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Abstract. Statistical distributions are very useful in describing and predicting real
world phenomena. Consequently, the choice of the most suitable statistical distribution
for modeling given data is very important. In this paper, we propose a new class of
lifetime distributions called the Weibull Topp-Leone Generated (WTLG) family. The
proposed family is constructed via compounding the Weibull and the Topp-Leone
distributions. It can provide better fits and is very flexible in comparison with the
various known lifetime distributions. Several general statistical properties of the
WTLG family are studied in details including density and hazard shapes, limit behavior,
mixture representation, skewness and kurtosis, moments, moment generating function,
incomplete moment. Different methods have been used to estimate its parameters.
The performances of the estimators are numerically investigated. We have discussed
inference on the new family based on the likelihood ratio statistics for testing some

Hamid Karamikabir (h_karamikabir@yahoo.com)
Corresponding Author: Mahmoud Afshari (afshar@pgu.ac.ir)
Haitham M. Yousof (haitham.yousof@fcom.bu.edu.eg)
Morad Alizadeh (m.alizadeh@pgu.ac.ir)
Gholamhossein G. Hamedani (g.hamedani@mu.edu)



122 H. Karamikabir et al.

lifetime distributions. We assess the performance of the maximum likelihood estimators
in terms of the biases and mean squared errors by means of a simulation study. The
importance and flexibility of the new family are illustrated by means of two applications
to real data sets.

Keywords. Generating Function, Lifetime Distributions, Maximum Likelihood Estimat-
ion, Quantile Function, Topp-Leone Distribution, Weibull Distribution.
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1 Introduction

Although many distributions have been developed, there are always rooms for develop-
ing distributions which are either more flexible or better fit for specific real world
scenarios. This has motivated researchers in seeking and developing new and more
flexible distributions. The statistical literature contains many new classes of distributio-
ns which have been constructed by extending known families of continuous distributio-
ns providing more flexibility via adding one or more parameters to the baseline
model. These new families have been used for modeling data in many applied
areas such as engineering, economics, biological studies, and environmental sciences.
Gupta et al. (1998) defined the exponentiated-G (Exp-G) class which consists of
raising the cumulative distribution function (cdf ) to a positive power parameter and
proposed the exponentiated exponential (EE) distribution with the cdf (for x ≥ 0)
F(x) =

[
1 − exp (−λx)

]α, where λ, α > 0. This cdf is simply the αth power of the
standard exponential cumulative distribution function. Further details were explored
by Gupta, and Kundu (2001).

The generalized distributions were pioneered by Marshall and Olkin (1997), Eugene
et al. (2002), Cordeiro et al. (2013), Alzaatreh et al. (2013), Yousof et al. (2015, 2016,
2018), Brito et al. (2017), Alizadeh et al. (2017, 2018), Nofal et al. (2017), Afify et al.
(2017), Hamedani et al. (2018) and Korkmaz et al. (2017, 2018a, 2018b, 2018c, 2019a,
2019b), among others.

Based on T-X idea (Alzaatreh et al. (2013)), a new extended class called the The
Weibull Topp-Leone Generated (WTLG) family of distributions is defined with cdf
given by

F(x) = 1 − exp

−


[
1 − G(x;ψ)2

]α
1 −

[
1 − G(x;ψ)2

]α

β , x ∈ R, (1.1)
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where α, β > 0 and G(x;ψ) = 1−G(x;ψ). Its corresponding probability density function
(pdf) is

f (x) =
2αβ g(x;ψ)G(x;ψ)

[
1 − G(x;ψ)2

]αβ−1

{
1 −

[
1 − G(x;ψ)2

]α}β+1

× exp

−


[
1 − G(x;ψ)2

]α
1 −

[
1 − G(x;ψ)2

]α

β , x ∈ R. (1.2)

The hazard rate function (hrf) h (x) = f
(
x;ψ

)
/
[
1 − F

(
x;ψ

)]
is

h(x) = 2αβ g(x;ψ)G(x;ψ)
[
1 − G(x;ψ)2

]αβ−1 {
1 −

[
1 − G(x;ψ)2

]α}−(1+β)
. (1.3)

On the other hand, we know that the cdf of the Topp-Leone distribution is given by

FTL−G(x) =
[
1 − (1 − x)2

]b
, 0 ≤ x ≤ 1.

An interpretation of the WTLG family of distributions can be given, in a context similar
to (Cooray (2006)) as follows: Let Y be a lifetime random variable with a certain
continuous distribution G. The odds ratio that an individual (or component) following
the lifetime Y will die (fail) at time x is FTL−G(x)/(1 − FTL−G(x)). Consider that the
variability of this odds of death is represented by the random variable X and assume
that it follows the Weibull model with scale 1 and shape β (Bourguignon et al. (2014)).
We can write

Pr(Y ≤ x) = Pr
(
X ≤

FTL−G(x)
1 − FTL−G(x)

)
= F(x;α, β, ψ),

which is given by equation (1.1).

If U ∼ U(0, 1), then

Xu = QG

1 −

1 −
 [
− log(1 −U)

] 1
β

1 +
[
− log(1 −U)

] 1
β


1
α


1
2
 . (1.4)

The justification for the practicality of WTLG family is based on the wide use of
the W-G family. We are motivated to introduce the WTLG family of distributions
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since it exhibits increasing, decreasing as well as buthtab hazard rates as illustrated
in Figures 2. It is shown in Subsection 3.2 that the WTLG family of distributions can
be viewed as a mixture of the exponentiated-G distributions. The new family can be
viewed as a suitable model for fitting the right-skewed, symmetric and bimodal data
sets. The WTLG family of distributions outperform several of the well-known lifetime
distributions with respect to a real data application as illustrated in Section 8.

This paper is organized as follows. Two special cases are presented in Section 2. In
Section 3, some of the mathematical properties of the new family are derived.. Section
4 deals with characterization of WTLG. Maximum likelihood estimation for the model
parameters under uncensored data are addressed in Section 5. Likelihood ratio test
is studied in Section 6. A simulation study is performed in Sections 7 to assess the
performance of the estimators. In Section 8, the potentiality of the proposed class is
illustrated by means of two real data sets. Finally, Section 9 provides some concluding
remark.

2 Special Cases

In this section we consider two special cases of the proposed family.

2.1 The Weibull Topp-Leone Generated Normal Family (WTLG-N)

Taking G(x;ψ) and g(x;ψ) to be the cdf and pdf of the normal N(µ, σ2) distribution,
respectively in (1.2), where ξ = (µ, σ)T, the WTLG-N density function is given by

f (x) =
2αβφ

( x−µ
σ

)
Φ̄

( x−µ
σ

) [
1 − Φ̄

( x−µ
σ

)2
]αβ−1

{
1 −

[
1 − Φ̄

( x−µ
σ

)2
]α}β+1 exp

−


[
1 − Φ̄

( x−µ
σ

)2
]α

1 −
[
1 − Φ̄

( x−µ
σ

)2
]α


β , x ∈ R, (2.1)

where φ (x) and Φ (x) are the pdf and cdf of the standard normal, respectively. If X
is a random variable with density function (2.1), then it will be denoted by WTLG-
N(α, β, µ, σ).

Figure 1 displays pdf’s of WTLG-N for different parameter values. Figure 1 displays
different skewed density functions including mild and high skewed ones (positive and
negative). The WTLG-N family contains very flexible density function (unimodal and
bimodal) that are useful in fitting real data sets.
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Figure 1: Plots of the density function of WTLG-N(α, β, µ, σ) for selected parameter
values.

