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Abstract. The Liu estimator has consistently been demonstrated to be an attractive
shrinkage method for reducing the effects of multicollinearity. The Poisson regression
model is a well-known model in applications when the response variable consists of
count data. However, it is known that multicollinearity negatively affects the variance
of the maximum likelihood estimator (MLE) of the Poisson regression coefficients.
To address this problem, a Poisson Liu estimator has been proposed by numerous
researchers. In this paper, a Jackknifed Liu-type Poisson estimator (JPLTE) is proposed
and derived. The idea behind the JPLTE is to decrease the shrinkage parameter
and, therefore, improve the resultant estimator by reducing the amount of bias. Our
Monte Carlo simulation results suggest that the JPLTE estimator can bring significant
improvements relative to other existing estimators. In addition, the results of a real
application demonstrate that the JPLTE estimator outperforms both the Poisson Liu
estimator and the maximum likelihood estimator in terms of predictive performance.
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1 Introduction

The Poisson regression model is widely applied in the study of real data problems, such
as mortality studies, where the aim is to investigate the number of deaths and health
insurance, where the target is to explain the number of claims made by individual
Algamal (2012), Algamal (2018), Cameron and Trivedi (2013) and De Jong and Heller
(2008).

In dealing with a Poisson regression model, it is assumed that there is no correlation
among the explanatory variables. In practice, however, this assumption often does not
hold, which causes a problem of multicollinearity. In the presence of multicollinearity,
when estimating the regression coefficients for the Poisson regression model using the
maximum likelihood (ML) method, the estimated coefficients usually become unstable
with a high variance, and therefore low statistical significance Liu (2003). Numerous
remedial methods have been proposed to overcome the problem of multicollinearity.
The ridge regression method Hoerl and Kennard (1970) has consistently been demonstr-
ated to be an attractive alternative to the ML estimation method.

Kibria (2003)proposed the Liu estimator, which also has the advantages of being
a linear function of the shrinkage parameter. This estimator has the advantages of a
ridge estimator and also those of a Stein estimator. Mansson et al. (2012) also showed
the superiority of the Liu-type estimator, which is a two-parameter estimator, over
ridge regression; the Liu-type estimator uses the advantages of both a ridge estimator
and a Liu estimator. In a Liu-type estimator, one can use a large shrinkage value,
because there is another parameter to make the estimator give a good fit. Although the
Liu-type estimator the valuable characteristics, it has a smaller bias. It is possible to
reduce the bias by applying a jackknife procedure to a biased estimator. The Jackknife
procedure enables experimental data to be processed to produce a statistical estimator
for unknown parameters. A truncated sample is used to calculate a specific function of
the estimators. The advantage of the jackknife procedure is that it produces an estimator
that has a small bias while still using the beneficial properties of large samples Turkan
and Ozel (2017).

In this paper, an extension of the work of Akdeniz Duran and Akdeniz (2012)
and Yıldız (2018) is proposed and applied to the Liu-type Poisson estimator. The idea
behind our proposed estimator is to decrease the shrinkage parameter giving, therefore,



Jackknifed Liu-type Estimator in Poisson Regression Model 23

a resultant estimator with a small amount of bias.

2 Poisson Regression Model

The most popular distribution when analyzing count data is the Poisson regression.
Data of this type are used in economics, social sciences, and medicine. We know that
the form of the Poisson distribution is

f (yi) = e−µi
µi

yi

yi!
, yi = 0, 1, 2, ..., i = 1, 2, ...,n. (2.1)

Where yi is the response variable, the expected value of a Poisson regression is equal
to the exponential distribution, such as

µi = exi
′
β. (2.2)

Here xi is the i-th row of the independent variable X which is n × p with p variables
and β is a 1 × p of coefficients. We use the maximum likelihood method to estimate
the coefficients of the Poisson regression model, which is considered to be a non-linear
model, as follows

n∏
i=1

f (yi) =

n∏
i=1

(
e−µi

µi
yi

yi!

