
JIRSS (2020)

Vol. 19, No. 01, pp 1-19

DOI:10.29252/jirss.19.1.1

Accurate Inference for the Mean of the Poisson-Exponential 
Distribution

Wei Lin 1, Xiang Li 2, Augustine Wong 2

1 Department of Mathematics and Statistics, Thompson Rivers University, 805 TRU Way, 
Kamloops, British Columbia, Canada V2C 0C8.
2 Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, 
Canada M3J 1P3.

Received: 13/11/2018, Revision received: 27/06/2020, Published online: 28/06/2020

Abstract. Although the random sum distribution has been well-studied in probability 
theory, inference for the mean of such distribution is very limited in the literature. 
In this paper, two approaches are proposed to obtain inference for the mean of the 
Poisson-Exponential distribution. Both proposed approaches require the log-likelihood 
function of the Poisson-Exponential distribution, but the exact form of the log-likelihood 
function is not available. An approximate form of the log-likelihood function is then 
derived by the saddlepoint method. Inference for the mean of the Poisson-Exponential 
distribution can either be obtained from the modified signed likelihood root statistic or 
from the Bartlett corrected likelihood ratio statistic. The explicit form of the modified 
signed likelihood root statistic is derived in this paper, and a systematic method to 
numerically approximate the Bartlett correction factor, hence the Bartlett corrected 
likelihood ratio statistic is proposed. Simulation studies show that both methods are 
extremely accurate even when the sample size is small.
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1 Introduction

In probability theory, a compound Poisson distribution is defined by S =
∑N

i=1 Xi where
Xi is a sequence of identical and independently distributed (iid) random variables
and N follows a Poisson distribution with Xi independent of N. As an example for
the motivation of the compound Poisson distribution, let X be the claims that an
insurance company has to pay to its clients. The arrival times of these payments, which
is a counting process, follow a specific distribution. When the underlying counting
process is a Poisson process, and the claims are random variables, then the amount
of total claims is a compound Poisson process. The compound Poisson distribution is
not only used in actuarial science and insurance for modeling the distribution of total
claim, but also used in reliability theory, queuing theory, molecular sequence analysis,
etc.

Although the compound Poisson distribution appears in many fields, the explicit
distribution of S is, generally, not available in closed form. Barbour and Chryssaphinou
(2001) review and discuss Stein’s method to derive bounds on the error bound in
compound Poisson approximation. For the same problem, Bero (2003) uses Kerstan’s
method to derive new bounds for the total variation distance. More recently, Barbour et
al. (2010) provide an information-theoretic treatment of the problem of approximating
the distribution. As well, Alya and Low (2013) derive the approximated density for S
when X1, . . . ,XN are iid random variables from the Exponential distribution.

This paper is motivated by the previous insurance example. Our aim is to obtain
inference for the mean parameter in the compound Poisson distribution with a sum of
Exponentially distributed random variables. Specifically, we assume that the amount
of a claim, Xi, is Exponentially distributed with mean β and the number of claims,
N, is following a Poisson distribution with mean λ. Then S = X1 + · · · + XN is the
aggregate claims generated by the portfolio for the period under study. This specific
compound Poisson process is often referred to as the Poisson-Exponential distribution.
It is important to note that if N = 0 is realized, then S must be zero.

Since S follows the Poisson-Exponential distribution, the moment generating functi-
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on (mgf) can be obtained as

mS(t) = mN
[
log mX(t)

]
.

Hence, E(S) is

ψ = E(S) = E(N)E(X) = λβ .

The main objective of this paper is to obtain inference ofψ based on an observed sample
of aggregate claims (s1, s2, . . . , sk). We are especially interested in the case where sample
size, k, is small.