2.2 The Weibull Topp-Leone Generated Weibull Family (WTLG-W)

Taking G(x;ψ) and g(x;ψ) as the cdf and pdf of the Weibull distribution with cdf

G(x;λ, k) = 1− e−( x
λ )b

and pdf g(x;λ, b) = b
λ

(
x
λ

)b−1
e−( x

λ )b
, in ((1.2)), where b > 0 is a shape

parameter, λ > 0 is a scale parameter, and ξ = (λ, b)T, the WTLG-W density (x > 0) is

f (x) =
2αβ b

λ

(
x
λ

)b−1
e−2( x

λ )b [
1 − e−2( x

λ )k]αβ−1

{
1 −

[
1 − e−2( x

λ )b
]α}β+1

exp

−


[
1 − e−2( x

λ )b]α
1 −

[
1 − e−2( x

λ )b
]α


β .

Figure 2 displays density and hazed functions of WTLG-W for selected parameter
values.
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Figure 2: Plots of pdf and hazard functions of WTLG-W(α, β, λ, k) for selected parameter
values.

2.3 The Weibull Topp-Leone Generated Generalized Half Normal Family
(WTLG-GHN)

Taking G(x;ψ) and g(x;ψ) as the cdf and pdf of the generalized half normal distribution

(GHN) (Cooray and Ananda (2008)) with cdf G(x;θ, λ) = 2Φ
[(

x
θ

)λ]
− 1 and pdf

g(x;θ, λ) =
√

2
π

(
λ
x

) (
x
θ

)λ
exp

[
−

1
2

(
x
θ

)2λ ]
, in (1.2), with shape parameter λ > 0 and

scale parameter θ > 0, the WTLG-GHN density (x > 0) is

f (x) =

2αβ
√

2
π

(
λ
x

) (
x
θ

)λ
exp

[
−

1
2

(
x
θ

)2λ ] (
2 − 2Φ

[(
x
θ

)λ]) [
1 −

(
2 − 2Φ

[(
x
θ

)λ])2
]αβ−1

{
1 −

[
1 −

(
2 − 2Φ

[(
x
θ

)λ])2
]α}β+1
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× exp


−


[
1 −

(
2 − 2Φ

[(
x
θ

)λ])2
]α

1 −
[
1 −

(
2 − 2Φ

[(
x
θ

)λ])2
]α


β
.

Figure 3 displays density and hazed functions of WTLG-GHN for selected parameter
values.
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Figure 3: Plots of pdf and hazard functions of WTLG-GHN(α, β, θ, λ) for selected
parameter values.

2.4 The Weibull Topp-Leone Generated Lindley Family (WTLG-L)

Taking G(x;ψ) and g(x;ψ) as the cdf and pdf of the Lindley distribution (Lindley, 1958)
with cdf G(x;θ) = 1− θ+1+θx

θ+1 e−θx and pdf g(x;θ) = θ2

θ+1 (x + 1)e−θx, in ((1.2)), where θ > 0
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and x > 0, the WTLG-L density

f (x) =
2αβ θ2

θ+1 (x + 1)e−θx
(
θ+1+θx
θ+1 e−θx

) [
1 −

(
θ+1+θx
θ+1 e−θx

)2
]αβ−1

{
1 −

[
1 −

(
θ+1+θx
θ+1 e−θx

)2
]α}β+1

× exp

−


[
1 −

(
θ+1+θx
θ+1 e−θx

)2
]α

1 −
[
1 −

(
θ+1+θx
θ+1 e−θx

)2
]α


β , x ∈ R. (2.2)

Figure 4 displays density and hazed functions for WTLG-L for selected parameter
values.
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Figure 4: Plots of pdf and hazard functions of WTLG-L(α, β, θ) for selected parameter
values.
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3 Some Mathematical Properties

In this section, we first investigate asymptotic properties of this model and give mixture
representations for cdf and pdf. Then, some mathematical properties of the new model
such as limit behaviors, mixture representation, skewness and kurtosis, moments,
moment generating function, incomplete moment are derived.

3.1 Limit Behavior

Proposition 3.1. Let a = inf{x|F(x;ψ) > 0}, then, the asymptotic of equations (1.1), (1.2) and
(1.3) as x→ a are given by the following:

F(x) ∼
[
2 G(x;ψ)

]α β as x→ a,
f (x) ∼ αβ 2αβ g(x;ψ) G(x;ψ)αβ−1 as x→ a,
h(x) ∼ αβ 2αβ g(x;ψ) G(x;ψ)αβ−1 as x→ a.

Proposition 3.2. The asymptotic of equations (1.1), (1.2) and (1.3) as x→∞ are given by the
following:

1 − F(x) ∼ exp
{
−

[
α Ḡ(x)2

]
)−β

}
as x→∞,

f (x) ∼ 2β α−βg(x;ψ)Ḡ(x;ψ)−2β−1 exp
{
−

[
α Ḡ(x)2

]−β}
as x→∞,

h(x) ∼ 2β α−βg(x;ψ)Ḡ(x;ψ)−2β−1 as x→∞.

3.2 Mixture Representation

Using Taylor and generalized binomial expansions we have

F(x) =

∞∑
i=1

(−1)i+1 (i!)−1


[
1 − G(x;ψ)2

]α
1 −

[
1 − G(x;ψ)2

]α

β i

=

∞∑
i=1

∞∑
j=0

(−1)i+ j+1 (i!)−1
(
−β i

j

) [
1 − G(x;ψ)2

]α β i+α j

=

∞∑
i=1

∞∑
j,l=0

(−1)i+ j+l+1 (i!)−1
(
−β i

j

) ((
β i + j

)
α

l

)
G(x;ψ)2 l
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=

∞∑
i=1

∞∑
j,l=0

2 l∑
d=0

(−1)i+ j+l+d+1 (i!)−1
(
−β i

j

) ((
β i + j

)
α

l

) (
2 l
d

)
G(x;ψ)d

=

2 l∑
d=0

wd Hd(x;ψ),

where,

wk =

∞∑
i=1

∞∑
j,l=0

(−1)i+ j+l+d+1 (i!)−1
(
−β i

j

) ((
β i + j

)
α

l

) (
2 l
d

)
,

and Hd(x;ψ) = G(x;ψ)d is the cdf of the Exp-G family with power parameter d. Also,
we can express the pdf f (x) as follows:

f (x) =

2 l∑
k=0

wd hd(x;ψ), (3.1)

where hd (x) = dg
(
x;ψ

)
G

(
x;ψ

)d−1 is the Exp-G pdf with power parameter d.

3.3 Moments

The rth ordinary moment of X is given by

µ′r = E(Xr) =

2 l∑
d=0

wdE(Yr
d), (3.2)

where Yd denotes the Exp-G distribution with power parameter d. Setting r = 1 in
(3.2), we have the mean of X. The last integration can be carried out numerically for
most parent distributions. The skewness and kurtosis measures can be calculated from
the ordinary moments using well-known relationships. The nth central moment of X,

say Mn, is given by Mn = E(X − µ)n =
n∑

h=0
(−1)h (n

h
)

(µ′1)n µ′n−h. The cumulants (κn) of X

follow recursively from κn = µ′n −
∑n−1

r=0
(n−1

r−1
)
κr µ′n−r, where κ1 = µ′1, κ2 = µ′2 − µ

′2
1 , κ3 =

µ′3 − 3µ′2µ
′

1 + µ′31 , and so on. For the WTLG-W model we have,

µ′r =

2 l∑
d=0

∞∑
h=0

τ(r,d)
h,k Γ

(
1 +

r
k

)
,∀ r > −k, where, τ(r,d)

h,d = τ(r,d)
h wd, and
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τ(r,d)
h = d (−1)i λr (h + 1)−(r+k)/k

(
d − 1

h

)
.

