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Abstract. In this paper, two-stage and purely sequential estimation procedures are
considered to construct fixed-width confidence intervals for the reliability parameter
under the stress-strength model when the stress and strength are independent exponen-
tial random variables with different scale parameters. The exact distribution of the
stopping rule under the purely sequential procedure is approximated using the law of
large numbers and Monte Carlo integration. For the two-stage sequential procedure,
explicit formulas for the distribution of the total sample size, the expected value and
mean squared error of the maximum likelihood estimator of the reliability parameter
under the stress-strength model are provided. Moreover, it is shown that both proposed
sequential procedures are finite, and in exceptional cases, the exact distribution of
stopping times is degenerate distribution at the initial sample size. The performances
of the proposed methodologies are investigated with the help of simulations. Finally
using real data, the procedures are clearly illustrated.
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1 Introduction

As mentioned in reliability literature, stress-strength models have been described as
an assessment of the reliability of a component or system in terms of variables X
indicating stress undertaken by the system and Y representing the system’s strength
used to endure the stress. Concerning this scenario, the system fails if the stress
surpasses the strength. Thus, R = P(X < Y) is the reliability of a system under the
stress-strength model. Birnbaum (1956) has introduced the main idea associated with
this model. Birnbaum and McCarty (1958) developed this idea using a numerical
procedure. Stress-strength models have received notable attention for many years due
to their applicability in diverse areas such as medicine, physics, genetics, mechanics
as well as in quality control, aerospace engineering, and civil (see, e.g., Domma and
Giordano (2013) and Chapter 7 in Kotz et al. (2003)).

The problem of estimating R has been widely studied under various distributional
assumptions on stress and strength for a variety of data types such as complete data,
censored data, and data with explanatory variables, using Monte-Carlo simulation,
parametric, nonparametric and Bayesian approaches. For instance, when the independ-
ent random variables X and Y follow the two-parameter exponential distribution, Beg
(1980) obtained uniformly minimum variance unbiased estimators (UMVUE) of R.
Kundu and Gupta (2006) proposed the maximum likelihood estimator (MLE), two
bootstrap confidence intervals and Bayesian estimate of R when the Weibull model
holds for stress and strength. When stress and strength are normal or lognormal
random variables, Chiodo (2014) discussed a Bayesian inference method for the
estimation of the reliability parameter under the stress-strength model. Based on
two independent samples from Weinman multivariate exponential distributions with
unknown scale parameters, Cramer and Kamps (1997) obtained UMVUE of P(X < Y)
for both, unknown and known common location parameter, under type-II censoring.
Awad et al. (1981) and Nadarajah and Kotz (2006) considered a bivariate exponential
model for stress and strength.

When stress and strength follow exponential distributions, Tong (1974) derived
minimum variance unbiased estimator (MVUE) of R, also several authors discussed
evaluation of the mean square error (MSE) of MLE of R (see, e.g., Kelley et al. (1976),
and Chao (1982)), Moreover Enis and Geisser (1971) applied Bayesian approach
to estimate R. Mahmoudi et al. (2018) considered minimum risk sequential point
estimation of R and utilized the expected sample size and risk of the sequential
procedure. Comprehensive reviews of frequentist inference for stress-strength models
are given in Johnson (1988). Kotz et al. (2003) have provided a comprehensive review
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of the development of the stress-strength model up to the year 2003. Another review
of stress-strength models and interference models are considered by Patowary et al.
(2013).

Govindarajulu (1974) has considered the sequential procedure for the problem of
obtaining the confidence interval for the parameter R in three cases, the first of which
assumes that (X,Y) follow the bivariate normal distribution and the next two apply the
nonparametric approaches. Bandyopadhyay et al. (2003) considered a nonparametric
fixed-width confidence interval estimation for the parameter R by adopting a partial
sequential sampling scheme. Recently, Mukhopadhyay and Zhuang (2016) have
considered a fixed-accuracy interval for the reliability parameter under a bivariate
exponential model, namely, the Fisher’s Nile example. Bapat (2018) has constructed a
purely sequential estimation methodology to find a fixed-accuracy confidence interval
for the unknown parameter R in two separate cases, where (X,Y) have a bivariate
exponential distribution due to Marshall and Olkin (1967) and Freund (1961).

As far as we are concerned, there has been no research on sequential analysis
for constructing a fixed width confidence interval of the stress-strength reliability
parameter, in which the stress and strength distributions are supposed to be exponential.
A real example in the composites industry is studied, using the stress-strength model to
illustrate the useful application of our proposed method. Referring to Xia et al. (2009),
by using the strengths of two jute fibers possessing two different diameters, say, 10 mm
and 20 mm, the reliability parameter under the stress-strength model is analyzed.

In order to construct an asymptotic, fixed-width 2d confidence interval for the
stress-strength reliability parameter R by using its MLE, we first need to assess how
many samples are needed to construct a 100(1 − α)% confidence interval. We consider
two sequential procedures and seek to answer the question of whether the procedures
attain a prescribed confidence level or not. Regarding this point, the rest of the article
is composed of the following sections. In section 2, Asymptotic and exact confidence
intervals based on a fixed sample size are introduced. Section 3 introduces a two-
stage sequential methodology where the fixed-width 2d(d > 0) confidence interval
is considered. In section 4, a purely sequential procedure is defined, and some
characteristics of its stopping time are discussed. Moreover, an approximation of
the exact distribution of purely sequential procedure, using the law of large numbers
is provided. To clarify the theoretical results of the previous sections, we give some
simulations in Section 5. In section 6, using real datasets, we illustrate the useful
application of our proposed method. Finally section 7, ends with the conclusion.



88 A. khalifeh et al.

2 Asymptotic and Exact Confidence Interval Based on a Fixed
Sample Size

In this section, the inferential procedure about the reliability parameter R = P(X <
Y), where X and Y are independent, and both have exponential distributions with
different scale parameters, is represented based on fixed sample sizes. An exponential
distribution denoted by Exp(θ) has the probability density function (pdf) given as
follows:

f (x;θ) =
1
θ

exp(−
x
θ

), x > 0, θ > 0,

where θ is the scale parameter. Let X ∼ Exp (θ1) be independent of Y ∼Exp(θ2), then
the stress-strength reliability parameter can be expressed as follows:

R = P(X < Y) =
θ2

θ1 + θ2
.

Assume that the scale parametersθ1 andθ2 are both unknown. We want to estimate
stress-strength reliability parameter R = θ2/(θ1 +θ2). Let X1, ...,Xn and Y1, ...,Yn be two
independent random samples from Exp(θ1) and Exp(θ2), respectively. So, the MLE of
R is

R̂n =
Ȳn

X̄n + Ȳn
,

where X̄n = n−1 ∑n
i=1 Xi and Ȳn = n−1 ∑n

i=1 Yi. Considering the multivariate central limit
theorem (CLT), the asymptotic distribution of (X̄n, Ȳn)T is given by

√
n
((

X̄n
Ȳn

)
−

(
θ1
θ2

))
D
−→ N2

(
0,

[
θ2

1 0
0 θ2

2

])
as n −→ ∞,

where N2 denotes bivariate normal distribution and D
−→ stands for convergence in

distribution. So, the asymptotic distribution of R̂n is (see Chapter 7 of Ferguson (1996))

√
n
(
R̂n − R

) D
−→ N

0,
2θ2

1θ
2
2

(θ1 + θ2)4

 as n −→ ∞. (2.1)

Using (2.1) for a given d > 0 and α ∈ (0, 1), a confidence interval for R with length 2d
based on R̂n is In = [R̂n − d, R̂n + d]. Lim et al. (2004) gave a purely sequential fixed-
width confidence interval estimation procedure for a "smooth" function of the two scale
parameters θ1 and θ2 when d −→ 0. Moreover for d sufficiently small Govindarajulu
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(2004) provided a sequential procedure to construct a fixed-width 2d confidence interval
for R when (X,Y) has a bivariate normal distribution with an unknown mean vector
and an unknown covariance matrix. In this case, if one choose d so large, lower and
upper limits of confidence interval In might be negative or greater than 1, respectively.
So, assume that d is sufficiently small (d −→ 0). For the coverage probability (CP) of In
with confidence at least 1 − α, we should have

P (R ∈ In) = P
(∣∣∣∣R̂n − R

∣∣∣∣ ≤ d
)
≥ 1 − α. (2.2)

Let a = Z1−α/2 > 0 be such that Φ(a) = 1−α/2 where Φ(·) is standard normal cumulative
distribution function. For

n∗ =
2a2θ2

1θ
2
2

d2 (θ1 + θ2)4
,

it follows from (2.1) that once n∗ is sufficiently large, for all n > n∗,

P (R ∈ In) = P


∣∣∣∣∣∣∣∣∣∣∣∣
√

n(R̂n − R)√
2θ2

1θ
2
2

(θ1+θ2)4

∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√

nd√
2θ2

1θ
2
2

(θ1+θ2)4


≥ P


∣∣∣∣∣∣∣∣∣∣∣∣
√

n(R̂n − R)√
2θ2

1θ
2
2

(θ1+θ2)4

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ a

 ≈ 1 − α,

that is, n∗ is the optimal (smallest) fixed sample size, which approximately satisfies
(2.2). The exact coverage probability of In is given in the following theorem.

Theorem 2.1. Let CP(R) = P(R − d ≤ R̂n ≤ R + d), then

CP(R) =

Fθ1,θ2

(
1

R−d − 1; n
)
− Fθ1,θ2

(
1

R+d − 1; n
)

R > d
1 − Fθ1,θ2

(
1

R+d − 1; n
)

R ≤ d,
(2.3)

where Fθ1,θ2 (.; n) is the cumulative distribution function (CDF) of random variable Tn =
X̄n/Ȳn.