In the literature, there are limited studies on the inference of the Poisson-Exponential
distribution. Thmazella et al. (2013) propose a Bayesian inference method for the
shape parameter of the newly proposed Poisson-Exponential distribution by using
Markov chain Monte Carlo simulation. Ghribi and Masmoudi (2013) introduce the
compound Poisson model in the Bayesian network framework and apply implicit
inference to this model for learning the parameters of the network. Both are Bayesian
methods and pay no attention to the inference of the mean parameter. In this paper,
we address the problem of mean parameter inference of the Poisson-Exponential
distribution. First, we review the approximation to obtain the density function of
S, and hence, the corresponding log-likelihood function. Then two likelihood-based
inference approaches are proposed. Finally, we study the performance of the proposed
inference methods when sample size is small by simulation studies.

The outline of the rest of the paper is as follows: in Section 2, we review the
saddlepoint approximation of the density function of S. In Section 3, the first-order
and third-order likelihood inference methods are reviewed and specifically applied to
obtaining inference of the Poisson-Exponential distribution. Moreover, an algorithm to
estimate the Bartlett correction factor is proposed in Section 4. To compare the accuracy
of the methods discussed in this paper, simulation studies are conducted, results are
reported and discussed in Section 5. Further concluding remarks are given in Section
6.

2 Saddlepoint Approximation for the Poisson-Exponential Di-
stribution

Let Y1, . . . ,Yn be iid random variables with a known mgf mY(t). By inverting mY(t),
Daniels (1954) proposes using the saddlepoint method to approximate the density
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function of Ȳ =
∑n

i=1 Yi/n. The approximated density function takes the form in below

fȲ(ȳ) = c

 n

K(2)
Y (t̂)


1/2

exp
{
n
[
KY(t̂) − t̂ȳ

]}
,

where c is the normalizing constant,KY(t) = log mY(t) is the cumulant generation
function,

K( j)
Y (t) =

d jKY(t)
dt j ,

is the jth derivative of the cumulant generating function, and t̂ is the saddlepoint
satisfying K(1)

Y (t̂) = ȳ. Moreover, based on this approximated density function and
complex integration, Lugannani and Rice (1980) derive the approximated distribution
function of Ȳ, which takes the form

FȲ(ȳ) = Φ(ŵ) + φ(ŵ)
{ 1

ŵ
−

1
û

}
+ O(n−3/2) ,

whereφ() and Φ() are the density and cumulative distribution functions of the standard
normal distribution,

ŵ = sgn(t̂)
{
2n

[
t̂ȳ − KY(t̂)

]}1/2
, and û = t̂

[
nK(2)

Y (t̂)
]1/2

.

Since there is a singularity point at t̂ = 0, Daniels (1987) derives the limiting value of
FȲ(ȳ) at the singularity point:

FȲ(ȳ) =
1
2

+
K(3)

Y (0)

6
√

2π
[
K(2)

Y (0)
]3/2

.

Consider the random sum problem with N being a Poisson random variable with
meanλ, and X1, . . . ,XN being iid Exponentially distributed with mean β. For N = n , 0,
and t , 1/β, we have

mN(t) = exp
{
λ(et
− 1)

}
, and mX(t) =

1
1 − βt

.

Therefore, the mgf of the aggregate claims is

mS(t) = mN
[
log mX(t)

]
= exp

{
λ

[
1

1 − βt
− 1

]}
,
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and the corresponding cumulant generating function is

KS(t) = log mS(t) = λ

[
1

1 − βt
− 1

]
.