)
. (2.3)

The log-likelihood function of (2.3) is

`(β) =
∑n

i=1

(
yix

′

iβ − exp(x
′

iβ) − ln(yi!)
)

=
∑

yix
′

iβ −
∑

exp(x
′

iβ) −
∑

ln(yi!).
(2.4)

We use the maximum likelihood (ML) method to solve the following equation

∂`(β)
∂β

=

n∑
i=1

(yi − exp(x
′

iβ))xi. (2.5)

Since equation (2.5) is non-linear in β, then by using weighted least square algorithm,
we have

β̂PR = (X′ŴX)−1X′Ŵŝ, (2.6)

where Ŵ = diag(µ̂i) and the i-th element of the row vector ŝ is equal to log(µ̂i) +
yi−µ̂i
µ̂i

.
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The covariance matrix of β̂ML is equal to the second derivatives of equation (2.6), by
using the ML method, as follows

Cov(β̂ML) = (X′ŴX)−1. (2.7)

By tacking the trace of (2.7) we have the mean square error (MSE), as follows

MSE(β̂ML) = E(β̂ML − β)′(β̂ML − β) =

p∑
j=1

1
λ j
, (2.8)

where λ j are the eigen-values of (X′ŴX)−1. When the independent variables are highly
correlated, then the ML estimator is ill-conditioned and this leads to instability and
high variance. In this case, it is very hard to interpret the estimated parameters, since
the vector of estimated coefficients is, on average, too long.

To avoid this problem one can use the Poisson ridge regression (PRR) proposed by
Algamal and Alanaz (2018), Mansson and Shukur (2011) and Singh et al. (1986) by
minimizing the weighted sum of squares error (WSSE). Hence β̂ML is given by

β̂PRR = (X′ŴX + kI)−1X′ŴXβ̂ML
= (X′ŴX + kI)−1X′Ŵŝ.

(2.9)

The MSE of β̂PRR is

MSE(β̂PRR) =

J∑
j=1

λ j

(λ j + k)2 + β
′

k2(X
′

ŴX + kI)−2β

= γ1(k) + γ2(k), (2.10)

...MSE(β̂PRR) = VAR(β̂PRR) + Bias(β̂PRR),

where γ1(k) is the variance and γ2(k) is the bias part of β̂PRR.

The MSE of β̂PRR is lower than the estimate β̂ML when we find k (where k may
take any value between zero and infinity) such that the reduction in the variance part
is greater than the increase in the squared part, for this reason the PRR estimation is
better than ML estimation. Furthermore, the PRR is a simple method since it does not
require any changes to the Poisson regression.
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3 Liu-type Poisson Regression Estimator

The most popular biased estimator is Karbalaee et al. (2019) which adopts the Poisson
regression model and is defined as follows Algamal (2018), Arashi et al. (2014) and
Arashi et al. (2017)

β̂PLE = (X′ŴX + I)−1(X′ŴX + dI)β̂ML. (3.1)

Where 0 < d < 1, where the MSE of β̂PLE is lower than MSE of β̂ML Liu (2003) which is
equal to

β̂PLE =

J∑
j=1

(λ j + d)2

λ j(λ j + I)2 + (d − I)2
J∑

j=1

α2
j

(λ j + I)2 , (3.2)

where α2
j is defined as the j-th element of γβ, where γ is the eigenvector defined by

X′ŴX = γ′Λγ and Λ is the diagonal matrix with elements equal to λ j.

For the estimator β̂PLE the matrix of cross-products used by Kibria (2003) is replaced
with the weighted matrix of cross-products and the ordinary least square estimator of
β is replaced with the ML estimator Hinkley (1977). The MSE of β̂PLE is

MSE(β̂PLE) = E(β̂PLE − β)′(β̂PLE − β)

= tr
[
(β̂ML − β)′(β̂ML − β)S′S

]
+β

′

k2(X′ŴX + kI)−2β.

