2(t2)) = H(X;φ−1
1 (t1), φ−1

2 (t2))
− E

[
log J(X1,X2)|X1 < t1,X2 < t2

]
,

where J(X1,X2) =
∣∣∣∣ ∂∂x1

φ1 (x1) ∂
∂x2
φ2 (x2)

∣∣∣∣ is the absolute value of the Jacobian of transformation.

It is to be noted that (2.1) does not determine the joint distribution function uniquely
and has only limited applications. Hence, an alternative measure in the bivariate set-up
is proposed here. Analogous to the vector valued residual entropy function of Rajesh
et al. (2009), we have given below an alternative definition of the vector valued past
entropy function.

Definition 2.2. If X = (X1,X2) denotes the random vector in the support (a1, b1) ×
(a2, b2), admitting an absolutely continuous distribution function, then vector valued
past entropy function is defined as

H(X; t1, t2) =
(
H1(X1; t1, t2),H2(X2; t1, t2)

)
, (2.2)

where

H1(X1; t1, t2) = −

t1∫
a1

∂
∂x1

F (x1, t2)

F (t1, t2)
log

 ∂
∂x1

F (x1, t2)

F (t1, t2)

 dx1, (2.3)

and

H2(X2; t1, t2) = −

t2∫
a2

∂
∂x2

F (t1, x2)

F (t1, t2)
log

 ∂
∂x2

F (t1, x2)

F (t1, t2)

 dx2, (2.4)

where t1 ≤ b1 and t2 ≤ b2. It is to be noted that, Hi(Xi; t1, t2), i = 1, 2 denote the
components of (2.2) and can be interpreted as the marginal past entropy functions of
the conditional random variable (Xi|X1 < t1,X2 < t2). In other words, if the random
vector X denotes the lifetimes of components in a two component system, then (2.3) and
(2.4) measure the uncertainty contained in the conditional distributions of Xi subject to
the condition that the failure of first component has been occured at any time during
(0, t1) and the second, during (0, t2).

Assume Xi, i = 1, 2 are left-tail decreasing in X j and if the univariate marginal
distribution function F j(x j), i , j = 1, 2, have decreasing mean inactivity lifetime, then
it can be easily shown that past entropy function of X j given Xi < ti, i , j = 1, 2 does
not exceed marginal past entropy function of X j. That is

H j(X j; t1, t2) ≤ H j(X j; t j),
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where

H j(X j; t j) = −

t j∫
0

f j(x j)
F j(t j)

log
f j(x j)
F j(t j)

dx j,

are the univariate past entropy functions of X j, j = 1, 2.

From (2.3) and (2.4), we have

H1(X1; t1, t2) = 1 −

t1∫
a1

∂
∂x1

F (x1, t2)

F (t1, t2)
log h1 (x1; t1, t2) dx1, (2.5)

and

H2(X2; t1, t2) = 1 −

t2∫
a2

∂
∂x2

F (t1, x2)

F (t1, t2)
log h2 (x2; t1, t2) dx2, (2.6)

where, hi (Xi; t1, t2) = ∂
∂ti

log F (t1, t2) , i = 1, 2 are the components of the vector valued
reversed hazard rate proposed by Roy (2002). Differentiating (2.5) with respect to t1,
we get

∂
∂t1

H1(X1; t1, t2) = h1 (X1; t1, t2)
(
1 −H1(X1; t1, t2) − log h1 (X1; t1, t2)

)
. (2.7)

Similarly from (2.6), we also get

∂
∂t2

H2(X2; t1, t2) = h2 (X2; t1, t2)
(
1 −H2(X2; t1, t2) − log h2 (X2; t1, t2)

)
. (2.8)

If X = (X1,X2) denote the random vector in the support (a1, b1) × (a2, b2), admitting
an absolutely continuous distribution function F(x1, x2), the bivariate reversed mean
residual life function is defined as a vector,

m (X; t1, t2) = (m1 (X1; t1, t2) ,m2 (X2; t1, t2)) ,

where

mi (Xi; t1, t2) = E [ti − Xi|X1 < t1,X2 < t2] , i = 1, 2; ti > 0.
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For i = 1, we have

m1 (X1; t1, t2) = 1
F(t1,t2)

t1∫
a1

F (x1, t2) dx1. (2.9)

(2.9) represents the expected inactivity time of the first component under the assumption
that both the components were failed before times t1 and t2 respectively. In the similar
way we can interpret the other component too.