Proof. The proof involves looking at CDF of random variable Tn. Let Po(·;µ) denotes
the cumulative distribution function of a Poisson distribution with mean µ. Assume
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that X ∼ G(h; 1) in which G(h; 1) stands for a gamma random variable with the shape
parameter h and scale parameter 1. The gamma-Poisson formula (see Kao (1997), p.
51 ) is given by

P(X > x) = Po(h − 1; x), 0 ≤ x < ∞. (2.4)

Let Fθ1,θ2(t; n) = P (Tn ≤ t), according to the iterative expectation formula, we have

Fθ1,θ2(t; n) = P


n∑

i=1
Xi

n∑
i=1

Yi

≤ t


= E

E

 I


n∑

i=1
Xi

θ1
≤

t
n∑

i=1
Yi

θ1


∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

Yi


 ,

where I{} is the indicator function. Given that θ−1
1

∑n
i=1 Xi ∼ G(n, 1), X̄n and Ȳn are

independent and also using gamma-Poisson formula (2.4), we have

E

 I


n∑

i=1
Xi

θ1
≤

t
n∑

i=1
Yi

θ1


∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

Yi = y

 = P


n∑

i=1
Xi

θ1
≤

ty
θ1


= 1 −

n−1∑
j=0

(
yt

) j exp
{
−

yt
θ1

}
θ

j
1 j!

.

Therefore,

Fθ1,θ2(t; n) = 1 − E


n−1∑
j=0

(
t

n∑
i=1

Yi

) j

exp

−
t

n∑
i=1

Yi

θ1


θ

j
1 j!


= 1 −

n−1∑
j=0

1

θ
j
1 j!

E


t

n∑
i=1

Yi


j

exp

−
t

n∑
i=1

Yi

θ1


 .
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Now let U = t
∑n

i=1 Yi, obviously U ∼ G(n, 1/(tθ2)), so

E
[
U j exp{

−U
θ1
}

]
=

∫
∞

0

(tθ2)−n

Γ(n)
un−1 exp{

−u
tθ2
}u j exp{

−u
θ1
}du

=

∫
∞

0

(tθ2)−n

Γ(n)
un+ j−1 exp{−u(

1
θ1

+
1

tθ2
)}du

=
Γ(n + j)

Γ(n)
(tθ2)−n(

tθ1θ2

tθ2 + θ1
)n+ j

=
(n + j − 1)!

(n − 1)!
(

tθ1θ2

tθ2 + θ1
) j(

θ1

tθ2 + θ1
)n.

Hence, for t > 0

Fθ1,θ2(t; n) = 1 −
n−1∑
j=0

(n + j − 1)!

θ
j
1 j!(n − 1)!

(
tθ1θ2

tθ2 + θ1
) j(

θ1

tθ2 + θ1
)n

= 1 −
n−1∑
j=0

(
n + j − 1

n − 1

) ( tθ2

tθ2 + θ1

) j(
θ1

tθ2 + θ1

)n
,

equals 0 for t ≤ 0. Remember that Tn is a positive random variable. On the other hand,

CP(R) = P(R − d ≤ R̂n ≤ R + d)

= P(R − d ≤
1

1 + X̄n
Ȳn

≤ R + d)

=

P(Tn ≤
1

R−d − 1) − P(Tn ≤
1

R+d − 1) R > d
1 − P(Tn ≤

1
R+d − 1) R ≤ d,

which completes the proof. �

CDF of the random variable Tn and Theorem 2.1 will come into use in the next
section and along with defining stopping rule (2.5). The required sample size to obtain
an exact coverage probability greater than 1 − α is

ñ (R) = min {n ≥ 1|CP(R) ≥ 1 − α} . (2.5)

Stopping rule (2.5), in which R̂n = Ȳn/(X̄n + Ȳn) is substituted for R, is too complicated
and is asymptotically equivalent to the classical stopping rules based on the asymptotic
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coverage probability. We often have the required coverage when n ≥ n∗ also in small
and medium-size samples. As an example, for α = 0.05, θ1 = 1 and θ2 = 2, by
substituting n∗ for n in (2.3), the results summarized as in Table 1 are acquired.

Table 1: Exact coverage probability for different values of n∗.

d n∗ CP(R)
0.1377 20 0.9517
0.0616 100 0.9503
0.0436 200 0.9501
0.0275 500 0.9500
0.0195 1000 0.9500

If θ1 and θ2 are known, consequently the asymptotically smallest sample size is
known, and no sequential methods is needed to be applied. The problem of sequential
estimation arises when the parameters are unknown. Therefore, two procedures,
namely two-stage sequential and purely sequential procedures, are considered for
this problem.

3 Two-Stage Sequential Procedure for Fixed-Width Confidence
Interval Estimation of the Stress-Strength Reliability Parame-
ter

Let X1, ...,Xm and Y1, ...,Ym be pilot samples of Exp(θ1) and Exp(θ2), respectively. The
statistical and mathematical principles relating to the two-stage procedures have been
given by Stein (1945) and are used here to define the stopping rule as follows:

Nm = max


 2a2X̄2

mȲ2
m

d2(X̄m + Ȳm
)4

 + 1,m

 , (3.1)

where bxc denotes the largest integer less than x. If Nm = m, we do not take any more
observations at the second stage. On the other hand, if Nm > m, the initial samples
do not suffice and we then sample the difference (N − m) at the second stage. Finally,
sampling stops with X1, ...,XNm , Y1, ...,YNm , and interval INm = [R̂Nm−d, R̂Nm +d] based on
all the 2Nm samples is proposed for R. Our next goal is to determine the distribution of
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Nm using CDF of Tn and Theorem 2.1, in which the next result deals with this problem.
Throughout this paper, n is an integer number. For each n < ba2/(8d2)c+1, an and bn are
the real-valued roots of the quadratic equation of the form x2

− (
√

2a2/(d2l)−2)x+1 = 0,
in which l = n, (an < bn).

Theorem 3.1. we have the following results:

(i) The probability mass function (PMF) of Nm, in a two-stage procedure is given by

P(Nm = m) =


1 − Fθ1,θ2(bm; m) + Fθ1,θ2(am; m) m <

⌊
a2

8d2

⌋
+ 1

1 m ≥
⌊

a2

8d2

⌋
+ 1,

(ii) If m <
⌊

a2

8d2

⌋
+ 1, then the PMF becomes

P(Nm = n) =


An m + 1 ≤ n <

⌊
a2

8d2

⌋
+ 1

Fθ1,θ2(b⌊
a2

8d2

⌋; m) − Fθ1,θ2(a⌊
a2

8d2

⌋; m) n =
⌊

a2

8d2

⌋
+ 1

0 n >
⌊

a2

8d3

⌋
+ 1,

where An = Fθ1,θ2(bn−1; m) + Fθ1,θ2(an; m) −
(
Fθ1,θ2(bn; m) + Fθ1,θ2(an−1; m)

)
.

Proof. (i) Using the CDF of Tn and stopping variable (3.1), we have

P (Nm = m) = P

 2a2X̄2
mȲ2

m

d2(X̄m + Ȳm
)4
≤ m


= P

T2
m −


√

2a2

d2m
− 2

 Tm + 1 ≥ 0

 . (3.2)

Let ∆ be equal to the discriminant of the quadratic equation inside (3.2). If ∆ is non-
positive, then P(Nm = m) = 1. ∆ is non-positive when m ≥ a2/(8d2). It means Nm has
a degenerate distribution at m if and only if m ≥ ba2/(8d2)c + 1. ∆ is positive when
m < ba2/(8d2)c + 1, so

P (Nm = m) = P

T2
m −


√

2a2

d2m
− 2

 Tm + 1 ≥ 0


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= 1 − P (am ≤ Tm ≤ bm)

= 1 − Fθ1,θ2(bm; m) + Fθ1,θ2(am; m).

(ii) If m ≥ ba2/(8d2)c + 1, then Nm has a degenerate distribution at initial sample size m
and consequently P(Nm = n) = 0 for each n , m. For m < ba2/(8d2)c + 1, the proof is as
follows:

P (Nm = n) = P

n − 1 ≤
2a2X̄2

mȲ2
m

d2(X̄m + Ȳm
)4
≤ n


= P

 2a2X̄2
mȲ2

m

d2(X̄m + Ȳm
)4
≤ n

 − P

 2a2X̄2
mȲ2

m

d2(X̄m + Ȳm
)4
≤ n − 1


= P

T2
m −


√

2a2

d2n
− 2

 Tm + 1 ≥ 0


− P

T2
m −


√

2a2

d2(n − 1)
− 2

 Tm + 1 ≥ 0

 . (3.3)

The first term on the right hand side of (3.3) is equal to 1 when n ≥ a2/(8d2) and
the second one is equal to 1 when n ≥ a2/(8d2) + 1. So for each n > ba2/(8d2)c + 1,
P(Nm = n) = 0. Let n = ba2/(8d2)c + 1, then

P (Nm = n) = P

T2
m −


√

2a2

d2n
− 2

 Tm + 1 ≥ 0


− P

T2
m −


√

2a2

d2(n − 1)
− 2

 Tm + 1 ≥ 0


= 1 − [1 − P (an−1 ≤ Tm ≤ bn−1)]
= Fθ1,θ2(bn−1; m) − Fθ1,θ2(an−1; m)
= Fθ1,θ2(bba2/(8d2)c; m) − Fθ1,θ2(aba2/(8d2)c).