By taking the trace for the equation above, we have

MSE(β̂PLE) =

J∑
j=1

(λ j + d)2

λ j(λ j + I)2 + (d − I)2
J∑

j=1

α2
j

(λ j + I)2 , (3.3)

MSE(β̂PLE) = ω(d)1 + ω(d)2.

From equation (3.3), the MSE of (β̂PLE) is equal to ω(d)1, which is the variance, and the
biased part, which is represented by ω(d)2.

To show that MSE(β̂PLE) < MSE(βML) we take the first derivative of equation (3.3)
with respect to d as follows Algamal (2018)

∂
(
MSE(β̂PLE)

)
∂ (d)

= 2
J∑

j=1

λ j + d

λ j(λ j + I)2 + 2(d − I)
J∑

j=1

α2
j

(λ j + I)2 . (3.4)
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Since 0 < d < 1, by inserting d = 1 into equation (3.4), we have

∂
(
MSE(β̂PLE)

)
∂ (d)

= 2
J∑

j=1

λ j + 1

λ j(λ j + I)2

= 2
J∑

j=1

1
λ j(λ j + I)

;λ j > 0. (3.5)

The optimal value of d j can be found by setting equation (3.4) to zero and solving
for d j, which may then be shown as

d j =
α2

j − 1
1

λ j+α2
j

. (3.6)

Liu upgraded this by proposing the Liu-type estimator to overcome the problem of
severe multicollinearity. The Liu-type estimator is defined as follows Algamal (2018)

β̂PLTE = (X′ŴX + kI)−1(X′ŴX − dI)β̂ML, (3.7)

where −∞ < d < ∞ and k ≥ 0. The Liu-type estimator is superior to the ridge estimator
Liu (2003). Liu noted that when there is sever multicollinearity, the shrinkage ridge
parameter may not fully address the ill-conditioning problem. He therefore modified
Liu estimator and suggested Liu-type estimator. The MSE of β̂PLTE is

MSE(β̂PLTE) =

J∑
j=1

(λ j − d)2

λ j(λ j + k)2 + (d + k)2
J∑

j=1

α2
j

(λ j + k)2 . (3.8)

4 The Proposed Estimator: Jackknifed Liu-type Estimator

In this section, the new estimator is introduced and derived. Let M = (m1,m2, ...,mp)
and Λ = diag(λ1, λ2, ..., λp), respectively, be the matrices of the eigenvectors and
eigenvalues of a symmetric matrix C = X

′

WX that has an eigenvalues and eigenvectors
decomposition of the form C = TΛT

′

, where T is an orthogonal matrix and Λ is a
diagonal matrix. Consequently, the Poisson regression estimator of equation (2.6), β̂PR,
can be written as

γ̂PR = Λ−1S
′

Ŵv̂
β̂PR = M γ̂PR.

(4.1)
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In Liu (2003), a new estimator is proposed for γ. This estimator is biased and is called
Liu-type estimator (LTE), and is defined as follows

γ̂PLTE(k, d) = (Λ + kI)−1(M′y − dγ̂PR)
=(Λ + kI)−1(M′y − dΛ−1M′y)
=

[
I − (Λ + kI)−1(k + d)

]
γ̂PR

= H(k, d)γ̂PR ,

(4.2)

where
H(k, d) = (Λ + kI)−1(Λ − dI), (4.3)

γ̂PLTE has a bias vector defined as

bias(γ̂PLTE) = (H(k, d) − I)γ, (4.4)

and a covariance matrix

cov(γ̂PLTE) = H(k, d)Λ−1H(k, d). (4.5)