The measures of skewness and kurtosis of the WTLG-N distribution can be obtained
as follows:

Skewness(X) =
µ′3 − 3µ′2µ

′

1 + 2(µ′1)3(
µ′2 − (µ′1)2

) 3
2

=
κ3

κ(3/2)
2

, (3.3)

Kurtosis(X) =
µ′4 − 4µ′1µ

′

3 + 6(µ′1)2µ′3 − 3(µ′1)4

κ2
. (3.4)

The skewness and kurtosis of WTLG-N are given in Table 1 for selected values of α, β,
µ and σ.

When the values of α, β and σ are fixed, the skewness of WTLG-N increases as µ
increases, and the distribution changes from left skewed to right skewed. When the
values of α, β and µ are fixed, the skewness of WTLG-N decreases as σ increases, and
the distribution changes from right skewed to left skewed.

The value of kurtosis for different values of the parameter behaves differently. For
example, when (α, β) = (2, 2) and µ is fixed, the kurtosis of WTLG-N decreases as σ
increases. Plots of skewness and kurtosis of the WTLG-N distribution are displayed in
Figure 5. vspace2mm

3.4 Moment Generating Function

Here, we provide two formulae for the moment generating function MX (t) = E
(
et X

)
of

X. Clearly, the first one can be derived from equation (3.1) as MX (t) =
∑2 l

k=0 wk Mk (t) ,
where Mk (t) is the mgf of Yk. Hence, MX (t) can be determined from the Exp-G
generating functions.
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Table 1: Skewness and kurtosis of WTLG-N for selected values of α, β, µ and σ.

σ = 5 σ = 7 σ = 10

α β µ Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis
0.5 0.5 5 -0.324 2.257 -0.310 2.444 -0.128 1.639

7 0.483 1.846 0.295 1.608 0.301 1.716
10 0.817 2.708 0.723 2.425 0.558 2.146

1 5 -0.235 2.156 -0.211 2.280 -0.103 1.627
7 0.258 1.813 0.245 1.692 0.313 1.819
10 0.429 2.037 0.326 1.997 0.302 1.968

2 5 0.033 1.688 -0.158 1.806 -0.291 1.792
7 0.092 1.578 0.-011 1.648 -0.019 1.799
10 0.849 2.313 0.446 1.819 0.134 1.709

1 0.5 5 -0.249 1.558 -0.661 1.901 -0.967 2.481
7 -0.140 1.808 -0.501 2.265 -0.800 2.840
10 0.304 1.607 -0.029 1.529 -0.343 1.671

1 5 0.359 1.675 -0.174 1.736 -0.658 2.404
7 0.425 1.686 0.0345 1.572 -0.355 1.809
10 1.075 2.742 0.653 1.993 0.276 1.656

2 5 0.867 2.223 0.406 1.663 0.007 1.554
7 0.867 2.222 0.388 1.622 0.048 1.414
10 2.025 6.003 1.519 4.071 1.041 2.775

2 0.5 5 0.662 1.945 0.252 1.448 0.182 1.333
7 0.700 2.005 0.210 1.643 -0.335 1.721
10 0.720 1.963 0.251 1.565 -0.143 1.663

1 5 1.323 3.296 0.843 2.227 0.326 1.672
7 1.324 3.298 0.856 2.240 0.405 1.683
10 1.792 4.687 1.282 3.050 0.768 1.967

2 5 1.888 5.209 1.378 3.449 0.878 2.277
7 1.888 5.209 1.377 3.448 0.860 2.242
10 3.575 15.621 2.899 10.818 2.273 7.266
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Figure 5: Skewness and Kurtosis for WTLG-N.

A second formula for MX (t) follows from (3.1) as MX (t) =
∑2 l

k=0 wk τ (t, k) , where

τ (t, k) =
∫ 1

0 exp [t QG (u)] ukdu and QG(u) is the quantile function (qf) corresponding to
G

(
x;ψ

)
, i.e., QG(u) = G−1(u;ψ). The main application of the first incomplete moment

refer to the mean deviations, and the Bonferroni and Lorenz curves. These curves are
very useful in economics, reliability, demography, insurance, and medicine. For the
WTLG-W model we have,

MX (t) =

2 l∑
d=0

∞∑
r,h=0

Γ (1 + r/k) ,∀ r > −k, where τ(r,d)
h,d,r = τ(r,d)

h (r!)−1 trwd.

3.5 Incomplete Moment

The sth incomplete moment, say ϕs (t), of X can be expressed from (3.1) as

ϕs (t) =

∫ t

−∞

xs f (x) dx =

2 l∑
d=0

wd

∫ t

−∞

xs hd (x) dx. (3.5)
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The mean deviations about the mean and the median are as follows:

δ1 = E(|X − µ′1|) = 2µ
′

1F(µ′1) − 2ϕ1(µ′1),

δ2 = E (|X −M|) = µ′1 − 2ϕ1 (M) ,

where µ′1 = E (X), M = Median(X) = Q(0.5) is the median, F(µ′1) is easily calculated
from (1.1) and ϕ1 (t) is the first incomplete moment given by (3.5) with s = 1. Now,
we provide two ways to determine δ1 and δ2. First, a general equation for ϕ1 (t)
can be derived from (3.5) as ϕ1 (t) =

∑2 l
d=0 wd Jd (x) , where Jd (x) =

∫ t
−∞

x hd (x) dx is
the first incomplete moment of the Exp-G distribution. A second general formula

for ϕ1 (t) is given by ϕ1 (t) =
∑2 l

d=0 wd vd (t) , where vd (t) = d
∫ G(t)

0 QG (u) ud−1du can be
computed numerically. These equations forϕ1 (t) can be applied to construct Bonferroni
and Lorenz curves defined for a given probability π by B(π) = ϕ1

(
q
)

(πµ′1)−1 and

L(π) = ϕ1
(
q
) (
µ′1

)−1
, respectively, where µ′1 = E(X) and q = Q(π) is the qf of X at π. For

the WTLG-W model we have,

ϕs (t) =

2 l∑
d=0

∞∑
h=0

τ(s,d)
h,d γ

(
1 + s/k, λt−k

)
,∀ s > −k,

ϕ1 (t) =

2 l∑
d=0

∞∑
h=0

τ(1,d)
h,d γ

(
1 + 1/k, λt−k

)
,∀ 1 > −k,

where,
τ(s,k)

h,d = τ(s,d)
h wd,

τ(s,d)
h = d (−1)i λs (h + 1)−(s+k)/k

(
d − 1

h

)
,

γ(p, z) =

∫ z

0
xp−1 e−xdx.

4 Characterizations Results

In this section, we present certain characterizations of the WTLG distribution: (i) based
on the ratio of two truncated moments; (ii) in terms of the hazard function and (iii)
based on the conditional expectation of a certain function of the random variable. Note
that (i) can also be employed when the cdf does not have a closed form. We would
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also like to mention that due to the nature of WTLG distribution, our characterizations
maybe the only possible ones. We present our characterizations (i) − (iii) in three
subsections.