The fundamental relationship between bivariate reversed hazard rate and reversed
mean residual life function is given by

hi (Xi; t1, t2) =
1 − ∂

∂ti
mi (Xi; t1, t2)

mi (Xi; t1, t2)
, i = 1, 2. (2.10)

The computation of vector valued past entropy function, defined above, for some
well-known bivariate distributions are given through the following examples.

Example 2.1 Let X be distributed as bivariate uniform distribution with joint distribution
function

F (t1, t2) =
t1t2

bd
, 0 ≤ t1 ≤ b, 0 ≤ t2 ≤ d.

Direct integration of (2.3) and (2.4) gives

Hi (Xi; t1, t2) = log ti, i = 1, 2.

Example 2.2 Let X be distributed as bivariate uniform with joint distribution function,

F (t1, t2) = t1+θ log t2
1 t2, 0 < t1, t2 < 1.

Using (2.3) and (2.4) it follows from straight forward calculations that

Hi (Xi; t1, t2) =
θ log t j

1 + θ log t j
+ log

[
ti

1 + θ log t j

]
, i , j = 1, 2.

Example 2.3 Let X follows bivariate power distribution with distribution function,

F (t1, t2) = t2k2−1
2 t2k1−1+θ log t2

1 , 0 < t1, t2 < 1, k1, k2 > 0.
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Direct integration using (2.3) and (2.4) gives

Hi (Xi; t1, t2) = 2ki−2
2ki−1+θ log t j

+ log

 ti

(2ki−1+θ log t j)
(
t
2ki−2+θ log t j
i

)
 ,

i , j = 1, 2.

Example 2.4 Let X follows bivariate logistic distribution with distribution function,

F (t1, t2) =
(
1 + e−t1 + e−t2

)−1
,−∞ < t1, t2 < ∞. (2.11)

The component wise residual past entropy defined in (2.3) and (2.4) is given by,

Hi (Xi; t1, t2) = 1 + e−ti
(
1 + e−ti + e−t j

)−2
, i , j = 1, 2.

Example 2.5 Let X follow bivariate extreme value distribution with distribution function,

F (t1, t2) = exp
[
− exp [−t1] − exp [−t2]

]
,−∞ < t1 < ∞,

−∞ < t1 < ∞.
(2.12)

The component wise residual past entropy defined in (2.3) and (2.4) is given by,

Hi (Xi; t1, t2) = 1 + ti − e−ti + e−1+ti , i , j = 1, 2.

3 Characterizations

In this section, we give characterization of distributions in terms of bivariate past
entropy function defined in (2.2). The following theorem characterizes the vector
valued past entropy function in the sense that under certain conditions the vector
valued past entropy function uniquely determines the corresponding distribution
function.

Theorem 3.1. If Hi(Xi; t1, t2) is non-decreasing in ti, i = 1, 2, then H(X; t1, t2) defined in (2.2)
uniquely determines the corresponding F(t1, t2).
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Proof. Using equations (2.7) and (2.8), for t1, t2 > 0, we have h1(X1; t1, t2) and h2(X2; t1, t2)
are respectively the positive solutions of the following equations,

g
(
y1

)
= y1

[
1 −H1 (X1; t1, t2) − log y1

]
−
∂
∂t1

H1 (X1; t1, t2) = 0,

and

g
(
y2

)
= y2

[
1 −H2 (X2; t1, t2) − log y2

]
−
∂
∂t2

H2 (X2; t1, t2) = 0.

Proceeding in similar arguments as Belzunce et al. (2004), the above two equations
have positive solutions h1(X1; t1, t2) and h2(X2; t1, t2) respectively for all t1 and t2. Hence
(H1(X1; t1, t2),H2(X2; t1, t2)) uniquely determines (h1(X1; t1, t2), h2(X2; t1, t2)) and thereby
we get the desired result. �

The following theorem, characterizes bivariate reversed exponential distribution by
using the local constancy of vector valued past entropy function with support ai = −∞
and bi < ∞, i = 1, 2.