By applying the saddlepoint method, Alya and Low (2013) derive the approximated
density for the aggregate claims S,

fS(s) =
c√

K(2)
S (t̂)

exp
{
KS(t̂) − t̂s

}
, (2.1)

where

K(1)
S (t) =

λβ

(1 − βt)2 , K(2)
S (t) =

2λβ2

(1 − βt)3 , (2.2)

and t̂ satisfies K(1)
S (t̂) = s, which results in

t̂ =
1
β

1 − (
λβ

s

)1/2 . (2.3)

Based on the approximated density and applying the Lugganni and Rice method,
Alya and Low (2013) examine the accuracy of the cumulative distribution of S for
given λ and β. But in practice, λ and β are unknown, so is the mean parameter, ψ = λβ.
Obtaining inferenceψ is of great interest to many insurance companies. However, there
is a paucity of literature on this problem. Two inferential methods forψ are proposed in
the next two sections. The first method derived in Section 3 is based on the third-order
likelihood-based method discussed in Fraser and Reid (1995), and a new numerical
algorithm to approximate the Bartlett correction factor of the likelihood ratio method
(Bartlett , 1937) is given and discussed in Section 4.

3 Inference for the Mean Aggregate Claims based on the Third-
order Likelihood-based Method

In parametric statistical inference, data are modeled as a realization of a variable y
with the density function f (y;θ). We assume that f (y;θ) has a known form and θ is
an unknown parameter taking value in a finite-dimensional Euclidean space Θ. As
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defined in Kalbfleisch (1985), the likelihood function based on a random sample,
y= (y1, y2, . . . , yn), is

L(θ) = L(θ; y) = a
n∏

i=1

f (yi;θ) , θ ∈ Θ ⊆ Rd, (3.1)

where a > 0 is an arbitrary constant. Reid (2010) notes that the value of the likelihood
function is only meaningful in relative terms. The likelihood function presents almost
everything that a model has to say about the observed data. Among the possible values
of θ, the maximum likelihood value, θ̂, is the one which maximizes the likelihood
function. For computational convenience, it is often easier to maximize the log-
likelihood function,

`(θ) = `(θ; y) = logL(θ) =

n∑
i=1

log{ f (yi;θ)} + log(a), θ ∈ Θ, (3.2)

which yields the same θ̂ for each a. Hence, without loss of generality, a is set to be 1
hereafter.

For a vector parameter model, we assume θ = (ψ, λ) with interest parameter ψ
of dimension one and nuisance parameter vector λ. A simple way to eliminate the
nuisance parameter is to use the profile log-likelihood function for ψ:

`p(ψ) = max
λ

`(ψ, λ) = `(ψ, λ̃ψ) = `(θ̃ψ), (3.3)

where θ̃ψ = (ψ, λ̃ψ) is the constrained maximum likelihood estimate when ψ is fixed.
In practise, likelihood inference for ψ is typically based on the following quantities:

Signed likelihood root, r(ψ) = sign(ψ̂ − ψ)
√

2{`p(ψ̂) − `p(ψ)} (3.4)

= sign(ψ̂ − ψ)
√

2{`(θ̂) − `(θ̃ψ)},

Score quantity, s(ψ) = jp(ψ̂)−1/2
(
∂`p(ψ)
∂ψ

)
, (3.5)

Wald quantity, q(ψ) = jp(ψ̂)1/2(ψ̂ − ψ) , (3.6)

where jp(ψ̂) is the observed information, which is the negative second derivative of the
profile log-likelihood function evaluated at the ψ̂, and the sign(x) function takes “+” if
x is positive, “−” if x is negative, and “0” if x = 0.
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Reid (2010) gives a detailed review on the asymptotic distribution of these quantities.
More specifically, each of the above quantities has an asymptotic standard normal
distribution with first order accuracy, O(n−1/2). They are referred to as first-order
inference quantities. Murphy and Van der Vaart (2000) present a rigorous proof of
the likelihood ratio statistic, in the presence of nuisance parameter, is asymptotically
distributed as the Chi-square distribution. The asymptotic distribution of (7) follows
when the parameter of interest is of dimension one.

It is well-known that the accuracy of first-order inference quantities may be poor or
questionable when the sample size n is not large. In the literature, many improvements
based on the signed likelihood root, r(ψ), have been proposed and developed.