4.1 Characterizations Based on Two Truncated Moments

This subsection is devoted to the characterizations of WTLG distribution based on the
ratio of two truncated moments. Our first characterization employs a theorem due to
Glänzel (1987), see Theorem 1 of Appendix B. The result, however, holds also when the
interval H is not closed, since the condition of the Theorem is on the interior of H.

Proposition 4.1. Let X : Ω→ R be a continuous random variable and let

q1 (x) =

{
1−

[
1−G(x;ψ)2

]α}β+1

[
1−G(x;ψ)2

]αβ−α exp




(
1−G(x;ψ)2

)α
1−

(
1−G(x;ψ)2

)α

β
 and q2 (x) = q1 (x)

[
1 − G

(
x;ψ

)2
]α

for x ∈

R. The random variable X has pdf (1.2) if and only if the function ξ defined in Theorem 1 is of
the form

ξ (x) =
1
2

{
1 +

[
1 − G

(
x;ψ

)2
]α}
, x ∈ R.

Proof. Suppose the random variable X has pdf (1.2), then

(1 − F (x)) E
[
q1 (X) | X ≥ x

]
= β

{
1 −

[
1 − G

(
x;ψ

)2
]α}
, x ∈ R,

and

(1 − F (x)) E
[
q2 (X) | X ≥ x

]
=
β

2

{
1 −

[
1 − G

(
x;ψ

)2
]2α

}
, x ∈ R.

Further,

ξ (x) q1 (x) − q2 (x) =
1
2

{
1 −

[
1 − G

(
x;ψ

)2
]α}

> 0, f or x ∈ R.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x) − q2 (x)
=

2αg
(
x;ψ

)
G

(
x;ψ

) [
1 − G

(
x;ψ

)2
]α−1

1 −
[
1 − G

(
x;ψ

)2
]α ,

and consequently
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s (x) = − log
(
1 −

[
1 − G

(
x;ψ

)2
])
, x ∈ R,

Now, according to Theorem 1, X has pdf (1.2).
�

Corollary 4.1. Let X : Ω → R be a continuous random variable and let q1 (x) be as in
Proposition 4.1. The random variable X has pdf (1.2) if and only if there exist functions q2
and ξ defined in Theorem 1 satisfying the following differential equation

ξ′ (x) q1 (x)
ξ (x) q1 (x) − q2 (x)

=
2αg

(
x;ψ

)
G

(
x;ψ

) [
1 − G

(
x;ψ

)2
]α−1

1 −
[
1 − G

(
x;ψ

)2
]α , x ∈ R.

Corollary 4.2. The general solution of the differential equation in Corollary 4.1 is

ξ (x) =
{
1 −

[
1 − G

(
x;ψ

)2
]α}−1

 − ∫
2αg

(
x;ψ

)
G

(
x;ψ

) [
1 − G

(
x;ψ

)2
]α−1
×(

q1 (x)
)−1 q2 (x) dx + D

 ,
where D is a constant. We like to point out that one set of functions satisfying the above
differential equation is given in Proposition 4.1 with D = 1

2 . Clearly, there are other triplets(
q1, q2, ξ

)
which satisfy conditions of Theorem 1.

4.2 Characterization in Terms of Hazard Function

The hazard function, hF, of a twice differentiable distribution function, F, satisfies the
following first order differential equation

f ′(x)
f (x)

=
h′F(x)

hF(x)
− hF(x).

It should be mentioned that for many univariate continuous distributions, the above
equation is the only differential equation available in terms of the hazard function. In
this subsection, we present a non-trivial characterization of WTLG distribution in terms
of the hazard function.

Proposition 4.2. Let X : Ω → R be a continuous random variable. The random variable X
has pdf (1.2) if and only if its hazard function hF (x) satisfies the following differential equation
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h′F (x) +
g
(
x;ψ

)
G

(
x;ψ

)hF (x) = 2αβG
(
x;ψ

) d
dx

 g
(
x;ψ

) [
1 − G

(
x;ψ

)2
]αβ−1

{
1 −

[
1 − G

(
x;ψ

)2
]α}β+1

 , x ∈ R.

Proof. If X has pdf (1.2) , clearly then clearly the above differential equation holds.
Now, if this equation holds, then

d
dx

{
G

(
x;φ

)−1
hF (x)

}
= 2αβ

d
dx

 g
(
x;ψ

) [
1 − G

(
x;ψ

)2
]αβ−1

{
1 −

[
1 − G

(
x;ψ

)2
]α}β+1

 , x ∈ R,

from which we obtain the hazard function corresponding to the density (1.2). �

4.3 Characterization Based on the Conditional Expectation of a Certain
Function of the Random Variable

In this subsection, we employ a single function ψ of X and characterize the distribution
of X in terms of the truncated moment of ψ (X) . The following proposition has already
appeared in Hamedani’s previous work (2013), so we will just state it here which can
be used to characterize WTLG distribution.

Proposition 4.3. Let X : Ω →
(
e, f

)
be a continuous random variable with cd f F . Let

ψ (x) be a differentiable function on
(
e, f

)
with limx→e+ ψ (x) = 1. Then for δ , 1 ,

E
[
ψ (X) | X ≥ x

]
= δψ (x) , x ∈

(
e, f

)
if and only if

ψ (x) = (1 − F (x))
1
δ−1 , x ∈

(
e, f

)
.

Remark 1. For
(
e, f

)
= R, ψ (x) = exp

−


(
1−G(x;ψ)2

)α
1−

(
1−G(x;ψ)2

)α

β
 and δ = 1

2 , Proposition 4.3

provides a characterization of WTLG .
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5 Maximum Llikelihood Estimators

Several methods for parameter estimation exist but the maximum likelihood method
is the most commonly employed. The MLE’s enjoy desirable properties such as
constructing confidence intervals for the model parameters. Large sample theory for
these estimates deliver simple approximations that work well in finite samples. In this
section the maximum likelihood equations for estimating the parameters are calculated.
We evaluate the maximum likelihood estimation through the mean squared error and
bias.

Let x1, ..., xn be the observed values from the WTLG-W distribution with parameters
α, β, λ and k . Let Θ = (α, β, λ, k)> be the 4 × 1 parameter vector. The log-likelihood
function for the vector of parameters Θ = (α, β, λ, k)T, can be written as follows:

`(Θ) = n ln 2 + n lnα + n ln β +

n∑
i=1

ln g(xi;ψ) +

n∑
i=1

ln G(xi;ψ)

+(αβ − 1)
n∑

i=1

ln
[
1 − G(x;ψ)2

]
− (β + 1)

n∑
i=1

ln
{
1 −

[
1 − G(x;ψ)2

]α}

−

n∑
i=1


[
1 − G(x;ψ)2

]α
1 −

[
1 − G(x;ψ)2

]α

β

. (5.1)

The log-likelihood function can be maximized either directly by solving the nonlinear
likelihood equations obtained via differentiating (5.1).