Theorem 3.2. If X is a random vector in the support (−∞, b1) × (−∞, b2) with bi < ∞,
possessing absolutely continuous distribution function, then

Hi(Xi; t1, t2) + log
(
ci + c3(t j − b j)

)
= 1, i, j = 1, 2, i , j, (3.1)

if and only if

F(t1, t2) = exp [c1 (t1 − b1) + c2 (t2 − b2) + c3 (t1 − b1) (t2 − b2)] , ci > 0.

Proof. For i = 1, when (3.1) holds in the light of (2.5), we have

F(t1, t2) log (c1 + c3(t2 − b2)) =

t1∫
a1

∂
∂x1

F (x1, t2) log h1 (x1; t1, t2) dx1. (3.2)

Differentiating (3.2) with respect to t1 and rearranging the terms, we get

h1 (X1; t1, t2) = c1 + c3(t2 − b2).

The rest of the proof follows from Nair and Asha (2008).
�
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The following theorem is a characterization of bivariate logistic distribution, using
the relation between bivariate reversed mean residual life function and vector valued
past entropy with support ai = −∞ and bi < ∞, i = 1, 2.

Theorem 3.3. If X = (X1,X2) is a random vector in the support R2 with absolutely continuous
distribution function F(t1, t2), and with E(Xi) < ∞, i = 1, 2. Then the relation

Hi (Xi; t1, t2) −
∂
∂ti

mi (Xi; t1, t2) = 1 (3.3)

holds if and only if X has the bivariate logistic distribution defined in (2.11).

Proof. For i = 1, when (3.3) holds in the light of (2.9), we have

H1 (X1; t1, t2) + h1 (X1; t1, t2) m1 (X1; t1, t2) = 2. (3.4)

Differentiating (3.4) with respect to t1 on both sides and using (2.7), we get

∂
∂t1

log

t1∫
a1

F (x1, t2) dx1 =
∂
∂t1

(
log

(
− log h1 (X1; t1, t2)

))
. (3.5)

Integrating (3.5) with respect to t1, we get

∂
∂t1

F (t1, t2) = K1F (t1, t2) (K2 − F (t1, t2)) ,

where K1 and K2 are suitable constants of integration. Solving this differential equation,
the required result is founded. For the if part, suppose X follows (2.11), for i = 1, we
have

h1(X1; t1, t2) = e−t1
(
1 + e−t1 + e−t2

)−1
,

m1 (X1; t1, t2) =
(
1 + e−t1 + e−t2

) (
1 + e−t2

)−1 (
t1 + log

(
1 + e−t1 + e−t2

))
,

and
H1 (X1; t1, t2) = 2 + t1 −m1 (X1; t1, t2) + log

(
1 + e−t1 + e−t2

)
. (3.6)

Using (2.10), we get

∂m1(X1;t1,t2)
∂t1

= 1 − h1 (X1; t1, t2) m1 (X1; t1, t2)

= 1 − e−t1
(
1 + e−t2

)−1 (
t1 + log

(
1 + e−t1 + e−t2

))
.

(3.7)
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Using (3.6) and (3.7), we get

H1 (X1; t1, t2) −
∂
∂t1

m1 (X1; t1, t2) = 1.

Proceeding along the same way we get the result for i = 2. �

The following theorem is a characterization of bivariate extreme value distribution,
using the relation between bivariate reversed mean residual life function and vector
valued past entropy function with support ai = −∞ and bi < ∞, i = 1, 2.

Theorem 3.4. If X = (X1,X2) is a random vector in the support R2 with absolutely continuous
distribution function F(t1, t2), and with E(Xi) < ∞, i = 1, 2. Then the relation

Hi (Xi; t1, t2) + mi (Xi; t1, t2) = 1 + ti, i = 1, 2, (3.8)

holds if and only if X has the bivariate extreme value distribution defined in (2.12).

Proof. When (3.8) holds with i = 1, we get

H1 (X1; t1, t2) + m1 (X1; t1, t2) = 1 + t1.

Using (2.9), we get

t1∫
−∞

F (x1, t2) dx1 = F (t1, t2)
(
(1 + t1) −H1 (X1; t1, t2)

)
.

Differentiating the above equation with respect to t1 on both sides, we get

F (t1, t2) = F (t1, t2)
(
1 − ∂

∂t1
H1 (X1; t1, t2)

)
+ ∂
∂t1

F (t1, t2)
(
1 + t1 −H1 (X1; t1, t2)

)
.