By using Hinkley (1977), Singh et al. (1986), Nyquist (1988) and Batah et al. (2008)
we can propose a jackknifed form of γ̂PLTE. In Quenouille (1956) and Tukey (1958) the
jackknife method was introduced to reduce the value of the bias. In Hinkley (1977)
it was stated that, with a few exceptions, the jackknife technique can be applied to
balanced models. The jackknifed estimator, after some algebraic manipulations, is
obtained by deleting the i-th observation (m′i , yi)

γ̂PLTE(k, d) =
(
M′
−iŴ−iM−i + kI

)−1 (
M′
−iŴ−iM−i − dI

) (
M′
−iŴ−iM−i

)−1
M′
−iy−i

=
(
A −M′

−iŴ−iM−i

)−1 (
M′y −miyi

)
=

(
A−1 +

A−1miwim′i A
−1

1−m′i A
−1mi

)
= A−1M′y − A−1miyi

(
A−1miwim′i A

−1

1−m′i A
−1mi

M′y −
A−1miwim′i A

−1

1−m′i A
−1mi

miyi

)
=γ̂PLTE(k, d) + A−1miyi

(
1 +

m′i A
−1mi

1−m′i A
−1mi

)
+

A−1miwim′i
1−m′i A

−1mi
γ̂PLTE(k, d)

=γ̂PLTE(k, d) − A−1mi
A−1mi(yi−m′i γ̂PLTE(k,d))

1−m′i A
−1mi

=γ̂PLTE(k, d) − A−1miei
1− fi

,

(4.6)

where m′i is the i-th row of the matrix M, ei = yi −m′i γ̂PLTE(k, d) is the Liu-type residual,
M′
−iŴ−iM−i = M′ŴM − miŵim′i , M′

−iy−i = M′y − miyi and fi = m′i A
−1mi is the distance

factor and A−1 = (Λ + kI)−1
(
I − dΛ−1

)
= H(k, d)Λ−1.
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The bias part and the variance of γ̂PLTE(k, d) are obtained as, respectively

Bias
(
γ̂PLTE(k, d)

)
= − (I −H(k, d))2 γ, (4.7)

cov
(
γ̂PLTE(k, d)

)
= σ2

(
(2I −H(k, d)) H(k, d)Λ−1H(k, d)′(2I −H(k, d)

)′
. (4.8)

The MSEMs of the jackknifed Poisson Liu-type estimator (JPLTE) and the Poisson
Liu-type estimator (PLTE) are given as follows

MSEM
(
γ̂JPLTE(k, d)

)
= cov

(
γ̂JPLTE(k, d)

)
+ Bias

(
γ̂JPLTE(k, d)

)
Bias

(
γ̂JPLTE(k, d)

)′
= (2I −H(k, d)) H(k, d)Λ−1H, (4.9)

MSEM(γ̂JPLTE) = H(k, d)Λ−1H(k, d)′ + (H(k, d) − I)γγ′ (H(k, d) − I) . (4.10)

Let
∆1 = MSEM

(
γ̂JLTE(k, d)

)
−MSEM

(
γ̂MJLTE(k, d)

)
=

∑
+H∗(k, d) 2

γγ′H∗(k, d)2′
−H∗(k, d)Wγγ′W′H∗(k, d)′,

(4.11)

where
∑

is symmetric and positive definite matrix. Therefore, the difference ∆1 is
nonnegative definite, if and only if L−1∆1L−1

′

is nonnegative definite. Also, the matrix
L−1∆1L−1

′

can be written as

L−1∆1L−1
′

= L−1
(∑

+H∗(k, d)2γγ′H∗(k, d)2′
)

L−1
′

− γγ′, (4.12)

the difference ∆1 is a nonnegative definite matrix. If and only if L−1∆1L−1
′

is a
nonnegative definite matrix. Since the matrix

(∑
+H∗(k, d)2γγ′H∗(k, d)2′

)
is symmetric

and positive definite, we may conclude that L−1∆1L−1
′

is a nonnegative definite, if and
only if the inequalityYıldız (2018) holds

γ′
[
L−1

(∑
+H∗(k, d)2γγ′H∗(k, d)2′

)
L−1

′
]−1

γ ≤ 1. (4.13)