The components of the score function Un(Θ) =
(
∂`(Θ)
∂α , ∂`(Θ)

∂β ,
∂`(Θ)
∂ψ

)>
are the following:

∂ ln(Θ)
∂α = n

α + β
∑n

i=1 ln
[
1 − G(xi;ψ)2

]
−

∑n
i=1

β ln
(
1 − G(xi;ψ)2

) ((
1 − G(xi;ψ)2

)α)β
{
1 −

[
1 − G(xi;ψ)2

]α}β+1

∂ ln(Θ)
∂β = n

β + α
∑n

i=1 ln
[
1 − G(xi;ψ)2

]
−

∑n
i=1 ln

{
1 −

[
1 − G(xi;ψ)2

]α}
−

∑n
i=1


(
1 − G(xi;ψ)2

)α
1 −

(
1 − G(xi;ψ)2

)α

β

ln


(
1 − G(xi;ψ)2

)α
1 −

(
1 − G(xi;ψ)2

)α


∂ ln(Θ)
∂ψ =

∑n
i=1

gi
(ξ)

g(xi;ψ) −
∑n

i=1
Gi

(ξ)

G(xi;ψ) + 2(αβ − 1)
∑n

i=1
g(xi;ψ)G(xi;ψ)

1−G(xi;ψ)2

+(β + 1)
∑n

i=1
2αg(xi;ψ)

[
1−G(xi;ψ)2

]α−1

1−
[
1−G(xi;ψ)2

]α −
∑n

i=1
2αβ g(xi;ψ)G(xi;ψ)

[
1−G(xi;ψ)2

]αβ−1{
1−

[
1−G(xi;ψ)2

]α}β+1 ,
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where g(ξ)
i =

∂g(xi;ψ)
∂ψ and G(ξ)

i =
∂G(xi;ψ)
∂ψ .

5.1 Maximum Likelihood Estimators of Censored Data

Often with lifetime data, one encounters censored data. There are different forms of
censoring: type I censoring, type II censoring, etc. Here, we consider the general case
of multicensored data: there are n subjects of which

• n0 are known to have failed at the times x1, x2, . . . , xn0 .

• n1 are known to have failed in the interval [si−1, si], i = 1, . . . ,n1.

• n2 survived to a time ri, i = 1, . . . ,n2 but not observed any longer.

Note that n = n0 + n1 + n2. Note also that type I censoring and type II censoring are
contained as particular cases of multi censoring. The log-likelihood function for the
vector of parameters Θ = (α, β, λ, k)T for this multi censoring data is as follows;

`(Θ) = n0 ln 2 + n0 lnα + n0 ln β +

n0∑
i=1

ln g(xi;ψ) +

n0∑
i=1

ln G(xi;ψ)

+(αβ − 1)
n0∑
i=1

ln
[
1 − G(x;ψ)2

]
− (β + 1)

n0∑
i=1

ln
{
1 −

[
1 − G(x;ψ)2

]α}

−

n0∑
i=1


[
1 − G(x;ψ)2

]α
1 −

[
1 − G(x;ψ)2

]α

β

+

n1∑
i=1




[
1 − G(si;ψ)2

]α
1 −

[
1 − G(si;ψ)2

]α

β

−


[
1 − G(si−1;ψ)2

]α
1 −

[
1 − G(si−1;ψ)2

]α

β


−

n2∑
i=1


[
1 − G(ri;ψ)2

]α
1 −

[
1 − G(ri;ψ)2

]α

β

.
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It follows that the MLEs are the simultaneous solutions of the equations:

∂ ln(Θ)
∂α = n0

α + β
∑n0

i=1 ln
[
1 − G(xi;ψ)2

]
−

∑n0
i=1

β ln
(
1 − G(xi;ψ)2

) ((
1 − G(xi;ψ)2

)α)β
{
1 −

[
1 − G(xi;ψ)2

]α}β+1

+
∑n1

i=1

{β ln
(
1 − G(si;ψ)2

) ((
1 − G(si;ψ)2

)α)β
{
1 −

[
1 − G(si;ψ)2

]α}β+1

−

β ln
(
1 − G(si−1;ψ)2

) ((
1 − G(si−1;ψ)2

)α)β
{
1 −

[
1 − G(si−1;ψ)2

]α}β+1

}

−
∑n2

i=1

β ln
(
1 − G(ri;ψ)2

) ((
1 − G(ri;ψ)2

)α)β
{
1 −

[
1 − G(ri;ψ)2

]α}β+1
.

∂ ln(Θ)
∂β = n0

β + α
∑n0

i=1 ln
[
1 − G(xi;ψ)2

]
−

∑n0
i=1 ln

{
1 −

[
1 − G(xi;ψ)2

]α}
−

∑n0
i=1


(
1 − G(xi;ψ)2

)α
1 −

(
1 − G(xi;ψ)2

)α

β

ln


(
1 − G(xi;ψ)2

)α
1 −

(
1 − G(xi;ψ)2

)α


+
∑n1

i=1

{ 
(
1 − G(si;ψ)2

)α
1 −

(
1 − G(si;ψ)2

)α

β

ln


(
1 − G(si;ψ)2

)α
1 −

(
1 − G(si;ψ)2

)α


−


(
1 − G(si−1;ψ)2

)α
1 −

(
1 − G(si−1;ψ)2

)α

β

ln


(
1 − G(si−1;ψ)2

)α
1 −

(
1 − G(si−1;ψ)2

)α

}

−
∑n2

i=1


(
1 − G(ri;ψ)2

)α
1 −

(
1 − G(ri;ψ)2

)α

β

ln


(
1 − G(ri;ψ)2

)α
1 −

(
1 − G(ri;ψ)2

)α
 .

∂ ln(Θ)
∂ψ =

∑n0
i=1

gi
(ξ)

g(xi;ψ) −
∑n0

i=1
Gi

(ξ)

G(xi;ψ) + 2(αβ − 1)
∑n0

i=1
g(xi;ψ)G(xi;ψ)

1−G(xi;ψ)2

+(β + 1)
∑n0

i=1

2αg(xi;ψ)
[
1−G(xi;ψ)2

]α−1

1−
[
1−G(xi;ψ)2

]α −
∑n0

i=1

2αβ g(xi;ψ)G(xi;ψ)
[
1−G(xi;ψ)2

]αβ−1{
1−

[
1−G(xi;ψ)2

]α}β+1

+
∑n1

i=1

{
2αβ g(si;ψ)G(si;ψ)

[
1−G(si;ψ)2

]αβ−1{
1−

[
1−G(si;ψ)2

]α}β+1

−
2αβ g(si−1;ψ)G(si−1;ψ)

[
1−G(si−1;ψ)2

]αβ−1{
1−

[
1−G(si−1;ψ)2

]α}β+1

}
−

∑n2
i=1

2αβ g(ri;ψ)G(ri;ψ)
[
1−G(ri;ψ)2

]αβ−1{
1−

[
1−G(ri;ψ)2

]α}β+1 .
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where g(ξ)
i =

∂g(xi;ψ)
∂ψ and G(ξ)

i =
∂G(xi;ψ)
∂ψ .

6 Likelihood Ratio Test

In this section, we apply likelihood ratio test (LRT) for testing the Weibull Topp-
Leone Generated Weibull distribution (WTLG-W) against the other known lifetime
distributions such as The Zografos-Balakrishnan Weibull distribution (ZBW), Marshall-
Olkin Weibull distribution (MOW), and Weibull distribution.

The likelihood ratio statistic can be defined as follows:

Λ(x
˜
) =

sup
θ∈Θ0

L(x
˜
, θ)

sup
θ∈Θ1

L(x
˜
, θ)

=
L(x

˜
, θ̂)

L(x
˜
, ˆ̂θ)

,

where L(x
˜
, θ) is the likelihood function , θ̂, ˆ̂θ are maximum likelihood estimates of θ

under H0 and H1 (null and alternative hypothesis) and x
˜

is the vector of the observations.