(3.9)

Simplifying (3.9), we get

∂
∂t1

H1 (X1; t1, t2) = h1 (X1; t1, t2)
(
1 −H1 (X1; t1, t2) − log h1 (X1; t1, t2)

)
. (3.10)

Dividing (3.9) by F(t1, t2), we have

1 = 1 −
∂
∂t1

H1 (X1; t1, t2) + h1 (X1; t1, t2)
(
1 + t1 −H1 (X1; t1, t2)

)
. (3.11)



Bivariate Extension of Past Entropy 197

Substituting (3.10) in (3.11) and simplifying, we get

h1 (X1; t1, t2) = e−t1 .

Similarly for i = 2, we get
h2 (X2; t1, t2) = e−t2 .

Hence, we have

log F (t1, t2) = −e−t1 + K1 (t2) .

Similarly for i = 2, we obtain

log F (t1, t2) = −e−t2 + K2 (t1) .

After performing some algebraic calculations, the above expression reduces to

Ki

(
t j

)
= −e−t j , i , j = 1, 2.

Therefore,
F(t1, t2) = exp(−e−t1 − e−t2).

To prove the if part, suppose X follows (2.12), we have

∂
∂t1

F (t1, t2) = e−e−t2 ∂
∂t1

(
e−e−t1

)
= e−t1

(
e−e−t1−e−t2

)
= e−t1F (t1, t2) .

Hence, we get

h1 (X1; t1, t2) =

∂
∂t1

F (t1, t2)

F (t1, t2)
= e−t1 .

Also, it is obvious that

H1 (X1; t1, t2) = 1 −
t1∫

a1

∂
∂x1

F(x1,t2)

F(t1,t2) log h1 (x1; t1, t2) dx1

= 1 −
t1∫

a1

∂
∂x1

F(x1,t2)

F(t1,t2) log (e−x1)dx1

= 1 + t1 −
1

F(t1,t2)

t1∫
a1

F (x1, t2)dx1

= 1 + t1 −m1 (t1, t2) .
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Hence, we have
H1 (X1; t1, t2) + m1 (t1, t2) = 1 + t1.

Proceeding along the same way, we can also get the result for i = 2. �

In the context of analysis of lifetime data, Nair and Rajesh (2000) introduced the
concept of geometric vitality function based on the geometric mean of the residual
lifetime. Abdul-Sathar et al. (2010) extends the same to the bivariate set-up in the
residual life, namely vector valued geometric vitality function. The authors have
characterised some important bivariate models such as bivariate type-I distribution,
Gumbels bivariate exponential distribution, bivariate Pareto type-II, bivariate finite
range distribution and bivariate Weibull distribution using this measure. In a similar
approach, we define the vector valued reversed geometric vitality function for the
random vector X considered in Definition 2.2, as

log G(X; t1, t2) = (log G1(X1; t1, t2), log G2(X2; t1, t2)),

where

log G1 (X1; t1, t2) =

t1∫
a1

log x1

∂F(x1,t2)
∂x1

F (t1, t2)
dx1,

and

log G2 (X2; t1, t2) =

t2∫
a2

log x2

∂F(t1,x2)
∂x2

F (t1, t2)
dx2.

Let X = (X1,X2) be a bivariate random vector, representing the lifetimes of a two
component system, then G (X2; t1, t2) defines the geometric mean of the components of
the random vector X subject to the condition that the first component has failed at any
time during (a1, t1) and the second one during (a2, t2). In survival analysis and reliability
engineering, this measure play a significant role in studying the various characteristics
of a system or component.

In the following theorem, we establish a relationship of vector valued past entropy
with the vector valued bivariate reversed geometric vitality function defined above.
The proof is straight forward and hence is omitted.

Theorem 3.5. If X = (X1,X2) denote the random vector in the support R2 with absolutely
continuous distribution function F(t1, t2), and with E(Xi) < ∞, i = 1, 2. Then the relation

Hi (Xi; t1, t2) + log Gi (Xi; t1, t2) = ki

(
t j

)
, i , j = 1, 2,
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holds if and only if X has the bivariate power distribution given in example 2.3.