Finally, for each m + 1 ≤ n < ba2/(8d2)c + 1,

P (Nm = n) = P

T2
m −


√

2a2

d2n
− 2

 Tm + 1 ≥ 0


− P

T2
m −


√

2a2

d2(n − 1)
− 2

 Tm + 1 ≥ 0


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= P (an−1 ≤ Tm ≤ bn−1) − P (an ≤ Tm ≤ bn)

= Fθ1,θ2(bn−1; m) + Fθ1,θ2(an; m) −
(
Fθ1,θ2(bn; m) + Fθ1,θ2(an−1; m)

)
.

�

Theorem 3.1 summarizes by saying that, if starting sample size m ≥ ba2/(8d2)c + 1,
then the random variable Nm has a degenerate distribution at the initial sample size m.
Nm is finite and attains values m, ..., ba2/(8d2)c + 1 when m < ba2/(8d2)c + 1. Stopping
rule Nm is the estimate of the unknown optimum sample size n∗, so we are interested
in computing the expectation of this random variable. The next theorem deals with
the expectation of the stopping rule Nm for the case m < ba2/(8d2)c + 1, because if
m ≥ ba2/(8d2)c+1, it has been proved in part (i) of Theorem 3.1 that Nm has a degenerate
distribution at m and hence E [Nm] = m. The following Lemma will help us to compute
the expectation of random variable Nm.

Lemma 3.1. The cumulative distribution function of Nm is

P (Nm ≤ k) =



0 k < m

1 − Fθ1,θ2(b〈k〉; m) + Fθ1,θ2(a〈k〉; m) m ≤ k <
⌊

a2

8d2

⌋
+ 1

1 k ≥
⌊

a2

8d2

⌋
+ 1.

(3.4)

Where 〈x〉 denotes the greatest integer less than or equal to x.

Proof. If k < m or k ≥ ba2/(8d2)c + 1, the proof is evident and the details are avoided.
For the case in which m ≤ k < ba2/(8d2)c + 1, the proof is as follows:

P (Nm ≤ k) =

〈k〉∑
i=m

P (Nm = i)

= P (Nm = m) +

〈k〉∑
i=m+1

P (Nm = i),

note that
∑
〈k〉
i=m+1 P(Nm = i), is a telescoping series, so we have

〈k〉∑
i=m+1

P (Nm = i) = Fθ1,θ2(bm; m) − Fθ1,θ2(am; m) + Fθ1,θ2(a〈k〉; m) − Fθ1,θ2(b〈k〉; m). (3.5)
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Therefore,

P (Nm ≤ k) = P (Nm = m) +

〈k〉∑
i=m+1

P (Nm = i)

= 1 − Fθ1,θ2(b〈k〉; m) + Fθ1,θ2(a〈k〉; m).

�

Theorem 3.2. For the case m < ba2/(8d2)c + 1, the expectation of the stopping variable Nm is
given as

E [Nm] = m +

ba2/(8d2)c+1∑
i=m+1

(
Fθ1,θ2(bi−1; m) − Fθ1,θ2(ai−1; m)

)
. (3.6)

Proof. Since Nm is a discrete random variable with support m,m + 1, ..., ba2/8d2
c + 1,

therefore,

E [Nm] = m +

ba2/(8d2)c+1∑
i=m+1

P (Nm ≥ i). (3.7)

Now using Lemma 3.1, we have

P (Nm > k) =



1 k < m

Fθ1,θ2

(
b〈k〉; m

)
− Fθ1,θ2

(
a〈k〉; m

)
m ≤ k < b a2

8d2 c + 1

0 k ≥ b a2

8d2 c + 1.

(3.8)

Hence,

E [Nm] = m +

ba2/(8d2)c+1∑
i=m+1

P (Nm ≥ i)

= m + P(Nm > m) + P(Nm > m + 1) + · · · + P(Nm >
⌊
a2/(8d2)

⌋
)

= m +

ba2/(8d2)c+1∑
i=m+1

(
Fθ1,θ2 (bi−1; m) − Fθ1,θ2 (ai−1; m)

)
.

�
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Theorem 3.3. The first and second moments of R̂Nm are, given respectively by

E
[
R̂Nm

]
=

ba2/(8d2)c+1∑
n=m

k(n, ρ)
B(n,n)

P (Nm = n), (3.9)

where

k
(
n, ρ

)
=

∫ 1

0

tn(1 − t)n−1

ρ +
(
1 − ρ

)
t
dt,

ρ = θ1/θ2 and B(·, ·) is Euler’s integral of the first kind (also known as beta function), and

E
[
R̂2

Nm

]
=

ba2/8d2c+1∑
n=m

[(
n(1 + ρ)

1 − ρ
+ 1

)
k(n, ρ)
B(n,n)

−
n

1 − ρ

]
P (Nm = n) . (3.10)

Proof. According to Sathe and Shah (1981), we have

E
[
R̂n

]
=

k(n, ρ)
B(n,n)

,

and

E
[
R̂2

n

]
=

(
n(1 + ρ)

1 − ρ
+ 1

)
k(n, ρ)
B(n,n)

−
n

1 − ρ
.

So, E[R̂Nm] and E[R̂2
Nm

] are given, respectively by

E
[
R̂Nm

]
= E

{
E
[
R̂Nm

∣∣∣∣ Nm

]}
= E

[
k(Nm, ρ)

B(Nm,Nm)

]

=

ba2/8d2c+1∑
n=m

k(n, ρ)
B(n,n)

P (Nm = n),

and

E
[
R̂2

Nm

]
= E

{
E
[
R̂2

Nm

∣∣∣∣ Nm

]}
= E

[(
Nm(1 + ρ)

1 − ρ
+ 1

)
k(Nm, ρ)

B(Nm,Nm)
−

Nm

1 − ρ

]
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=

ba2/(8d2)c+1∑
n=m

[(
n(1 + ρ)

1 − ρ
+ 1

)
k(n, ρ)
B(n,n)

−
n

1 − ρ

]
P (Nm = n) .

�

Using Theorem 3.3 the MSE of R̂Nm according to R is given by

MSE
[
R̂Nm

]
= E

[
R̂2

Nm

]
− 2RE

[
R̂Nm

]
+ R2. (3.11)

Theorem 3.4. The coverage probability (R̂Nm − d, R̂Nm + d) is as follows:

CP(R) =

ba2/(8d2)c+1∑
n=m

(
Fθ1,θ2(

1
R − d

− 1; n) − Fθ1,θ2(
1

R + d
− 1; n)P (Nm = n)

)
I {R > d}

+

ba2/(8d2)c+1∑
n=m

(
1 − Fθ1,θ2(

1
R + d

− 1; n)P (Nm = n)
)

I {R ≤ d}. (3.12)

Proof. Using Theorem (2.1) and iterative expectation formula, we have

CP(R) = P
(
R − d ≤ R̂Nm ≤ R + d

)
= E

{
E
[
I{R − d ≤ R̂Nm ≤ R + d}

∣∣∣ Nm
]}

= E[
(
Fθ1,θ2(

1
R − d

− 1; Nm) − Fθ1,θ2(
1

R + d
− 1; Nm)

)
I {R > d}

+
(
1 − Fθ1,θ2(

1
R + d

− 1; Nm)
)

I {R ≤ d}]

=

ba2/8d2c+1∑
n=m

(
Fθ1,θ2(

1
R − d

− 1; n) − Fθ1,θ2(
1

R + d
− 1; n)P (Nm = n)

)
I {R > d}

+

ba2/8d2c+1∑
n=m

(
1 − Fθ1,θ2(

1
R + d

− 1; n)P (Nm = n)
)

I {R ≤ d}.

�

4 Purely Sequential-Based for Fixed-Width Confidence Interval
Estimation of the Stress-Strength Reliability Parameter

Stein’s two-stage procedure ( Stein (1945)) is considered one of the most exciting and
practical sequential procedure for hypotheses testing and estimation. This procedure
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estimates the required sample size, Nm using a small number of observations as,
m. However, the procedure tends to oversample and the amount of oversampling
increases with the increase in (Nm − m). To reduce oversampling by the two-stage
procedure, we have to proceed the estimation of R successively in a sequential manner.
We begin with a few observations (say, m > 2) and then we continue to take one
additional observation at-a-time, but terminate sampling when we have gathered
enough observations. As soon as a sample size exceeds the corresponding estimate of
n∗, the sampling is terminated right there, and an interval estimator of R is constructed.
In this section, a sequential procedure for estimating the stress-strength reliability
parameter for exponential distributions is proposed, and using the law of large numbers,
the characteristics of its stopping time are depicted. First, note that

Nd = min

n ≥ m

∣∣∣∣∣∣n ≥ 2a2X̄2
nȲ2

n

d2 (
X̄n + Ȳn

)4

 , (4.1)

in which m ≥ 2 is the starting (or pilot) sample size. Nd can be expressed in terms of
Tn = X̄n/Ȳn as follows:

Nd = min

n ≥ m

∣∣∣∣∣∣
(
X̄n + Ȳn

)4

X̄2
nȲ2

n
≥

2a2

nd2


= min

n ≥ m

∣∣∣∣∣∣∣T2
n − (

√
2a2

nd2 − 2)Tn + 1 ≥ 0

 . (4.2)

Note that there is no real solution to the quadratic equation inside (4.2) for n > a2/8d2.