We calculate the statisticλ = −2lnΛ, which has an approximate chi-square distribut-
ion with r degrees of freedom (df), where r = (df of alternative hypothesis) − (df of null
hypothesis) by the LRT, we reject the null hypothesis, if λ is larger than a chi-square
100(1-α) percentile with r degree of freedom (χ2

1−α(r)). We use LRT to check if the fit
using WTLG-W distribution is statistically superior to the fits using the ZBW, MOW
and Weibull distributions. In fact, the test is as follows:H0 : x

˜
∼ ZBW or MOWor Weibull,

H1 : x
˜
∼WTLG −W.

(6.1)

7 Simulation Study

7.1 The Maximum Likelihood Estimator

In this section, the maximum likelihood estimators of the parameters of the proposed
density function have been assessed by simulating: (α, β, λ, k) = (2, 2, 3, 2). The density
function has been displayed in Figure 6.

To verify the validity of the maximum likelihood estimator, the bias and the mean
square error of MLE have been used. For example, for (α, β, λ, k) = (2, 2, 3, 2), r = 1000
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times have been simulated samples of n = 20, 21, ..., 110 of WTLG-W(2, 2, 3, 2). To
estimate the numerical value of the maximum likelihood, the optim function (in the stat
package) and Nelder-Mead method in R software have been used. If θ = (α, β, λ, k), for
any simulation by n volume and i = 1, 2, ..., r, the maximum likelihood estimates are
obtained as θ̂i = (α̂i, β̂i, λ̂i, k̂i).

1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

WTLG − W(2, 2, 3, 2)

x

f(
x
)

Figure 6: The density function for the study.

To examine the performance of the MLE’s for the WTLG-W distribution, we perform
a simulation study:

1. Generate r samples of size n from equation (1.2).

2. Compute the MLE’s for the r samples, say (α̂, β̂, λ̂, k̂) for i = 1, 2, . . . , r.

3. Compute the standard errors of the MLE’s for r samples, say (sα̂, sβ̂, sλ̂, sk̂) for
i = 1, 2, . . . , r.

4. Compute the biases and mean squared errors given by Biasθ̂(n) = 1
r

r∑
i=1

(θ̂i − θi)

and MSEθ̂(n) = 1
r

r∑
i=1

(θ̂i − θi)
2
,forθ = (α, β, λ, k). We repeat these steps for r = 1000

and n = 20, 21, . . .n∗ (n∗ is different in each issue) with different values of (α, β, λ, k),
so computing Biasθ̂(n), MSEθ̂(n). Figure 5, 6 respectively reveals how the four
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biases, mean squared errors vary with respect to n. As expected, the Biases and
MSE’s of estimated parameters converge to zero as n increases.
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Figure 7: Bias of α̂, β̂, λ̂, k̂ versus n when (α, β, λ, k) = (2, 2, 3, 2).

7.2 The Other Estimation Methods

There are several approaches to estimating the parameters of distributions, each of
which has its own characteristic features and benefits. In this subsection five of those
methods are briefly introduced and will be numerically investigated in the simulation
study Figure 4. A useful summary of these methods can be seen in Dey et al. (2017).
Here, {ti; i = 1, 2, ...,n} is the associated order statistics and F is the distribution function
of WTLG-W.

7.2.1 Least Squares and Weighted Least Squares Estimators

The Least Squares (LSE) and Weighted Least Squares Estimators (WLSE) were introduc-
ed by Swain et al. (1988). The LSE’s and WLSE’s are obtained by minimizing the
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following functions:

SLSE(α, β, λ, k) =

n∑
i=1

[
F(ti;α, β, λ, k) − i (n + 1)−1

]2
,

SWLSE(α, β, λ, k) =

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(ti;α, β, λ, k) − i (n + 1)−1

]2
.

20 40 60 80 100

0.
0

0.
2

0.
4

n

M
S

E
(α

)

20 40 60 80 100

0.
00

0.
02

0.
04

n

M
S

E
(β

)

20 40 60 80 100

0.
2

0.
6

1.
0

n

M
S

E
(λ

)

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

n

M
S

E
(k

)

Figure 8: MSE of α̂, β̂, λ̂, k̂ versus n when (α, β, λ, k) = (2, 2, 3, 2).

7.2.2 Cramér-von-Mises Estimator

Cramer-von Mise’s Estimator (CME) was introduced by Choi and Bulgren (1968). The
CME’s is obtained by minimizing the following function:

SCME(α, β, λ, k) =
1

12n
+

n∑
i=1

[
F(ti;α, β, λ, k) − (2i − 1) (2n)−1

]2
.
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7.2.3 Anderson-Darling and Right-tailed Anderson-Darling

The Anderson-Darling (ADE) and Right-Tailed Anderson-Darling Estimators (RTADE)
were introduced by Anderson and Darling (1952). The ADE’s and RTADE’s are
obtained by minimizing the following functions:

SADE(α, β, λ, k) = −n −
1
n

n∑
i=1

(2i − 1){log F(ti;α, β, λ, k) + log F(tn+1−i;α, β, λ, k)},

SRTADE(α, β, λ, k) =
n
2
− 2

n∑
i=1

F(ti;α, β, λ, k) −
1
n

n∑
i=1

(2i − 1) log F(tn+1−i;α, β, λ, k).

In order to explore the estimators introduced above, we consider the model that
has been used in this section and investigate bias and MSE of those estimators for
different samples. For instance, according to what has been mentioned above, for
(α, β, λ, k) = (2, 2, 3, 2).

We have simulated r = 1000 times with sample size of the n = 50, 55, 60, · · · , 600
and then the bias and MSE formula, mentioned in Section 7, are calculated for them.
To obtain the values of the estimators, we have used the optima function and Nelder-
Mead method in R. The result of the simulations of this subsection is shown in Figures
9 and 10. It is clear from the bias and MSE plot for two parameters with the increase
in the volume of the sample via all methods will approach zero and this verifies the
validity of these estimation methods and numerical calculations for the parameters of
WTLG-W.

8 Applications

In this section, we present two applications by fitting the WTLG-W as well as some
well-known models. The Akaike information criterion (AIC), Bayesian information
criterion (BIC), Cramer-von Mises (W∗), Anderson-Darling (A∗), Kolmogorov Smirnov
(K.S) and the p-Value of K.S test, have been chosen for comparison of models for the
two examples.

In general, the smaller the values of these statistics, the better fit to the data.
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Figure 9: Bias of α̂, β̂, λ̂, k̂ versus n when (α, β, λ, k) = (2, 2, 3, 2).
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Figure 10: MSE of α̂, β̂, λ̂, k̂ versus n when (α, β, λ, k) = (2, 2, 3, 2).
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The Gamma-Weibull distribution (GaW), Alzaatreh et al. (2014), The Beta-Weibull
distribution (BW), Famoye et al. (2005), The McDonald Weibull distribution (McW),
Hashimoto et al. (2015), Marshall-Olkin Weibull distribution (MOW), Pogany et al.
(2015), The Kumaraswamy Weibull distribution (KwW), Cordeiro et al. (2010) and The
Zografos-Balakrishnan Weibull distribution (ZBW) Nadarajah et al. (2014), have been
selected for comparison via two examples. The parameters of the models have been
estimated by the MLE method.