4 New Class of Bivariate Life Time Distributions

In this section, we define stochastic orders between two bivariate random vectors based
on bivariate vector valued past entropy function. In the following, we recall some of
the stochastic orders discussed by Shaked and Shanthikumar (2007), which will be
useful in the sequel.

Definition 4.1 F is said to have bivariate decreasing (increasing) reversed hazard rate
BDRHR (BIRHR) if hi(Xi; t1, t2) is decreasing (increasing) in ti, i = 1, 2.

Definition 4.2 The random variables X1 and X2 are said to be left corner set increasing
(LCSI) if P(X1 < x1,X2 < x2|X1 < t1,X2 < t2) is increasing in t1 and t2 for every choice
of x1 and x2.

Definition 4.3 Let X and Y be two non-negative random variables with cumulative
distribution functions F and G and with probability density functions f and g respectively,

then X is said to be smaller than Y in the dispersive order, denoted by Yi
D
≤Xi if G−1F(x)−x

is increasing in x ≥ 0.

Di Crescenzo and Longobardi (2002) introduced the univariate increasing uncertain-
ty of life class (IUL), Nanda and Paul (2006) has given an interesting result that
decreasing reversed hazard rate (DRHR) implies, IUL. In the following, we define
stochastic orders between two bivariate random vectors based on bivariate vector
valued past entropy function.

Definition 4.4 F is said to have bivariate decreasing (increasing) uncertainty past life
BDUPL (BIUPL) if Hi(Xi; t1, t2) is decreasing (increasing) in ti, i = 1, 2.

The following theorem gives an upper bound to bivariate past entropy in terms of
bivariate reversed hazard rate, which is the extension of proposition 2.3 in Di Crescenzo
and Longobardi (2002).

Theorem 4.1. If F is BIUPL,

Hi (Xi; t1, t2) ≤ 1 − log hi (Xi; t1, t2) .
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Proof. The proof follows from using (2.7) and (2.8) respectively. �

In the following theorem, we extend the Proposition 2.2 of Di Crescenzo and
Longobardi (2002).

Theorem 4.2. If F is BDRHR, then F is BIUPL.

Proof. From (2.5) and (2.7) we have,

∂
∂t1

H1 (X1; t1, t2) = h1 (X1; t1, t2)

×

 1
F(t1,t2)

t1∫
0

∂
∂x1

F (x1, t2) log h1 (x1; t1, t2) − log h1 (X1; t1, t2)

 .
If F is BDRHR it is obvious that,

h1 (x1; t1, t2) < h1 (X1; t1, t2) , f or x1 < t1,

Then,

∂
∂t1

H1 (X1; t1, t2) ≥ h1 (X1; t1, t2)

×

 log h1(X1;t1,t2)
F(t1,t2)

t1∫
a1

∂
∂x1

F (x1, t2) dx1 − log h1 (X1; t1, t2)


= 0.

Hence F is BIUPL. �

In Figures 1-4, we plot vector valued residual past entropy for the distributions
given in Examples 2.1-2.4. Intuitively, the graphs identify the BIUPL (BDUPL) classes
of life distributions. Figures 1,4 are examples of BIUPL, classes and Figures 2,3 are
examples of BDUPL classes.
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Figure 1: Graph of vector valued residual past entropy of bivariate uniform distribution
given in Example 2.1 with b = 1 and d = 0.6 for BIUPL.

Figure 2: Graph of vector valued residual past entropy of bivariate uniform distribution
of Example 2.2. with θ = .5 for BDUPL.
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Figure 3: Graph of vector valued past entropy of bivariate power distribution with
k1 = 5 with θ < .5 given in Example 2.3 for BDUPL.

Figure 4: Graph of vector valued residual past entropy of bivariate logistic distribution
given in (2.11) for BIUPL.

Ebrahimi et al. (2007) used the positive dependence in terms of right corner set
increasing (RCSI) to identify the transformation that preserves monotonicity of the
bivariate residual entropy. Similarly, we use left corner set increasing (LCSI) to the
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preserve monotonicity of the bivariate past entropy function respectively.