An important variant of the signed likelihood root is the modified signed likelihood
root proposed by Barndorff-Nielsen (1986, 1991), denoted by r∗(ψ),

r∗(ψ) = r(ψ) +
1

r(ψ)
log

Q(ψ)
r(ψ)

, (3.7)

where r(ψ) is defined in (3.4). A general form of Q(ψ) is derived by Fraser et al. (1999)
and given as

Q(ψ) =
|ϕ(θ̂) − ϕ(θ̃ψ) ϕλ(θ̃ψ)|

|ϕθ(θ̂)|

{ | jθθ(θ̂)|

| jλλ(θ̃ψ)|

}1/2
, (3.8)

whereϕ(θ) is the exact or approximated canonical parameter in the likelihood function,
and

jθθ(θ̂) = −
∂2`(θ)
∂θ∂θT |θ=θ̂, jλλ(θ̃ψ) = −

∂2`(θ)
∂λ∂λT |θ=θ̃ψ

,

are the observed full and nuisance information function, respectively. The modified
signed likelihood root, r∗(ψ), converges to the standard normal distribution with third-
order accuracy, O(n−3/2). Hence, the p-value function of ψ defined in Fraser (2017) can
be approximated by

p(ψ) = Φ
(
r∗(ψ)

)
and p(ψ) = Φ

(
r(ψ)

)
+ φ

(
r(ψ)

) { 1
r(ψ)

−
1

Q(ψ)

}
,

using the modified signed likelihood root and the Lugannani and Rice formula, respecti-
vely. Both approximations have third-order accuracy and are equivalent up to third-
order accuracy (Fraser and Reid , 1995). Thus, as discussed in Fraser (2017), either
approximation of the p-value function can be used to obtain inference for ψ.
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Applying the saddlepoint method to the Poisson-Exponential aggregate claims
problem, the log-likelihood function of parameters (λ, β) for a given sample of size m is

`(λ, β; s1, . . . , sm) = 2
( m∑

i

√
si

) λ√
λβ
−

( m∑
i

si

)1
β
−mλ −

m
4

log(λβ) +
m
2

log(λ), (3.9)

where si = Xi,1 + . . . + Xi,Ni for i = 1, . . . ,m. Details of the derivation is in Appendix A.
Since the parameter of interest is ψ = βλ, the log-likelihood function in terms of (ψ, λ)
can be re-written as

`(ψ, λ; s1, . . . , sm) = 2
( m∑

i

√
si

) λ√
ψ
−

( m∑
i

si

)λ
ψ
−mλ −

m
4

log(ψ) +
m
2

log(λ). (3.10)

By maximizing the log-likelihood function with respect to θ = (ψ, λ), the overall
maximum likelihood estimate is

θ̂ = (ψ̂, λ̂) =

(
s̄,

s̄

4(s̄ − u
√

s̄)

)
,

where s̄ =
∑m

i=1 si/m and u =
∑m

i=1
√

si/m. Moreover, for a given ψ, the constrained
maximum likelihood estimate is θ̃ψ = (ψ, λ̃ψ), where

λ̃ψ =
ψ

2(ψ − 2u
√
ψ + s̄)

.

Hence, r(ψ) can be obtained from (3.4). Notice that, for this case, the exact canonical
parameter is directly available from the log-likelihood function, and is

ϕ′(θ) =

 λ√
ψ
,
λ
ψ

 .
With the above canonical parameter and estimates, Q(ψ) can be obtained from (3.8).
Finally, the p-value function of ψ is approximated by either the modified signed
likelihood root or the Lugganani and Rice formula with third-order accuracy.

4 Simulated Bartlett Corrected Likelihood Ratio Method

Forψ being a scalar parameter, Reid (2010) showed that r(ψ) is asymptotically normally
distributed, and Murphy and Van der Vaart (2000) derived that the generalized
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likelihood ratio statisitic is asympotically distributed as a Chi-square distribution with
1 degree of freedom. Hence, we have

w(ψ) = [r(ψ)]2 = 2
[
`(θ̂) − `(θ̃ψ)

]
, (4.1)

is asymptotically distributed as Chi-square distribution with 1 degree of freedom. Thus,
the p-value function for ψ can be approximated by

p(ψ) = P
(
χ2

1 ≤ w(ψ)
)
.