Theorem 4.1. Let al and bl be the real-valued roots of the quadratic equation inside (4.2) for
n = l, such that al < bl, then

(i)

P(Nd = m) =


1 − P (am ≤ Tm ≤ bm) m <

⌊
a2

8d2

⌋
+ 1

1 m ≥
⌊

a2

8d2

⌋
+ 1,

(ii)

P(Nd ≤ k) =


0 k < m

1 − P
(
〈k〉⋂

i=m
{ai ≤ Ti ≤ bi}

)
m ≤ k <

⌊
a2

8d2

⌋
+ 1

1 k ≥
⌊

a2

8d2

⌋
+ 1.
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Proof. (i) The discriminant of the quadratic equation inside (4.2) is non-positive for,
n ≥ a2/(8d2). It means that for each n ≥ a2/(8d2) , T2

n − (
√

2a2/(nd2) − 2)Tn + 1 ≥ 0. So
for each n ≥ m ≥ ba2/(8d2)c + 1, the quadratic equation inside (4.2) is non-negative.
Therefore, the minimum n ≥ m such that T2

n − (
√

2a2/(nd2) − 2)Tn + 1 ≥ 0 is m itself.
Thus if m ≥ ba2/(8d2)c + 1, then P(Nd = m) = 1 and if m < ba2/(8d2)c + 1,

P(Nd = m) = P

T2
m − (

√
2a2

md2 − 2)Tm + 1 ≥ 0


= 1 − P(am ≤ Tm ≤ bm).

(ii) It is apparent that P(Nd ≤ k) = 0 if k < m. For m ≤ k <
⌊
a2/(8d2)

⌋
+ 1,

P (Nd > k) = P(Nd , m, ...,Nd , k)

= P

 〈k〉⋂
i=m

T2
i − (

√
2a2

id2 − 2)Tn + 1 < 0




= P

 〈k〉⋂
i=m

{ai ≤ Ti ≤ bi}

 .
Finally, if k = ba2/(8d2)c + 1, in the view of the fact that for each n ≥ a2/(8d2) , T2

n −

(
√

2a2/(nd2) − 2)Tn + 1 > 0 (see part (i)), then we have

P(Nd ≤

⌊
a2

8d2

⌋
+ 1) = 1 − P

(
Nd >

⌊
a2

8d2

⌋
+ 1

)
= 1 − P(Nd , m, ...,Nd ,

⌊
a2

8d2

⌋
+ 1)

= 1 − P


b

a2

8d2 c+1⋂
i=m

T2
i − (

√
2a2

id2 − 2)Tn + 1 < 0




= 1.

So, if k = ba2/(8d2)c+ 1 then T2
k − (

√
2a2/(kd2)− 2)Tk + 1 > 0, the intersection is an empty

set, which is the desired result. �

Part (i) of Theorem 4.1 shows that if the starting sample size m ≥ ba2/(8d2)c+ 1, then
Nd has a degenerate distribution at m. Part (ii) of Theorem 4.1 indicates that Nd can
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attain values m,m + 1, ..., ba2/(8d2)c + 1, proving that not only P(Nd < ∞) = 1 but also
P(Nd ≤ ba2/(8d2)c + 1) = 1.

We can approximate P (Nd > k), by using the law of large numbers. Using part (ii)
of Theorem 4.1, for each m ≤ k < ba2/(8d2)c + 1, we have

P (Nd > k) = P

 〈k〉⋂
i=m

{ai ≤ Ti ≤ bi}


= E

I
 〈k〉⋂

i=m

{ai ≤ Ti ≤ bi


 .

In order to apply the strong law of large numbers, we only need to show that
E[|I{

⋂
〈k〉
i=m{ai ≤ Ti ≤ bi}|] < ∞, which in this case is trivial because |I{

⋂
〈k〉
i=m{ai ≤ Ti ≤ bi}}| ≤

1. It may be observed that, generating random numbers from the joint distribution
of (Tm, ...,T〈k〉) is very straightforward by using the definition of (Tm, ...,T〈k〉). More
precisely, first generate X1, ...,X〈k〉 and Y1, ...,Y〈k〉 from Exp(θ1) and Exp(θ2) distributions,
respectively. Then set

T j =

j∑
i=1

Xi

j∑
i=1

Yi

, j = m, ..., 〈k〉.

Now, let tm = (tm1, ..., tmn) be n independent observations from Tm. Using Monte Carlo
integration, for sufficiently large n (n −→ ∞), we have

P̂ (Nd > k) =
1
n

n∑
j=1

I

 k⋂
i=m

{
ai ≤ ti j ≤ bi

} −→ E

I
 k⋂

i=m

{ai ≤ Ti ≤ bi


 = P (Nd > k) .

Therefore, using part (ii) of Theorem 3.4 and Monte Carlo method, we can approximate
the CDF of Nd as follows:

P̂(Nd ≤ k) =


0 k < m
1 − P̂ (Nd > k) m ≤ k <

⌊
a2

8d2

⌋
+ 1

1 k ≥
⌊

a2

8d2

⌋
+ 1,

So, P̂(Nd = n) = P̂(Nd ≤ n)− P̂(Nd ≤ n− 1). Having approximated the exact distribution
of Nd, we can estimate the average stopping time, the average estimate of R, MSE of R̂Nd
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according to R and the coverage probability of R. Let P̂(Nd = n) be the approximation
of P(Nd = n), so we approximate the average stopping time, E[Nd] by E[Nd]∗ as follows:

E [Nd]∗ =

ba2/8d2c+1∑
i=m

iP̂(Nd = i). (4.3)

To approximate E[R̂Nd], E[R̂2
Nd

], MSE of R̂Nd according to R and CP, we use (3.9)-

(3.12), respectively, in which Nd is substituted for Nm and P̂(Nd = n) is substituted for
P(Nm = n). So we have

E
[
R̂Nd

]∗
=

ba2/(8d2)c+1∑
n=m

k(n, ρ)
B(n,n)

P̂ (Nd = n), (4.4)

E
[
R̂2

Nd

]∗
=

ba2/8d2c+1∑
n=m

[(
n(1 + ρ)

1 − ρ
+ 1

)
k(n, ρ)
B(n,n)

−
n

1 − ρ

]
P̂ (Nd = n) , (4.5)

and the MSE of R̂Nd according to R is

MSE
(
R̂Nd

)∗
= E

[
R̂2

Nd

]∗
− 2RE

[
R̂Nd

]∗
+ R2. (4.6)

Finally, the CP is as follows:

CP(R)∗ =

ba2/(8d2)c+1∑
n=m

(
Fθ1,θ2(

1
R − d

− 1; n) − Fθ1,θ2(
1

R + d
− 1; n)P̂ (Nd = n)

)
I {R > d}

+

ba2/(8d2)c+1∑
n=m

(
1 − Fθ1,θ2(

1
R + d

− 1; n)P̂ (Nd = n)
)

I {R ≤ d}. (4.7)

5 Computation and Simulation Results

We have done detailed computations to justify the results of the previous sections,
but for the sake of brevity, we only present a summary here. Purely and two-stage
procedures are considered when θ1 = 1 and θ2 = 2, 3, 5 and 7, the confidence level is
1−α = 0.95, the initial sample size m =5, 10, 20 and d is chosen such that n∗ = 20, 100, 200,
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500 and 1000. For each set of values, we ran h = 10,000 replications by letting MATLAB
("MATLAB 2018a, The MathWorks, Natick, 2018") draw samples from the preassigned
exponential populations. Suppose that in the ith replication there are ni observations.
Based on these data, we estimate R by Ȳni/(X̄ni + Ȳni). That is, for the two stage
sequential procedures; we observed Nm = ni and set R̂Nm = Ȳni/(X̄ni + Ȳni). Similarly,
for the purely sequential procedures, we observed Nd = ni and set R̂Nd = Ȳni/(X̄ni + Ȳni).
The distribution of Nd for the purely sequential procedure is approximated using 10,000
replications. Table 2 represents the notations used to summarize our results.

Table 2: Index of notation that is used in Table 3-10.

Sampling scheme Notation Formula Explain

Two-stage (Tables 3-6)

E [Nm] (3.6) Exact expectation of Nm

Ê[Nm] h−1 ∑h
i=1 ni Simulated value of E[Nm]

E[R̂Nm ] (3.9) Exact expectation of R̂Nm

Ê[R̂Nm ] h−1 ∑h
i=1 R̂ni Simulated value of expectation of R̂Nm

MSE[R̂Nm ] (3.11) Exact value of MSE[R̂Nm ] according to R
M̂SE h−1 ∑h

i=1(R̂ni − R)2 Simulated value of MSE[R̂Nm ] according to R
CP (3.12) Exact value of coverage probability of R
ĈP h−1 ∑h

i=1 I
{
R̂ni − d ≤ R ≤ R̂ni + d

}
Simulated value of coverage probability of R

Purely- sequential (Tables 7-10)

E[Nd]∗ (4.3) Approximation of the average stopping time
Ê[Nd]∗ h−1 ∑h

i=1 ni Simulated value of E[Nd]∗

E[R̂Nd ]∗ (4.4) Approximation of the expectation of R̂Nd

Ê[R̂Nd ]∗ h−1 ∑h
i=1 R̂ni Simulated value of E[R̂Nd ]∗

MSE[R̂Nd ]∗ (4.6) Approximation of MSE[R̂Nd ] according to R
M̂SE

∗

h−1 ∑h
i=1(R̂ni − R)2 Simulated value of MSE[R̂Nd ]∗ according to R

CP∗ (4.7) Approximation of coverage probability of R
ĈP
∗

h−1 ∑h
i=1 I

{
R̂ni − d ≤ R ≤ R̂ni + d

}
Simulated value of CP∗

As Tables 3-10 show, the accuracy, precision, and coverage probability increase with
m. The coverage probability is below the target for some cases, so we need to find the
initial sample size m in such a way that the coverage probability gets at least 1 − α.
We considered it only for the two-stage sequential procedure because we have found
an exact distribution only for this case. Table 11, indicates the characteristic of the
two-stage procedure and the smallest m such that the coverage probability be at least
1 − α. In Table 11, oversampling by the two-stage procedure is obvious. Some of the
main results of the simulations are listed as follows:

1. The results derived from both of the proposed sequential procedures are almost
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the same.