Theorem 4.3. Let X1 and X2 be LCSI and Yi = φi(Xi), i = 1, 2 be the non-negative increasing
transformations. Assume φi(Xi), i = 1, 2 are concave (convex) and Hi (Xi; t1, t2) , i = 1, 2
to be decreasing (increasing) functions of ti, i = 1, 2 then Hi

(
Yi;φ1(t1), φ2(t2)

)
is decreasing

(increasing) in φi(ti), i = 1, 2.

Proof. Using the definition of bivariate past entropy for Yi,

Hi

(
Yi;φ1 (t1) , φ2 (t2)

)
= Hi (Xi; t1, t2) + E[log

∂
∂xi

(
φ−1

i (Xi) |X1 < t1,X2 < t2

)
]. (4.1)

In (4.1), it has been observed that the second term on the RHS is decreasing as X1 and X2
are LCSI andφi(Xi) are increasing and convex functions. Furthermore by incorporating
the assumption of Hi(Xi; t1, t2) is decreasing one can easily obtain the desired result.
Proceeding in the similar way, we can prove the remaining part also.

If X = (X1,X2) and Y = (Y1,Y2) are the components of two systems, where Yi =
φi(Xi), i = 1, 2. Using the notion of dispersion ordering between Xi and Yi, i=1,2 we
show that this transformation either increases or decreases the uncertainty between
these random variables. �

The following theorem gives sufficient condition for holding the relation between
Hi (Yi; t1, t2) and Hi (Xi; t1, t2).

Theorem 4.4. (a)If Yi
D
≥Xi, i = 1, 2 and if Hi (Xi; t1, t2) is decreasing in ti, i = 1, 2, then

Hi (Yi; t1, t2) ≥ Hi (Xi; t1, t2) . (b)If Yi
D
≤Xi, i = 1, 2 and if Hi (Xi; t1, t2) is decreasing in ti, i =

1, 2, then Hi (Yi; t1, t2) ≤ Hi (Xi; t1, t2) .

Proof. (a)We have

Hi (Yi; t1, t2) = Hi

(
Xi;φ−1

1 (t1) , φ−1
2 (t2)

)
+ E log ∂

∂xi

[
φi (Xi) |X1 < φ−1

1 (t1) ,X2 < φ−1
2 (t2)

]
.

If Yi
D
≥Xi ⇒ φi (ti) ≥ 1⇒ ti > φ−1

i (ti) , i = 1, 2
or

Hi (Yi; t1, t2) ≥ Hi

(
Xi;φ−1

1 (t1) , φ−1
2 (t2)

)
≥ Hi (Xi; t1, t2) f or ti > φ−1

i (ti) .

(b) Proof follows from similar arguments as in (a). �
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Corollary 4.1 If Y = aiXi + bi, 0 ≤ ai ≤ 1, i = 1, 2 and if Hi (Xi; t1, t2) is decreasing in
ti, i = 1, 2, then Hi (Yi; t1, t2) ≥ Hi (Xi; t1, t2) for ai ≤ 1, and if Hi (Xi; t1, t2) is increasing
then Hi (Yi; t1, t2) ≤ Hi (Xi; t1, t2).

The closure of bivariate past entropy ordering under increasing convex transformati-
on is shown in the following theorem.

Theorem 4.5. Let X = (X1,X2) and Y = (Y1,Y2) be two bivariate random vectors with
distribution function F(x1, x2), F(y1, y2); reversed hazard rate hi(Xi; t1, t2) , hi(Yi; t1, t2) and
past entropies Hi(Xi; t1, t2), Hi(Yi; t1, t2) respectively. Let φi(Xi) and φi(Yi), i = 1, 2 where
φi(.), i = 1, 2 are non-negative increasing convex functions,
If (a)hi(Xi; t1, t2) ≤ hi(Yi; t1, t2),∀t1, t2,
and (b)Hi(Xi; t1, t2) ≤ Hi(Yi; t1, t2), then
Hi

(
φi (Xi) ;φ−1

1 (t1) , φ−1
2 (t2)

)
≤ Hi

(
φi (Yi) ;φ−1

1 (t1) , φ−1
2 (t2)

)
.