Bartlett (1937) proposed the transformation to w∗(ψ), which takes the form

w∗(ψ) =
w(ψ)

B
, (4.2)

such that the mean of the transformed statistic is the mean of the limiting distribution.
This transformed statistic is known as the Bartlett corrected likelihood ratio statistic
and B is referred to as the Bartlett correction factor. Bartlett (1937) showed that

p(ψ) = P
(
χ2

1 ≤ w∗(ψ)
)
,

has fourth-order accuracy. The simplest choice of B is the mean of the likelihood ratio
statistic. However, except in a few well-defined cases, B is not available in explicit
closed form. Obtaining the asymptotic expansion of B is also very complicated, and
hence, it restricts its popularity in practice despite the high accuracy.

We propose the following algorithmic way to obtain B numerically.
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Given: (y1, . . . , yn) is a sample of size n from a distribution with known density
function f (·;θ).

Interest: Inference concerning ψ = ψ(θ).
Obtain: We can obtain the overall maximum likelihood estimate θ̂, the constrained

maximum likelihood estimate θ̃ψ, and the likelihood ratio statistic w(ψ).
Step 1: Simulate M samples of size n from f (·; θ̃ψ).
Step 2: For each simulated sample, obtain the likelihood ratio statistic. As a result,

we have w1(ψ), . . . ,wM(ψ).
Step 3: Calculate

w̄(ψ) =

∑M
i=1 wi(ψ)

M
,

which is an estimate of the mean of the likelihood ratio statistic. Hence, we
have B̂ = w̄(ψ).

Step 4: The simulated Bartlett corrected likelihood ratio statistic is

w∗(ψ) =
w(ψ)
w̄(ψ)

,

which has a limiting χ2
1 distribution. Thus, the p-value function is p(ψ) =

P
(
χ2

1 ≤ w∗(ψ)
)
.

For the mean of Poisson-Exponential distribution, θ̂, θ̃ψ, and w(ψ) are obtained in
Section 3. Thus, it is extremely easy to apply the proposed algorithm to obtain the
p-value function of ψ.

5 Numerical Studies

Let us consider a sample of five aggregate claims:

3.24, 4.39, 1.30, 11.51, 4.15.

Assume the Poisson-Exponential model and our aim is to obtain inference for the mean
aggregate claims. Figure 1 plots the p-value functions obtained by the signed likelihood
root method (r), the likelihood ratio method (w), the modified signed likelihood
root method (r∗) and the simulated Bartlett corrected likelihood ratio method (w∗),
respectively. From the plot, the signed likelihood root method and the likelihood ratio
method give exactly the same result because former is the signed root of the later, and
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they are different from the modified signed likelihood root method and the simulated
Bartlett corrected likelihood ratio method.

Figure 1: The p-value function plot for four inference methods. r represents the
signed likelihood root method, w represents the likelihood ratio statistic, r∗ represents
the modified signed likelihood root method and w∗ represents the simulated Bartlett
corrected likelihood ratio method. Note that r and w coincide with one another.

In order to compare the accuracy of the four methods, simulation studies are
performed. Moreover, the coverage probability of the confidence interval is used
as the criterion for determining whether a method is accurate or not. Furthermore, the
coverage probability is used to examine how close the proportion of samples not being
rejected at α level of significance is to the chosen nominal coverage level 1 − α. Table
1 records the results and Figure 2 gives the visual idea of accuracy from a simulation
with the following parameterization set-up:

1. N is distributed as Poisson(λ = 10).
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2. X1, . . . ,XN are identical and independently distributed as exponential with mean
β = 0.5, and S = X1 + X2 . . . + XN.