2. For both proposed sequential procedures, the results of simulations and exact
computations (approximations) are extremely coincide with each other, confirming
the theorem’s accuracy mentioned in the previous sections.

3. Given a fixed value of m, as d decreases, E[Nm] and E[R̂Nm] increase with E[R̂Nm]
gets closer to R. Similarly, E[Nd]∗ and E[R̂Nd]∗ increase, with E[R̂Nd]∗ nearing to R.

4. Given either a fixed or decreasing value of d, as the initial sample size, m increases,
CP (CP∗) increases, and nears its nominal value to 1 − α.

5. Comparing the results in Tables 3-6 (two-stage procedure) and Tables 7-10 (
purely sequential procedure) we realize that, in the cases examined, the expected
sample size in the two-stage procedure is generally larger than n∗, whereas in the
sequential procedure it is generally smaller than n∗. The bias of the estimators
of R is negative in both procedures and is almost the same magnitude. Similar
results is found about the MSE of the estimators. The coverage probabilities in
both procedures are generally below the prescribed 1 − α value. These values
approach the prescribed values, as m getting larger. The coverage probability in
the sequential procedure is more than the coverage probability in the two-stage
procedure. In all cases, the purely sequential procedure is more efficient.

Although we approximate the exact distribution of Nd, one may notice that purely
sequential strategy outperforms the two-stage sequential estimation strategy. Indeed,
both procedures are fully expected to perform very well, but the two-stage sequential
procedure is logistically more straightforward to be implemented than a purely sequential
estimation one. Based on the simulation results, we can conclude that the proposed
sequential procedures are working quite well, and they can be used quite effectively
for data analysis purposes.
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Table 3: Characteristics and simulated values of two-stage procedure with α = 0.05,
θ1 = 1, θ2 = 2, m =5, 10, 20 and R = 0.6666.

m n∗ 20 100 200 500 1000
d 0.1377 0.0616 0.0436 0.0275 0.0195

5

E[Nm] 18.6806 91.0953 181.3078 454.9795 904.3905
Ê[Nm] 18.6808 91.0525 181.2331 455.003 904.0718
E[R̂Nm ] 0.6620 0.6656 0.6661 0.6665 0.6666
Ê[R̂Nm ] 0.6622 0.6656 0.6661 0.6664 0.6665
MSE[R̂Nm ] 6.300E-03 1.400E-03 7.043E-04 2.820E-04 1.421E-04
M̂SE 6.400E-03 1.400E-03 7.064E-04 2.819E-04 1.441E-04
CP 0.9215 0.9130 0.9122 0.9117 0.9116
ĈP 0.9213 0.9128 0.9119 0.9114 0.9118

10

E[Nm] 19.6836 95.8195 190.7647 478.7536 951.6705
Ê[Nm] 19.6755 95.8336 190.7202 478.8408 951.5641
E[R̂Nm ] 0.6627 0.6658 0.6662 0.6665 0.6666
Ê[R̂Nm ] 0.6628 0.6658 0.6662 0.6665 0.6666
MSE[R̂Nm ] 5.400E-03 1.100E-03 5.748E-04 2.292E-04 1.153E-04
M̂SE 5.400E-03 1.100E-03 5.700E-04 2.289E-04 1.149E-04
CP 0.9401 0.9327 0.9320 0.9316 0.9315
ĈP 0.9402 0.9324 0.9323 0.9314 0.9314

20

E[Nm] 21.5975 98.193 195.5053 490.6745 975.3743
Ê[Nm] 21.6000 98.1677 195.5746 490.7444 975.5926
E[R̂Nm ] 0.6633 0.6659 0.6663 0.6665 0.6666
Ê[R̂Nm ] 0.6633 0.6659 0.6663 0.6665 0.6666
MSE[R̂Nm ] 4.600E-03 1.100E-03 5.299E-04 2.112E-04 1.062E-04
M̂SE 4.600E-03 1.100E-03 5.316E-04 2.096E-04 1.063E-04
CP 0.9586 0.9420 0.9415 0.9412 0.9410
ĈP 0.9587 0.9422 0.9417 0.9415 0.9408
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Table 4: Characteristics and simulated values of two-stage procedure with α = 0.05,
θ1 = 1, θ2 = 3, m =5, 10, 20 and R = 0.7500.

m n∗ 20 100 200 500 100
d 0.1162 0.0520 0.0367 0.0232 0.0164

5

E[Nm] 20.6674 100.9704 201.4414 502.8482 1005.1994
Ê[Nm] 20.6543 101.1541 201.8539 502.0154 1006.0814
E[R̂Nm ] 0.7438 0.7486 0.7493 0.7497 0.7499
Ê[R̂Nm ] 0.7438 0.7486 0.7492 0.7496 0.7498
MSE[R̂Nm ] 4.92E-03 1.10E-03 5.58E-04 2.24E-04 1.12E-04
M̂SE 4.94E-03 1.08E-03 5.53E-04 2.26E-04 1.13E-04
CP 0.9150 0.9051 0.9044 0.9040 0.9038
ĈP 0.9157 0.9062 0.9051 0.9036 0.9047

10

E[Nm] 20.9463 101.6958 202.8921 506.4787 1012.4584
Ê[Nm] 20.9310 101.5722 202.8118 506.4290 1013.5033
E[R̂Nm ] 0.7449 0.7489 0.7494 0.7498 0.7499
Ê[R̂Nm ] 0.7451 0.7488 0.7494 0.7497 0.7498
MSE[R̂Nm ] 4.01E-03 8.59E-04 4.30E-04 1.72E-04 8.59E-05
M̂SE 4.04E-03 8.64E-04 4.34E-04 1.71E-04 8.60E-05
CP 0.9361 0.9268 0.9264 0.9261 0.9260
ĈP 0.9354 0.9269 0.9248 0.9263 0.9261

20

E[Nm] 22.7565 101.4015 202.3025 505.0060 1009.5122
Ê[Nm] 22.7634 101.4896 202.2260 505.0895 1008.7894
E[R̂Nm ] 0.7458 0.7490 0.7495 0.7498 0.7499
Ê[R̂Nm ] 0.7457 0.7490 0.7495 0.7498 0.7499
MSE[R̂Nm ] 3.25E-03 7.73E-04 3.86E-04 1.54E-04 7.72E-05
M̂SE 3.24E-03 7.75E-04 3.87E-04 1.54E-04 7.77E-05
CP 0.9587 0.9384 0.9381 0.9379 0.9378
ĈP 0.9594 0.9378 0.9374 0.9390 0.9365
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Table 5: Characteristics and simulated values of two-stage procedure with α = 0.05,
θ1 = 1, θ2 = 5, m =5, 10, 20 and R = 0.8333.

m n∗ 20 100 200 500 1000
d 0.0861 0.0385 0.0272 0.0172 0.0122

5

E[Nm] 24.2817 118.8283 237.1490 592.1213 1183.7429
Ê[Nm] 24.2631 118.9932 236.8460 591.1848 1176.5900
E[R̂Nm ] 0.8269 0.8317 0.8325 0.8330 0.8332
Ê[R̂Nm ] 0.8268 0.8317 0.8326 0.8330 0.8332
MSE[R̂Nm ] 3.09E-03 7.08E-04 3.56E-04 1.42E-04 7.08E-05
M̂SE 3.10E-03 7.10E-04 3.58E-04 1.43E-04 7.27E-05
CP 0.9074 0.8945 0.8936 0.8932 0.8930
ĈP 0.9069 0.8947 0.8936 0.8937 0.8917

10

E[Nm] 22.9999 111.2373 221.9707 554.1766 1107.8533
Ê[Nm] 22.9813 111.3915 221.7133 553.5728 1107.2376
E[R̂Nm ] 0.8282 0.8321 0.8327 0.8331 0.8332
Ê[R̂Nm ] 0.8281 0.8322 0.8328 0.8331 0.8333
MSE[R̂Nm ] 2.34E-03 5.10E-04 2.53E-04 1.01E-04 5.02E-05
M̂SE 2.35E-03 5.02E-04 2.53E-04 1.01E-04 5.00E-05
CP 0.9317 0.9194 0.9190 0.9188 0.9187
ĈP 0.9317 0.9207 0.9190 0.9186 0.9186

20

E[Nm] 24.1967 106.2557 212.0079 529.2696 1058.0393
Ê[Nm] 24.2183 106.2909 212.1401 530.3853 1059.8462
E[R̂Nm ] 0.8293 0.8323 0.8328 0.8331 0.8332
Ê[R̂Nm ] 0.8294 0.8323 0.8328 0.8331 0.8332
MSE[R̂Nm ] 1.79E-03 4.42E-04 2.20E-04 8.75E-05 4.37E-05
M̂SE 1.79E-03 4.41E-04 2.19E-04 8.71E-05 4.40E-05
CP 0.9572 0.9337 0.9335 0.9335 0.9335
ĈP 0.9572 0.9331 0.9336 0.9335 0.9322
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Table 6: Characteristics and simulated values of two-stage procedure with α = 0.05,
θ1 = 1, θ2 = 7, m =5, 10, 20 and R = 0.875.