5 Simulation Results

In this section, a Monte Carlo simulation experiment is conducted to examine the
performance of the new estimator with different degrees of multicollinearity. The
response variable of n observations is generated from the Poisson regression model by

θi = exp(x
′

iβ), (5.1)
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where β = (β0, β1, ..., βp) with
∑p

j=1 β
2
j = 1 and β1 = β2 = ... = βp Kibria et al. (2015) and

Kibria (2003). In addition, because the value of intercept, β0, has an effect on θi, three
values are chosen for β0 ∈ {1, 0,−1}, where decreasing the value of β0 leads to a lower
average value of θi, which leads to less variation Arashi et al. (2018), Asar and Genç
(2017) and Mansson et al. (2012).

The explanatory variables x
′

i = (xi1, xi2, ..., xin) have been generated from the following
formula

xi j = (1 − ρ2)1/2wi j + ρwip , i = 1, 2, ...,n , j = 1, 2, ...,p, (5.2)

where ρ represents the correlation between the explanatory variables and the wi j’s are
independent standard normal pseudo-random numbers. Because the sample size has
a direct impact on the prediction accuracy, three representative values of sample size
are considered: 30, 50, and 100. In addition, the number of the explanatory variables is
considered to be p = 4 and p = 8 because increasing the number of explanatory variables
can lead to an increase in the MSE. Further, because we are interested in the effect of
multicollinearity, in which the degrees of correlation are considered to be important,
three values of the pairwise correlation are considered with ρ = {0.90, 0.95, 0.99}. For a
combination of these different values of n, p, β, and ρ the generated data are repeated
1000 times and the estimated averaged mean squared error (EMSE) is calculated as

EMSE(β̂) =
1

1000

1000∑
i=1

(β̂ − β)′(β̂ − β), (5.3)

where β̂ is the estimated coefficient for the estimator used. For the value of k, the best
method of Kibria et al. (2015) was used as

k = max
{

1
m j

}
, j = 1, 2, ..., p,

where m j =
√
σ̂2/α̂2

j .

As is used in Yıldız (2018) and Akdeniz Duran and Akdeniz (2012), the value of d
is set as 0.5 and 0.75. For the value of k, it can be computed as in Hoerl and Kennard
(1970).

The estimated MSEs of Eq. (5.3) for MLE, PLE, PLTE, and JPLTE, for all the
combination of n, p, β0, and ρ, are summarized in Tables 1-3. Several observations
can be made.
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Table 1: MSE values when β0 = −1
d=0.5 d=0.75

ML PLE PLTE JPLTE PLE PLTE JPLTE
p n ρ
4 30 0.90 5.037 1.076 0.923 0.615 1.101 0.948 0.649

0.95 5.665 1.307 1.156 1.064 1.331 1.18 1.088
0.99 6.063 1.957 1.805 1.596 1.981 1.829 1.62

50 0.90 3.408 0.709 0.556 0.526 0.733 0.58 0.55
0.95 4.483 0.981 0.828 0.635 1.005 0.852 0.659
0.99 4.675 1.298 1.145 1.525 1.322 1.169 1.549

100 0.90 3.251 0.511 0.358 0.497 0.535 0.382 0.521
0.95 3.461 0.635 0.482 0.524 0.659 0.506 0.548
0.99 4.216 1.661 1.508 1.3 1.685 1.532 1.324

8 30 0.90 5.142 1.278 1.125 0.807 1.302 1.149 0.831
0.95 5.761 1.509 1.356 1.256 1.533 1.38 1.28
0.99 6.176 2.159 2.006 1.788 2.183 2.03 1.812

50 0.90 3.677 0.911 0.758 0.718 0.935 0.782 0.742
0.95 4.82 1.183 1.03 0.827 1.207 1.054 0.851
0.99 5.145 1.5 1.347 1.717 1.524 1.371 1.741