8.1 Phosphorus Concentration in Leaves Data Set.

This sub-section is related to the study of the soil fertility in influence and the characteriz-
ation of the biologic fixation of N2 for the Dimorphandra wilsonii rizz growth. For 128
plants, they made measures of the phosphorus concentration in the leaves (Fonseca
and Franca (2007)). The data, which have also been analyzed by Silva et al. (2013).
The data set is the following: 0.22,0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23,
0.25, 0.23, 0.24, 0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12,
0.12, 0.10, 0.09, 0.17, 0.19, 0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19, 0.21, 0.22, 0.17,
0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 0.19, 0.27, 0.16, 0.28, 0.11, 0.10, 0.20, 0.12, 0.15, 0.08,
0.12, 0.09, 0.14, 0.07, 0.09, 0.05, 0.06, 0.11, 0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 0.08,
0.22, 0.11, 0.13, 0.12, 0.15, 0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12, 0.18, 0.14, 0.18,
0.13, 0.12, 0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16, 0.19,
0.15, 0.07, 0.09, 0.17, 0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08, 0.12, 0.13.

We apply the WTLG-W to fit the data set and the results are given in Table 2 and
Table 3. In Tables 2 and 3, a summary of the fitted information criteria and estimated
MLE’s for this data with different models are shown, respectively.

The AIC, BIC, W∗, A∗, K.S and P-Value (in Table 2) for the eight distributions are
taken. Models have been sorted from the lowest to the highest value of AIC. As you
see, the WTLG-W is selected as the best model with all criteria. The histogram of the
Phosphorus concentration in leaves data and the plots of fitted pdf for the best model
are displayed in Figure 11. In Figure 12, the plot of uni-modality of profile likelihood
functions of parameters of WTLG-W (α, β, λ, k) is shown.

In Table 4, information about the hypothesis test is at 0.05% for the test hypothesis
in equation (6.1). As indicated in Table 4, the null hypothesis is rejected.
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Table 2: Information criteria for the Phosphorus concentration in leaves data.

Model AIC BIC W∗ A∗ K.S P-Value
WTLG-W -394.47 -383.06 0.05 0.30 0.06 0.797
ZBW -387.81 -379.26 0.76 4.87 1 0
MOW -387.56 -379.02 0.15 0.83 0.09 0.203
Weibull -385.63 -379.93 0.21 1.16 0.12 0.057
GaW -385.56 -374.15 0.88 5.52 1 0
KwW -385.06 -373.65 0.14 0.82 0.10 0.184
McW -382.97 -368.71 0.14 0.80 0.83 0
BW -379.66 -368.25 0.16 1.07 0.09 0.234

Table 3: Estimated MLE’s and Standard errors for the Phosphorus concentration in
leaves data.

Model MLE Standard errors
WTLG-W(α, β, λ, k) (15.80, 0.25, 0.12, 1.90) (7.63, 0.11, 0.02, 0.68)
ZBW(α, λ, k) (8.52, 0.01, 0.89) (0.92, 0.002, 0.05)
MOW(α, λ, k) (0.27, 0.20, 3.59) (0.17, 0.02, 0.40)
Weibull(λ, k) (0.16, 2.82) (0.01, 0.19)
GaW(α, β, λ, k) (18.46, 0.02, 0.61, 0.59) (29.62, 0.01, 1.26, 0.48)
KwW(α, β, λ, k) (8.01, 6.35, 0.09, 0.75) (53.89, 86.70, 0.29, 4.08)
McW(α, β, c, λ, k) (3.45, 10.69, 8.73, 0.03, 0.41) (12.64, 10.38, 21.63, 0.02, 0.16)
BW(α, β, λ, k) (77.74, 1.12, 0.01, 0.58) (114.82, 3.41, 0.004, 0.40)

Table 4: Hypothesis test result for the Phosphorus concentration in leaves data.

Model −2logΛ(x
˜
) P-Value Hypothesis test result

ZBW 8.66 0.003 null hypothesis is rejected
MOW 8.89 0.003 null hypothesis is rejected
Weibull 12.84 0.005 null hypothesis is rejected
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Phosphorus concentration in leaves data.
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Figure 11: Histogram for Phosphorus concentration in leaves data set.

8.2 Lifetimes of 50 Devices Data

This sub-section is related to study of the lifetimes of 50 industrial devices put on life
test at time zero. These data reported in Mudholkar and Srivastava (1993). The data
set are the following:
0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60,
63, 63, 67, 67, 67, 67, 72, 15, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

Similar to the previous application example, we have Tables 5 and 6. As it is clear,
the WTLG-W is selected as the best model with more criteria (AIC, BIC, W∗, A∗). The
histogram of the Lifetimes of 50 Devices data and the plots of fitted pdf are displayed
in Figure 13. In Figure 14, the plot of uni-modality of profile likelihood functions of
parameters of WTLG-W (α, β, λ, k) is shown.

As in the previous example, in Table 7, information about the hypothesis test is at
0.05 % for test hypothesis in equation (6.1). As indicated in Table 7, the null hypothesis
is rejected.
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Figure 12: Uni-modality of profile likelihood functions of parameters of WTLG-W
(α, β, λ, k) for Phosphorus concentration in leaves data set.

Table 5: Information criteria for the Lifetimes of 50 Devices data.

Model AIC BIC W∗ A∗ K.S P-Value
WTLG-W 439.91 447.56 0.09 0.76 0.16 0.158
KwW 451.84 459.48 0.15 1.18 0.14 0.283
McW 459.90 469.46 0.14 1.09 0.62 0
ZBW 462.41 468.15 0.60 3.54 0.87 0
BW 463.60 471.24 0.23 1.57 0.19 0.056
MOW 479.57 485.31 0.36 2.28 0.16 0.179
Weibull 483.25 487.07 0.43 2.70 0.18 0.068
GaW 508.67 516.32 1.42 7.28 1 0
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Table 6: Estimated MLE’s and Standard errors for the Lifetimes of 50 Devices data.

Model MLE Standard errors
WTLG-W(α, β, λ, k) (1.096, 0.099, 63.47, 5.63) (0.2, 0.01, 0.76, 0.003)
KwW(α, β, λ, k) (0.06, 0.26, 59.09, 5.10) (0.02, 0.04, 0.10, 0.22)
McW(α, β, c, λ, k) (0.02, 39.40, 7.51, 96.24, 5.04) (0.01, 59.004, 2.61, 0.93, 0.01)
ZBW(α, λ, k) (0.13, 96.13, 5.22) (0.02, 0.61, 0.003)
BW(α, β, λ, k) (0.13, 0.80, 86.43, 4.97) (0.02, 0.23, 1.45, 0.01)
MOW(α, λ, k) (6.07, 13.96, 0.69) (4.91, 9.25, 0.15)
Weibull(λ, k) (43.47, 0.94) (6.80, 0.12)
GaW(α, β, λ, k) (99.82, 0.01, 54.34, 0.06) (5.58, 0.001, 27.51, 0.01)

Table 7: Hypothesis test result for the Lifetimes of 50 Devices data.

Model −2logΛ(x
˜
) P-Value Hypothesis test result

ZBW 20.51 < 0.00001 null hypothesis is rejected
MOW 37.67 < 0.00001 null hypothesis is rejected
Weibull 43.35 < 0.00001 null hypothesis is rejected

Lifetimes of 50 Devices data.
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Figure 13: Histogram for the Lifetimes of 50 Devices data.
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Figure 14: Uni-modality of profile likelihood functions of parameters of WTLG-W
(α, β, λ, k) for the Lifetimes of 50 Devices data.