m n∗ 20 100 200 500 1000
d 0.0678 0.0303 0.0214 0.0136 0.0096

5

E[Nm] 27.1543 133.0503 265.5876 663.2155 1325.9306
Ê[Nm] 27.1849 132.9368 266.0099 663.1108 1329.4560
E[R̂Nm ] 0.8690 0.8735 0.874217 0.8747 0.8748
Ê[R̂Nm ] 0.8689 0.8734 0.874237 0.8747 0.8748
MSE[R̂Nm ] 2.10E-03 4.84E-04 2.42E-04 9.60E-05 4.76E-05
M̂SE 2.09E-03 4.84E-04 2.40E-04 9.56E-05 4.84E-05
CP 0.9038 0.8887 0.887705 0.8872 0.8871
ĈP 0.9042 0.8882 0.88737 0.8869 0.8865

10

E[Nm] 24.4308 117.9825 235.4582 587.8949 1175.2899
Ê[Nm] 24.3310 118.0597 235.364 588.6521 1177.0300
E[R̂Nm ] 0.8704 0.8739 0.874449 0.8748 0.8749
Ê[R̂Nm ] 0.8705 0.8738 0.874447 0.8748 0.8749
MSE[R̂Nm ] 1.51E-03 3.32E-04 1.64E-04 6.50E-05 3.24E-05
M̂SE 1.49E-03 3.34E-04 1.65E-04 6.57E-05 3.27E-05
CP 0.9296 0.9153 0.914875 0.9147 0.9146
ĈP 0.9300 0.9146 0.91502 0.9131 0.9148

20

E[Nm] 25.0496 109.4479 218.3886 545.2214 1089.9429
Ê[Nm] 25.0325 109.3863 218.7623 546.4983 1093.5911
E[R̂Nm ] 0.8714 0.8741 0.874528 0.8748 0.8749
Ê[R̂Nm ] 0.8715 0.8740 0.874464 0.8748 0.8749
MSE[R̂Nm ] 1.12E-03 2.81E-04 1.39E-04 5.54E-05 2.76E-05
M̂SE 1.12E-03 2.83E-04 1.39E-04 5.49E-05 2.73E-05
CP 0.9561 0.9310 0.930961 0.9310 0.9310
ĈP 0.9574 0.9308 0.93061 0.9324 0.9319
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Table 7: Characteristics and simulated values of purely sequential procedure with
α = 0.05, θ1 = 1, θ2 = 2, m =5, 10, 20 and R = 0.6666.

m n∗ 20 100 200 500 1000
d 0.1377 0.0616 0.0436 0.0275 0.0195

5

E[Nd]∗ 18.9280 99.2708 199.0051 501.1108 997.0738
Ê[Nd]∗ 18.9148 99.2436 199.1469 501.6570 997.9636
E[R̂Nd ]∗ 0.6623 0.6659 0.6663 0.6665 0.6666
Ê[R̂Nd ]∗ 0.6622 0.6659 0.6663 0.6665 0.6666
MSE[R̂Nd ]∗ 6.000E-03 1.000E-03 5.033E-04 1.975E-04 9.912E-05
M̂SE

∗

6.100E-03 1.000E-03 5.035E-04 1.949E-04 9.733E-05
CP∗ 0.9281 0.9470 0.9493 0.9496 0.9499
ĈP∗ 0.9286 0.9474 0.9491 0.9498 0.9498

10

E[NNd ]∗ 19.4449 99.3574 199.2510 500.8986 997.0674
Ê[NNd ]∗ 19.4396 99.2483 199.1443 501.1976 997.2442
E[R̂Nd ]∗ 0.6627 0.6659 0.6663 0.6665 0.6666
Ê[R̂Nd ]∗ 0.6627 0.6659 0.6663 0.6665 0.6666
MSE[R̂Nd ]∗ 5.400E-03 1.000E-03 4.987E-04 1.975E-04 9.907E-05
M̂SE

∗

5.400E-03 1.000E-03 5.006E-04 1.957E-04 9.982E-05
CP∗ 0.9408 0.9480 0.9493 0.9497 0.9499
ĈP∗ 0.9400 0.9477 0.9492 0.9496 0.9498

20

E[NNd ]∗ 21.5103 99.3548 199.2791 501.4209 997.3726
Ê[NNd ]∗ 21.5255 99.2791 199.1347 501.3926 997.3315
E[R̂Nd ]∗ 0.6633 0.6659 0.6663 0.6665 0.6666
Ê[R̂Nd ]∗ 0.6633 0.6659 0.6663 0.6665 0.6666
MSE[R̂Nd ]∗ 4.600E-03 1.000E-03 4.986E-04 1.974E-04 9.912E-05
M̂SE

∗

4.700E-03 1.000E-03 4.872E-04 1.934E-04 9.568E-05
CP∗ 0.9588 0.9481 0.9493 0.9499 0.9499
ĈP∗ 0.9583 0.9481 0.9493 0.9498 0.9499
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Table 8: Characteristics and simulated values of purely sequential procedure with
α = 0.05, θ1 = 1, θ2 = 3, m =5, 10, 20 and R = 0.7500.

m n∗ 20 100 200 500 1000
d 0.1162 0.0520 0.0367 0.0232 0.0164

5

E[Nd]∗ 18.6937 98.9637 198.9288 498.8600 998.2622
Ê[Nd]∗ 18.8218 98.9522 199.0617 499.5763 999.2656
E[R̂Nd ]∗ 0.7437 0.7490 0.7495 0.7498 0.749906
Ê[R̂Nd ]∗ 0.7446 0.7492 0.7495 0.7495 0.749953
MSE[R̂Nd ]∗ 5.00E-03 7.66E-04 3.63E-04 1.42E-04 7.06E-05
M̂SE

∗

4.81E-03 7.53E-04 3.62E-04 1.42E-04 6.82E-05
CP∗ 0.9135 0.9439 0.9475 0.9491 0.949495
ĈP
∗

0.9183 0.9434 0.9457 0.9496 0.9534

10

E[Nd]∗ 19.6192 99.1603 199.3606 499.1454 999.3403
Ê[Nd]∗ 19.5277 99.0741 199.5256 499.0761 999.4349
E[R̂Nd ]∗ 0.7447 0.7490 0.7495 0.7498 0.749906
Ê[R̂Nd ]∗ 0.7447 0.7491 0.7494 0.7498 0.74976
MSE[R̂Nd ]∗ 4.13E-03 7.37E-04 3.58E-04 1.42E-04 7.05E-05
M̂SE

∗

4.14E-03 7.51E-04 3.58E-04 1.40E-04 7.08E-05
CP∗ 0.9331 0.9450 0.9480 0.9492 0.949624
ĈP
∗

0.9358 0.9430 0.9489 0.9513 0.9487

20

E[Nd]∗ 22.3833 99.1211 199.1688 499.3151 999.6274
Ê[Nd]∗ 22.3847 99.3918 199.3486 499.2030 999.8737
E[R̂Nd ]∗ 0.7458 0.7490 0.7495 0.7498 0.749906
Ê[R̂Nd ]∗ 0.7465 0.7491 0.7495 0.7497 0.749952
MSE[R̂Nd ]∗ 3.28E-03 7.34E-04 3.58E-04 1.42E-04 7.05E-05
M̂SE

∗

3.24E-03 7.53E-04 3.56E-04 1.41E-04 7.14E-05
CP∗ 0.9577 0.9452 0.9479 0.9492 0.9496
ĈP
∗

0.9607 0.9421 0.9501 0.9509 0.9477



Sequential Estimating the Stress-Strength Parameter 111

Table 9: Characteristics and simulated values of purely sequential procedure with
α = 0.05, θ1 = 1, θ2 = 5, m =5, 10, 20 and R = 0.8333.

m n∗ 20 100 200 500 1000
d 0.0861 0.0385 0.0272 0.0172 0.0122

5

E[Nd]∗ 18.6361 98.0376 198.2179 498.7504 999.1778
Ê[Nd]∗ 18.5870 98.2458 198.3566 498.7384 999.5550
E[R̂Nd ]∗ 0.8265 0.8322 0.8328 0.8331 0.8332
Ê[R̂Nd ]∗ 0.8268 0.8319 0.8328 0.8332 0.8333
MSE[R̂Nd ]∗ 3.26E-03 4.91E-04 2.15E-04 7.91E-05 3.88E-05
M̂SE

∗

3.29E-03 4.67E-04 2.03E-04 7.78E-05 3.84E-05
CP∗ 0.9009 0.9360 0.9447 0.9484 0.9493
ĈP
∗

0.9034 0.9350 0.9457 0.9480 0.9500

10

E[Nd]∗ 19.6835 98.2149 198.9431 499.5781 1000.3711
Ê[Nd]∗ 19.9368 98.4462 199.0357 498.5999 999.3145
E[R̂Nd ]∗ 0.8278 0.8323 0.8329 0.8331 0.8332
Ê[R̂Nd ]∗ 0.8279 0.8322 0.8330 0.8331 0.8332
MSE[R̂Nd ]∗ 2.51E-03 4.28E-04 2.00E-04 7.80E-05 3.88E-05
M̂SE

∗

2.49E-03 4.21E-04 1.99E-04 7.77E-05 3.96E-05
CP∗ 0.9246 0.9395 0.9461 0.9487 0.9494
ĈP
∗

0.9255 0.9438 0.9468 0.9455 0.9458

20

E[Nd]∗ 23.1967 98.7593 198.9704 498.2473 998.8203
Ê[Nd]∗ 23.1966 98.6641 198.5786 499.0432 1000.2725
E[R̂Nd ]∗ 0.8292 0.8323 0.8329 0.8331 0.8332
Ê[R̂Nd ]∗ 0.8285 0.8322 0.8327 0.8331 0.8332
MSE[R̂Nd ]∗ 1.83E-03 4.17E-04 1.99E-04 7.83E-05 3.88E-05
M̂SE