100 0.90 3.587 0.703 0.55 0.689 0.727 0.574 0.713
0.95 3.862 0.827 0.675 0.716 0.851 0.699 0.74
0.99 4.42 1.853 1.7 1.492 1.877 1.724 1.516

First, in terms of ρ values, there is an increase in the MSE value when the correlation
degree increases, regardless of the values n, p and β0. However, JPLTE performs better
than PLTE, PLE, and MLE for all cases. For instance, in Table 1, when p = 4, n = 100,
and ρ = 0.95, the MSE of JPLTE is about 51.34%, 32.74%, and 18.31% lower than the
MSEs of MLE, PLE, and PLTE, respectively.

Second, regarding the number of explanatory variables, it is easily seen that there
is an increase in the MSE values when p increase from four variables to eight variables.
Although this increase can affect the quality of an estimator, JPLTE achieves the lowest
MSE when compare with the other estimators used, for different n, ρ and β0. Third,
concerning the value of n, the MSE values decrease when n increases, regardless of
the values of ρ, p and β0. However, JPLTE still consistently outperforms the others by
providing the lowest MSE.
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Table 2: MSE values when β0 = 0
d=0.5 d=0.75

ML PLE PLTE JPLTE PLE PLTE JPLTE
p n ρ
4 30 0.90 4.626 0.665 0.512 0.204 0.698 0.545 0.237

0.95 5.254 0.896 0.745 0.653 0.929 0.778 0.686
0.99 5.652 1.546 1.394 1.185 1.579 1.427 1.218

50 0.90 2.997 0.298 0.145 0.115 0.331 0.178 0.148
0.95 4.072 0.57 0.417 0.224 0.603 0.45 0.257
0.99 4.264 0.887 0.734 1.114 0.92 0.767 1.147

100 0.90 2.84 1.32 0.34 0.186 1.353 0.373 0.219
0.95 3.05 0.224 0.071 0.113 0.257 0.104 0.146
0.99 3.805 1.25 1.097 0.889 1.283 1.13 0.922

8 30 0.90 4.731 0.867 0.714 0.396 0.9 0.747 0.429
0.95 5.35 1.098 0.945 0.845 1.131 0.978 0.878
0.99 5.765 1.748 1.595 1.377 1.781 1.628 1.41

50 0.90 3.266 0.5 0.347 0.307 0.533 0.38 0.34
0.95 4.409 0.772 0.619 0.416 0.805 0.652 0.449
0.99 4.734 1.089 0.936 1.306 1.122 0.969 1.339

100 0.90 3.176 0.292 0.139 0.278 0.325 0.172 0.311
0.95 3.451 0.416 0.264 0.305 0.449 0.297 0.338
0.99 4.009 1.442 1.289 1.081 1.475 1.322 1.114

Fourth, in terms of the value of the intercept and for given values of ρ, p, and n,
JPLTE always shows a smaller MSE than andthe other estimators.

To summarize, for all the values of n, ρ, p and β0 considered, the proposed estimator,
JPLTE, is superior to PLTE and PLT, clearly indicating that the new proposed estimator
is more efficient.

6 Real Application

To investigate the usefulness of our new estimator, we apply the proposed estimator
to the Spanish La Liga, football season 2016-2017. There are data here for 20 teams.
The response variable represents the number of matches won. The six explanatory
variables considerable are the number of yellow cards (x1), the number of red cards
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(x2), the total number of substitutions (x3), the number of matches with 2.5 goals on
average (x4), the number of matches that ended with goals (x5), and the ratio of the
goals scoreds to the number of matches (x6).