9 Concluding Remarks

In this paper, we introduce a new class of lifetime distributions called the Weibull Topp-
Leone Generated (WTLG) family. Some of its mathematical properties are derived.
The maximum likelihood method and five other methods are used for estimating the
parameters. The Bias and MSE of the estimators for all methods will approach zero with
the increase in the volume of the sample which verifies the validity of these estimation
methods. The likelihood ratio test illustrates the goodness of the WTLG family. The
WTLG is applied to fit two real data sets. It can provide better fits than some of the
known lifetime distributions. The importance and flexibility of the new family are
illustrated via applications.

The results of tables and figures have shown the usefulness of the WTLG family for
applied statistical research. R codes are available in the appendix.
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Appendix A: R code

The program is developed in R to obtain the value of CDF function of WTLG-W
distribution:

F_W = function(x,par){
alpha = par[1];beta=par[2] ; lambda=par[3] ; k=par[4]
G = 1-exp(-(x/lambda)^k); Gbar = 1-G
A = (1-(Gbar^2))^alpha
B = 1-exp(-(A/(1-A))^beta)
return(B)}

PDF of WTLG-W distribution:

f_W = function(x,par){
alpha = par[1];beta=par[2] ; lambda=par[3] ; k=par[4]
G = 1-exp(-(x/lambda)^k); Gbar = 1-G
g = (k/lambda)*((x/lambda)^(k-1))*(exp(-(x/lambda)^k))
A = (1-(Gbar^2))^alpha
B = exp(-(A/(1-A))^beta)
C = 2*alpha*beta*g*Gbar*B*((1-(Gbar^2))^(alpha*beta-1))
D = (1-A)^(beta+1)
H = C/D
return(H)}

CDF of WTLG-N distribution:

F_N = function(x,par){
alpha = par[1];beta=par[2] ; mu=par[3] ; sigma=par[4]
G = pnorm(x,mu,sigma); Gbar = 1-G
A = (1-(Gbar^2))^alpha
B = 1-exp(-(A/(1-A))^beta)
return(B)}

PDF of WTLG-N distribution:

f_N = function(x,par){
alpha = par[1];beta=par[2] ; lambda=par[3] ; k=par[4]
G = 1-exp(-(x/lambda)^k); Gbar = 1-G
g = (k/lambda)*((x/lambda)^(k-1))*(exp(-(x/lambda)^k))
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A = (1-(Gbar^2))^alpha
B = exp(-(A/(1-A))^beta)
C = 2*alpha*beta*g*Gbar*B*((1-(Gbar^2))^(alpha*beta-1))
D = (1-A)^(beta+1)
H = C/D
return(H)}

Hazard function:

h = function(x,par) f(x,par)/(1-F(x,par))

The program is developed in R to obtain the value of skewness (kurtosis):

library(moments)
a=seq(2,5,.1)
b=seq(2,5,.1)
G_skew <- function(a, b) {
x <- seq(0, 10, le=2*10^4)
U = f_N(x,c(a,b,3,2))
Skew=skewness(U) #or kurtosis(U)
return(Skew)}
G_skew <- Vectorize(G_skew, c(’a’, ’b’))
Skew <- outer(a,b,G_skew)
persp(a,b,Skew,theta =-45,phi=30,expand=0.5,col ="lightblue",
ticktype="detailed",xlab="alpha",ylab="beta",zlab="Skewness",
main=expression(paste(WTLG-N(alpha,beta,3,2))))

The program is developed in R to generate of WTLG-W distribution (for example
WTLG-W(2,2,3,2)):

r = 1000
n = seq(10,30,1)
p_alpha = 2; p_beta = 2; p_lambda = 3; p_k = 2
sim = c(p_alpha,p_beta,p_lambda,p_k)
F_x = function(x) F_W(x,sim)
inverse = function(u, lower, upper) {
uniroot((function(x) F_x(x)-u),lower=lower,upper=upper)$root}
X_generator = function(n, lower, upper){
U = runif(n,0,1); X = c()
for (i in 1:n){
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X[i]=inverse(U[i], lower, upper)}
return(X)}

The program is developed in R to obtain the value of likelihood function:

LikFun_f = function(x,par){
alpha=par[1];beta=par[2];lambda=par[3];k=par[4]
G = 1-exp(-(x/lambda)^k); Gbar = 1-G
g = (k/lambda)*((x/lambda)^(k-1))*(exp(-(x/lambda)^k))
A = (1-(Gbar^2))^alpha
B = exp(-(A/(1-A))^beta)
C = 2*alpha*beta*g*Gbar*B*((1-(Gbar^2))^(alpha*beta-1))
D = (1-A)^(beta+1)
H = prod(C/D)
return(H)}

The program is developed in R to compute the value of Bias and MSE with r iterate
and sample size n (for example for α parameter):

for (k in 1:length(n)){
for (j in 1:r){
X = X_generator(n[k],0,500)
MLE = optim(par = sim,fn=LikFun_f,x=X)
alpha_mle[j]= MLE$par[1]
bias_alpha1[j] = alpha_mle[j]-p_alpha
MSE1_alpha[j]=(bias_alpha1[j])^2}
bias_alpha[k]= mean(bias_alpha1)
MSE_alpha[k]= mean(MSE1_alpha)}

Appendix B

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval
for some d < b

(
a = −∞, b = ∞ might as well be allowed

)
. Let X : Ω → H be a

continuous random variable with the distribution function F and let q1 and q2 be two
real functions defined on H such that

E
[
q2 (X) | X ≥ x

]
= E

[
q1 (X) | X ≥ x

]
ξ (x) , x ∈ H,
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is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is
twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation ξq1 = q2 has no real solution in the interior of H. Then F is
uniquely determined by the functions q1, q2 and ξ , particularly

F (x) =

∫ x

a
C

∣∣∣∣∣ ξ′ (u)
ξ (u) q1 (u) − q2 (u)

∣∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ =
ξ′ q1
ξq1−q2

and C is the

normalization constant, such that
∫

H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence (see, Glänzel [2]), in particular,
let us assume that there is a sequence {Xn} of random variables with distribution
functions {Fn} such that the functions q1n , q2n and ξn (n ∈N) satisfy the conditions
of Theorem 1 and let q1n → q1 , q2n → q2 for some continuously differentiable real
functions q1 and q2 . Let, finally, X be a random variable with distribution F . Under
the condition that q1n (X) and q2n (X) are uniformly integrable and the family {Fn} is
relatively compact, the sequence Xn converges to X in distribution if and only if ξn
converges to ξ , where

ξ (x) =
E
[
q2 (X) | X ≥ x

]
E
[
q1 (X) | X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is

reflected by corresponding convergence of the functions q1 , q2 and ξ , respectively. It
guarantees, for instance, the ’convergence’ of characterization of the Wald distribution
to that of the Lévy-Smirnov distribution if α→∞.

A further consequence of the stability property of Theorem 1 is the application of this
theorem to special tasks in statistical practice such as the estimation of the parameters
of discrete distributions. For such purpose, the functions q1, q2 and, specially, ξ
should be as simple as possible. Since the function triplet is not uniquely determined
it is often possible to choose ξ as a linear function. Therefore, it is worth analyzing
some special cases which help to find new characterizations reflecting the relationship
between individual continuous univariate distributions and appropriate in other areas
of statistics.
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In some cases, one can take q1 (x) ≡ 1, which reduces the condition of Theorem 1 to
E
[
q2 (X) | X ≥ x

]
= ξ (x) , x ∈ H.We, however, believe that employing three functions

q1 , q2 and ξ will enhance the domain of applicability of Theorem 1.