∗

1.87E-03 4.28E-04 2.02E-04 7.74E-05 3.88E-05
CP∗ 0.9555 0.9414 0.9462 0.9484 0.9493
ĈP
∗

0.9523 0.9392 0.9447 0.9519 0.9484
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Table 10: Characteristics and simulated values of purely sequential procedure with
α = 0.05, θ1 = 1, θ2 = 7, m =5, 10, 20 and R = 0.875.

m n∗ 20 100 200 500 1000
d 0.0678 0.0303 0.0214 0.0136 0.0096

5

E[Nd]∗ 18.5717 97.6680 198.3381 498.8221 999.3101
Ê[Nd]∗ 18.5204 96.8969 198.2913 499.5355 998.3575
E[R̂Nd ]∗ 0.8685 0.8739 0.8745 0.8748 0.8749
Ê[R̂Nd ]∗ 0.8688 0.8743 0.8746 0.8749 0.8749
MSE[R̂Nd ]∗ 2.27E-03 3.29E-04 1.38E-04 5.03E-05 2.54E-05
M̂SE

∗

2.23E-03 3.59E-04 1.37E-04 4.93E-05 2.42E-05
CP∗ 0.8937 0.9320 0.9435 0.9479 0.9490
ĈP
∗

0.8954 0.9305 0.9405 0.9469 0.9451

10

E[Nd]∗ 19.7899 98.2148 198.4795 498.5058 998.1902
Ê[Nd]∗ 20.1036 98.1968 198.2880 498.6699 999.7197
E[R̂Nd ]∗ 0.8700 0.8741 0.8746 0.8748 0.8749
Ê[R̂Nd ]∗ 0.8707 0.8740 0.8745 0.8748 0.8749
MSE[R̂Nd ]∗ 1.64E-03 2.77E-04 1.25E-04 4.87E-05 2.42E-05
M̂SE

∗

1.53E-03 2.80E-04 1.25E-04 4.82E-05 2.43E-05
CP∗ 0.9208 0.9365 0.9450 0.9481 0.9490
ĈP
∗

0.9275 0.9360 0.9434 0.9489 0.9487

20

E[Nd]∗ 23.6220 97.9493 199.1339 498.9835 998.5301
Ê[Nd]∗ 23.5805 98.3716 198.3858 498.8461 999.3820
E[R̂Nd ]∗ 0.8713 0.8741 0.8746 0.8748 0.8749
Ê[R̂Nd ]∗ 0.8715 0.8741 0.8746 0.8748 0.8750
MSE[R̂Nd ]∗ 1.15E-03 2.69E-04 1.25E-04 4.86E-05 2.42E-05
M̂SE

∗

1.18E-03 2.71E-04 1.27E-04 5.04E-05 2.37E-05
CP∗ 0.9539 0.9376 0.9451 0.9482 0.9491
ĈP
∗

0.9524 0.9354 0.9450 0.9421 0.9513
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Table 11: Characteristic of the two-stage procedure and the smallest m such that
coverage probability be at least 95%.

n∗ 20 100 200 500 1000

θ1 = 1, θ2 = 2 d 0.1377 0.0616 0.0616 0.0275 0.0195
m 16 88 181 464 939

E[Nm] 20.4368 100.6199 200.6407 500.5397 1000.3440
Ê[Nm] 20.4368 100.6246 200.6659 500.6219 1000.4066
E[R̂Nm ] 0.6630 0.6659 0.6663 0.6665 0.6666
Ê[R̂Nm ] 0.6631 0.6660 0.6663 0.6665 0.6666

MSE[R̂Nm ] 5.00E-03 9.89E-04 5.00E-04 2.00E-04 9.88E-05
M̂SE 4.90E-03 9.91E-04 5.00E-04 2.00E-04 9.90E-05
CP 0.9505 0.9500 0.9500 0.9500 0.9500
ĈP 0.9507 0.9503 0.9493 0.9496 0.9495

θ1 = 1, θ2 = 3 d 0.1162 0.0520 0.0367 0.0232 0.0164
m 17 87 178 458 931

E[Nm] 21.7933 102.1451 202.1986 502.2104 1002.0449
Ê[Nm] 21.8044 102.1311 202.2000 502.1621 1001.9552
E[R̂Nm ] 0.7455 0.7491 0.7495 0.7498 0.7499
Ê[R̂Nm ] 0.7455 0.7490 0.7495 0.7498 0.7499

MSE[R̂Nm ] 3.48E-03 7.03E-04 3.52E-04 1.41E-04 7.03E-05
M̂SE 3.48E-03 7.03E-04 3.53E-04 1.40E-04 7.06E-05
CP 0.9518 0.9501 0.9500 0.9500 0.9500
ĈP 0.9516 0.9491 0.9495 0.9501 0.9498

θ1 = 1, θ2 = 5 d 0.0861 0.0385 0.0272 0.0172 0.0122
m 17 86 176 452 922

E[Nm] 23.3406 104.1099 204.3535 504.4301 1004.4449
Ê[Nm] 23.2954 104.1361 204.3072 504.3212 1004.7583
E[R̂Nm ] 0.8290 0.8324 0.8329 0.8331 0.8332
Ê[R̂Nm ] 0.8290 0.8325 0.8329 0.8331 0.8332

MSE[R̂Nm ] 1.93E-03 3.86E-04 1.93E-04 7.72E-05 3.86E-05
M̂SE 1.93E-03 3.89E-04 1.93E-04 7.66E-05 3.86E-05
CP 0.9501 0.9500 0.9500 0.9500 0.9500
ĈP 0.9503 0.9496 0.9503 0.9508 0.9497

θ1 = 1, θ2 = 7 d 0.0678 0.0303 0.0214 0.0136 0.0096
m 17 86 175 450 917

E[Nm] 24.4921 104.1099 205.5915 505.8347 1005.8066
Ê[Nm] 24.5044 104.1459 205.5118 506.0394 1005.5856
E[R̂Nm ] 0.8713 0.8324 0.8746 0.8748 0.8749
Ê[R̂Nm ] 0.8713 0.8324 0.8746 0.8748 0.8749

MSE[R̂Nm ] 1.18E-03 3.86E-04 1.20E-04 4.79E-05 2.40E-05
M̂SE 1.17E-03 3.84E-04 1.21E-04 4.78E-05 2.39E-05
CP 0.9513 0.9500 0.9500 0.9500 0.9500
ĈP 0.9517 0.9498 0.9490 0.9501 0.9501
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6 Real Data

In this section, the analysis of a pair of real datasets is presented for illustrative purposes.
Breaking strengths of jute fiber into two different gauge lengths are shown in Table 12-
13. These two datasets were used by Xia et al. (2009) and presented earlier in Mirjalili et
al. (2016). According to the latter, the data in Tables 12-13 have exponential distribution.
Let random variables, X and Y be breaking strengths of jute fiber of gauge length 10mm
and 20mm, respectively. Define reliability parameter under the stress-strength model,
as the probability that jute fiber of gauge length 20 mm endures more than that of gauge
length 10 mm.

Table 12: Dataset 1 (Breaking strength of jute fiber of gauge length 10 mm).

693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16
671.49 183.16 257.44 727.23 291.27 101.15 376.42 163.40 141.38 700.74
262.90 353.24 422.11 43.93 590.48 212.13 303.90 506.60 530.55 177.25

Table 13: Dataset 2 (Breaking strength of jute fiber of gauge length 20 mm).

71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58
578.62 756.70 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.70
547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55

Treating these two datasets as universal, we implemented both two-stage and purely
sequential procedures, drawing observations (X,Y) from the full set of data as needed.
To obtain the fixed-width 2d asymptotic confidence interval for parameter R, we carried
out a single run under both procedures. Tables 14-15 provide the results derived from
implementing the stopping rules from (3.1) and (4.1) respectively, when the initial
sample size m =5, 10, α = 0.05 and d = 0.3, 0.2, 0.15 are chosen arbitrarily. Under
both methodologies, the final estimators R̂Nm and R̂Nd tended to get closer to their exact
value R̂ = 0.482 obtained from the full data as the initial sample size m increases. Both
estimators R̂Nm and R̂Nd are less than 0.5. It means that jute fibers of gauge length of 20
mm do not endure more than jute fibers of gauge length of 10 mm.
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Table 14: An illustration with breaking strength of jute fiber of gauge length 10 mm, 20
mm, with d =0.3, 0.2, 0.15, m =5, 10 and α =0.05 using the two-stage procedure.

d m =5 m =10

0.3

Pilot Data:
X: 50.16, 108.94, 163.40, 376.42, 637.66
Y: 594.29, 113.85, 756.70, 36.75, 48.01,
X̄5=418.976, Ȳ5=490.518
−→ Nm = 6
Second Stage Data Size:
X :530.55
Y :662.66
X̄Nm =418.976, ȲNm =490.518
−→ R̂Nm = 0.5390
(R̂Nm − d, R̂Nm + d) = (0.239, 0.839).

Pilot Data:
X : 727.23, 163.4, 637.66, 123.06, 50.16,
671.49, 353.24, 700.74, 212.13, 257.44
Y : 200.16, 145.96, 350.70, 578.62, 187.13,
756.70, 36.75, 375.81, 113.85, 166.49
X̄10=389.655, Ȳ10=291.217
−→ Nm = 10
Second Stage Data Size:
Pilot Data is enough.
X̄Nm =389.655, ȲNm =291.217
−→ R̂Nm = 0.4277
(R̂Nm − d, R̂Nm + d) = (0.1277, 0.7277).