Table 3: MSE values when β0 = 1
d=0.5 d=0.75

ML PLE PLTE JPLTE PLE PLTE JPLTE
p n ρ
4 30 0.90 5.229 1.268 1.115 0.807 1.281 1.148 0.84

0.95 5.857 1.499 1.348 1.256 1.512 1.381 1.289
0.99 6.255 2.149 1.997 1.788 2.162 2.03 1.821

50 0.90 3.6 0.901 0.748 0.718 0.914 0.781 0.751
0.95 4.675 1.173 1.02 0.827 1.186 1.053 0.86
0.99 4.867 1.49 1.337 1.717 1.503 1.37 1.75

100 0.90 3.443 1.923 0.943 0.789 1.936 0.976 0.822
0.95 3.653 0.827 0.674 0.716 0.84 0.707 0.749
0.99 4.408 1.853 1.7 1.492 1.866 1.733 1.525

8 30 0.90 5.334 1.47 1.317 0.999 1.483 1.35 1.032
0.95 5.953 1.701 1.548 1.448 1.714 1.581 1.481
0.99 6.368 2.351 2.198 1.98 2.364 2.231 2.013

50 0.90 3.869 1.103 0.95 0.91 1.116 0.983 0.943
0.95 5.012 1.375 1.222 1.019 1.388 1.255 1.052
0.99 5.337 1.692 1.539 1.909 1.705 1.572 1.942

100 0.90 3.779 0.895 0.742 0.881 0.908 0.775 0.914
0.95 4.054 1.019 0.867 0.908 1.032 0.9 0.941
0.99 4.612 2.045 1.892 1.684 2.058 1.925 1.717

First, the deviance test Montgomery et al. (2015), Karbalaee et al. (2019) and Liu
(1993) is used to check whether the Poisson regression model fits these data well or not.
The result of the residual deviance test is equal to 7.394 with 14 degrees of freedom and
the p-value is 0.916. This result indicates that the Poisson regression model fits these
data very well.

Second, to check whether or not there are relationships between the explanatory
variables, Figure 1 displays the correlation matrix among the six explanatory variables.
It is obvious that there are correlations greater than 0.82 between x1 and x6, x1 and x4,
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x2 and x4, and, x4 and x6.

Third, to test the existence of multicollinearity, the eigenvalues of the matrix X
′

ŴX
are obtained as 988.628, 142.907, 75.560, 38.999, 21.424, and 1.105. The condition
number CN =

√
λmax/λmin of the data is determined to be 29.905 indicating that there

is a multicollinearity issue.

The estimated Poisson regression coefficients and MSE values for the MLE, PLE,
PLTE, and JPLTE estimators when d=0.75 are listed in Table 4. Table 4, clearly shows
that the JPLTE estimator shrinks the value of the estimated coefficients efficiently. In
terms of MSE, the JPLTE achieves the lowest MSE.

Table 4: The estimated coefficients and MSE values for the MLE, PLE, PLTE, and JPLTE
estimators.

MLE PLE PLTE JPLTE
β̂1 -1.219 -1.057 -0.116 -0.088

β̂2 0.441 0.237 0.104 0.051

β̂3 0.575 0.364 0.016 0.012

β̂4 -3.476 -1.102 -0.738 -0.514

β̂5 -2.432 -1.311 -0.878 -0.577

β̂6 5.121 3.071 1.214 1.017

MSE 3.508 1.144 1.057 0.868

7 Conclusions

In this paper, a new Poisson Liu-type estimator is proposed to overcome the multicollin-
earity problem in the Poisson regression model. From the Monte Carlo simulation
studies, the new estimator, a jackknifed Liu-type estimator, has a better performance
than MLE, PLT, and PLTE, in terms of MSE. Additionally, a real data application is
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considered to illustrate the benefits of using the new estimator in the context of the
Poisson regression model. The superiority of the JPLTE based on the resulting MSE
is observed and it was shown that the results are consistent with the Monte Carlo
simulation results. In conclusion, the use of the new estimator, JPLTE, is recommended
when multicollinearity is present in a Poisson regression model.

Figure 1: The correlation matrix among the six explanatory variables.
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