Proof. Using (4.1), we have

Hi

(
φi (Yi) ;φ−1

1 (t1) , φ−1
2 (t2)

)
−Hi

(
φi (Xi) ;φ−1

1 (t1) , φ−1
2 (t2)

)
= Hi (Yi; t1, t2) −Hi (Xi; t1, t2)

+

 E
(
log ∂

∂yi
φ−1

i (Yi) |Y1 < t1,Y2 < t2

)
−E

(
log ∂

∂xi
φ−1

i (Xi) |X1 < t1,X2 < t2

)  .
If (a) holds, then conditional distribution function of [Yi|Y1 < t1,Y2 < t2] is stochastically
larger than the conditional distribution function of [Xi|X1 < t1,X2 < t2]. If φi(.), i = 1, 2
are non-negative convex and increasing then the terms inside the bracket are clearly
non-negative and finally by using the condition (b) the result is direct. �

5 Non-parametric Estimation

Let (X1i,X2i); i = 1, . . . ,n be n independent and identically distributed pair of lifetimes
with joint distribution function F(x1, x2), respectively. Based on these observations and
using the kernel density ki(.), i = 1, 2, a non-parametric estimate of F(x1, x2) is defined
as

∧

F (x1, x2) =
1

na2
n

n∑
j=1

K1

(
x1 − X1 j

an

)
K2

(
x2 − X2 j

an

)
, (5.1)



Bivariate Extension of Past Entropy 205

where

Ki (z) = an

z∫
0

ki (v) dv, i = 1, 2, (5.2)

and {an} is a non-increasing sequence of positive real numbers such that an → 0 and
nan → ∞, as n → ∞ . Also, kernel estimates of ∂

∂x1
F (x1, x2) and ∂

∂x2
F (x1, x2) are

respectively given as

∧

G1 (x1, x2) =
1

na2
n

n∑
j=1

K1

(
x1 − X1 j

an

)
K2

(
x2 − X2 j

an

)
, (5.3)

∧

G2 (x1, x2) =
1

na2
n

n∑
j=1

K2

(
x2 − X2 j

an

)
K1

(
x1 − X1 j

an

)
, (5.4)

where Ki(.), i = 1, 2 are defined in (5.2). From (2.3) and (2.4), we propose a non-
parametric kernel estimator for vector valued past entropy function as

∧

H1 (X1; t1, t2) = −

t1∫
0

∧

G1 (x1, t2)
∧

F (t1, t2)
log

∧

G1 (x1, t2)
∧

F (t1, t2)
dx1, (5.5)

and

∧

H2 (X2; t1, t2) = −

t1∫
0

∧

G2 (t1, x2)
∧

F (t1, t2)
log

∧

G2 (t1, x2)
∧

F (t1, t2)
dx2, (5.6)

where
∧

F (t1, t2) is given in (5.1),
∧

G1 (t1, x2) and
∧

G2 (x1, t2) are obtained from (5.3) and (5.4).

5.1 Numerical Illustration

In this section, we illustrate the usefulness of the proposed estimators given in (5.5)
and (5.6). Consider the data-set reported by Kim and Kvam (2004), which consists
of the failure times of 20 sample units from a system consisting of three components.
We consider only the failure times of first two components. At each value of (t1, t2),

we calculate the bias and the mean-squared error of
∧

Hi (Xi; t1, t2) i = 1, 2 using 100
bootstrap samples of size 20. Table 1 presents the bootstrap estimates of the bias and
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the mean-squared error for
∧

Hi (Xi; t1, t2) , i = 1, 2. In column 2 of Table 1, we provide

the absolute values of bias of
∧

Hi (Xi; t1, t2) , i = 1, 2 and in column 3, we provide the

mean-squared error for
∧

Hi (Xi; t1, t2) , i = 1, 2.

Table 1: Bootstrap estimates of the bias and the mean-squared error for
∧

Hi (Xi; t1, t2) , i =
1, 2 .

Bias and MSE of
∧

Hi (Xi; t1, t2) , i = 1, 2
(t1, t2) Bias MSE
(2.50, 2.64) (0.1971,

0.1684)
(0.0424,
0.0838)

(3.25, 3.28) (0.1828,
0.3295)

(0.0369,
0.1461)

(2.89, 3.88) (0.2149,
0.2672)

(0.0479,
0.1069)

(1.53, 2.08) (0.1399,
0.1398)

(0.0238,
0.0423)

(1.30, 2.17) (0.1243,
0.2176)

(0.0172,
0.0871)
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