0.2

Pilot Data:
X : 303.90, 212.13, 291.27, 693.73, 383.43
Y : 116.99, 45.58, 581.60, 707.36, 119.86
X̄5=376.892, Ȳ5=314.278
−→ Nm = 12
Second Stage Data Size:
X : 151.48, 727.23, 637.66, 353.24, 530.55,
177.25, 101.15
Y : 662.66, 375.81, 688.16, 145.96, 48.01,
284.64, 113.85
X̄Nm =380.2517, ȲNm =324.2067
−→ R̂Nm = 0.4602
(R̂Nm − d, R̂Nm + d) = (0.2602, 0.6602).

Pilot Data:
X : 212.13, 704.66, 727.23, 303.9, 530.55,
323.83, 123.06, 693.73, 141.38, 506.6
Y : 48.01, 581.60, 765.14, 244.53, 284.64,
116.99, 350.70, 662.66, 756.70, 113.85
X̄10=426.707, Ȳ10=392.482
−→ Nm = 12
Second Stage Data Size:
X : 506.60, 212.13
Y : 350.70, 116.99
X̄Nm =415.4833, ȲNm =366.0425
−→ R̂Nm = 0.4684
(R̂Nm − d, R̂Nm + d) = (0.2684, 0.6684).

0.15

Pilot Data:
X : 257.44, 323.83, 303.9, 506.6, 123.06
Y 578.62, 166.49, 244.53, 36.75, 113.85,
X̄5=302.966 , Ȳ5=228.048
−→ Nm = 21
Second Stage Data Size:
X : 530.55, 422.11, 323.83, 700.74, 123.06,
108.94, 183.16, 163.40, 590.48, 177.25,
778.17, 727.23, 101.15, 212.13, 50.16,
262.9
Y : 594.29, 113.85, 36.75, 145.96, 375.81,
187.85, 765.14, 547.44, 116.99, 419.02,
71.46, 662.66, 99.72, 581.60, 244.53,
48.01
X̄Nm =331.909, ȲNm =292.92
−→ R̂Nm = 0.4688
(R̂Nm − d, R̂Nm + d) = (0.3188, 0.6188).

Pilot Data:
X : 141.38, 530.55, 376.42, 353.24, 693.73,
637.66, 43.93, 291.27, 212.13, 383.43
Y 119.86, 765.14, 350.70, 200.16, 375.81,
116.99, 662.66, 244.53, 707.36, 166.49
X̄10=366.374, Ȳ10=370.97
−→ Nm = 22
Second Stage Data Size:
X : 506.60, 177.25, 43.93, 108.94, 183.16,
671.49, 353.24, 141.38, 727.23, 50.16,
778.17, 123.06
Y : 200.16, 45.58, 113.85, 594.29, 585.57,
71.46, 662.66, 419.02, 116.99, 166.49,
284.64, 48.01
X̄Nm =342.1977, ȲNm =319.0191
−→ R̂Nm = 0.4825
(R̂Nm − d, R̂Nm + d) = (0.3325, 0.6325).
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Table 15: An illustration with breaking strength of jute fiber of gauge length 10 mm, 20
mm with d =0.3, 0.2, 0.15, m =5, 10 and α =0.05 using the purely sequential procedure.

d m =5 m =10

0.3

Pilot Data:
X: 141.38, 101.15, 671.49, 163.40, 151.48
Y: 187.85, 688.16, 48.01, 284.64, 547.44
Samples
X: 257.44
Y: 83.55
−→ Nd=6
X̄Nd = 247.723, ȲNd = 306.608,
R̂Nd =0.553
(R̂Nd − d, R̂Nd + d) = (0.253, 0.853)

Pilot Data:
X: 671.49, 323.83, 506.60, 123.06, 151.48,
183.16, 177.25, 163.40, 637.66, 376.42
Y: 187.85, 113.85, 585.57, 707.36, 284.64,
99.72, 145.96, 166.49, 419.02, 375.81
Samples
Initial Sample is sufficient.
−→ Nd=10
X̄Nd =331.435, ȲNd = 308.627,
R̂Nd =0.482
(R̂Nd − d, R̂Nd + d) = (0.182, 0.782)

0.2

Pilot Data:
X: 700.74, 257.44, 177.25, 212.13, 778.17
Y: 166.49, 594.29, 547.44, 200.16, 45.58
Samples
X: 671.49, 376.42, 637.66, 123.06, 123.06
Y: 119.86, 187.85, 166.49, 99.72, 36.75
−→ Nd=10, X̄Nd =405.742, ȲNd =216.463,
R̂Nd =0.347
(R̂Nd − d, R̂Nd + d) = (0.147, 0.547)

Pilot Data:
X: 778.17, 693.73, 141.38, 727.23, 212.13,
177.25, 108.94, 123.06, 671.49, 506.60
Y: 36.75, 48.01, 581.60, 200.16, 350.70,
707.36, 662.66, 594.29, 71.46, 419.02
Samples
X: 177.25, 671.49
Y: 187.85, 200.16
−→ Nd=12, X̄Nd =415.726, ȲNd = 338.335,
R̂Nd =0.448
(R̂Nd − d, R̂Nd + d) = (0.248, 0.648)

0.15

Pilot Data:
X: 43.93, 212.13, 291.27, 422.11, 163.40
Y: 48.01, 578.62, 99.72, 200.16, 594.29
Samples
X : 303.90, 262.90, 108.94, 671.49, 123.06,
141.38, 177.25, 177.25, 262.90, 212.13,
530.55, 257.44, 704.66, 704.66, 101.15,
506.60, 262.90
Y : 688.16, 707.36, 45.58, 688.16, 350.70, 166.49,
456.60, 113.85, 45.58, 36.75, 116.99,
662.66, 244.53, 145.96, 244.53,
284.64, 578.62
−→ Nd=22, X̄Nd = 301.909, ȲNd =322.634,
R̂Nd =0.516
(R̂Nd − d, R̂Nd + d) = (0.366, 0.666)

Pilot Data:
X: 383.43, 353.24, 530.55, 151.48, 163.40,
700.74, 212.13, 376.42, 262.90, 257.44
Y: 456.60, 48.01, 350.70, 578.62, 113.85,
707.36, 547.44, 244.53, 45.58, 116.99
Samples
X : 257.44, 257.44, 693.73, 50.16, 671.49,
50.16, 163.40, 376.42, 704.66, 183.16,
506.60, 671.49
Y : 585.57, 187.13, 578.62, 113.85, 284.64,
187.85, 578.62, 83.55, 585.57, 71.46,
375.81, 99.72
−→ Nd=22, X̄Nd =362.630, ȲNd =315.548,
R̂Nd =0.465
(R̂Nd − d, R̂Nd + d) = (0.315, 0.615)

To show that the coverage frequency is correspondingly higher than 0.95, we carried
out 100 runs under both procedures for each case of Tables 14-15. We found, R̂Nd for
purely sequential and R̂Nm for two-stage sequential procedures, then constructed 2d
fixed-width confidence interval (R̂(i)

Nd
− d, R̂(i)

Nd
+ d) and (R̂(i)

Nm
− d, R̂(i)

Nm
+ d) for purely and
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two-stage sequential procedures, respectively, for the ith run. Define Z(i)
Nd

such that

Z(i)
Nd

=

1 R̂ ∈ (R̂(i)
Nd
− d, R̂(i)

Nd
+ d)

0 O.W.

Similarly define Z(i)
Nm

in which Nm is substituted for Nd. The coverage probability

(frequency) is
∑100

i=1 z(i)
Nd
/100 for purely sequential or

∑100
i=1 z(i)

Nm
/100 for two-stage sequential

procedures. The results of coverage frequency for purely and two-stage sequential
procedures are summarized in Table 16. It can be seen that for all the cases, the
coverage frequencies are higher than 0.95.

Table 16: Coverage frequency for breaking strength of jute fiber of gauge length 10 mm,
20 mm with 100 runs.

procedures m d = 0.3 d = 0.2 d=0.15

purely sequential 5 0.99 0.98 0.98

10 1.00 0.99 0.98

two-stage sequential 5 0.99 0.97 0.96

10 1.00 0.98 0.98

7 Conclusion

Two-stage and purely sequential procedures have been investigated to construct the
fixed-width 2d confidence interval for reliability parameter under the stress-strength
model in the exponential two-sample problem. Approximation of exact distribution
of purely sequential procedure, and the exact distribution of two-stage sequential
procedure, and their characteristics have also been discussed for the different pilot
sample sizes. The accuracy of our method to approximate the distribution of purely
sequential procedure has been assessed by using simulation results. Both of these
procedures have different routes, merits, and demerits. A two-stage technique is often
easy to implement, whereas a purely sequential methodology is proved to be more
accurate. One should, however, balance any logistical concerns, such as feasibility and
cost.

In the current research, it has been assumed that the samples taken from two
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populations are of the same size. However, it might not be the case in reality. So, the
MLE of R can be written as,

R̂n1,n2 =
Ȳn2

Ȳn2 + X̄n1

, (7.1)

where n1 is the size of the sample taken from the stress (X) population, and n2 is the size
of the sample from the strength (Y ) population. Therefore, defining a stopping rule to
find optimal n∗1, n∗2 for constructing a fixed-width 2d confidence interval with confidence
at least 1 − α for R based on R̂n1,n2 , is yet to be studied and deserves a comprehensive
research. Moreover, the exact distribution and asymptotic second-order properties for
the proposed purely sequential procedure in this research, are yet to be addressed.
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