3. 5000 simulated samples of S of size n are generated, where n = 2, 3, 5, 10, 20, 50.

4. To obtain B̂, we use M = 1000.

5. Report the proportion of p(ψ = λ, β = 5) > 1−α = 0.95 for each method discussed
in this paper.

It is clear that the simulated Bartlett corrected likelihood ratio method gives results
closest to the nominal level 1 − α = 0.95 even when the sample size, k, is as small as
2. It is followed closely by the modified signed lilelihood root method. The other two
methods, the likelihood ratio method and the signed likelihood root method, do not
give satisfactory results, especially when the sample size is small.

Table 1: The coverage probability of the 95% confidence interval at different sample
size

n r(ψ) w(ψ) r∗(ψ) w∗(ψ)
2 0.7660 0.7648 0.9258 0.9572
3 0.8558 0.8552 0.9480 0.9554
5 0.9056 0.9044 0.9510 0.9500

10 0.9356 0.9354 0.9528 0.9490
20 0.9460 0.9454 0.9560 0.9504
40 0.9524 0.9516 0.9558 0.9506
50 0.9532 0.9528 0.9566 0.9512

A visual comparison of the accuracy level of the simulation result is presented in
Figure 2. We observed that, as sample size increases, all the results are converging to
the nominal value. However, when the sample size is small, the simulated Bartlett
corrected likelihood method is extremely accurate with the modified signed likelihood
root method closely following. This observation supports the theory that the former has
fourth-order accuracy, O(n−2), whereas the latter has third order of accuracy, O(n−3/2).
Moreover, the other two methods have only first-order accuracy, O(n−1/2). Furthermore,
the simulated Bartlett corrected likelihood method can easily be implemented into
standard statistical software, such as R.
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Figure 2: Coverage probability plot of 95% confidence interval. The horizontal dash line
is the 95% nominal level. r represents the signed likelihood root method, w represents
the likelihood ratio method, r∗ represents the modified signed likelihood root method
and w∗ represents the simulated Bartlett corrected likelihood ratio method. Note that r
and w coincide with one another.

In Appendix B, we reported results from a sample of other simulation studies with
different choices of parameter values that we have performed. The results are similar
to what we have presented here. More simulation studies have been carried out and
the results are available upon request from authors.

6 Conclusion and Discussion

In this paper, two methods are proposed to obtain inference for the mean of the Poisson-
Exponential distribution. One is based on the modified signed likelihood root method,
where all equations are derived. The other method is an algorithm we developed to
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approximate the Bartlett corrected likelihood ratio method. From the simulations we
conducted, we observed that the simulated Bartlett corrected likelihood ratio method
is extremely accurate even when the sample size is extremely small. A drawback
of the modified signed likelihood root method is the complication in deriving the
required statistics. Theoretically, the Bartlett corrected likelihood ratio method has an
order of accuracy O(n−2), while the modified signed likelihood root method has an
order of accuracy O(n−3/2) only. Our study confirms that the approximated Bartlett
corrected likelihood ratio method proposed does achieve a better accuracy level than
the modified signed likelihood ratio method in this case. Another advantage of the
Bartlett corrected likelihood ratio method is that it can be applied to a vector parameter
of interest, whereas, the modified signed likelihood ratio method is restricted to the
scalar parameter of interest.
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Appendix

Appendix A

Derivation of equations (12) and (13).

The density function of S is approximated by the saddlepoint approximation
method and is presented in (1). Since t̂ in (3), we have

1 − βt̂ = 1 − β
1
β

1 − (
λβ

s

)1/2 =

(
λβ

s

)1/2

Substituting t̂, K(2)
S (t̂) and KS(t) into (1) we have

fS(s) =
c√

K(2)
S (t̂)

exp
{
KS(t̂) − t̂s

}

=
c√
2λβ2

(1−βt)3

exp

λ
[

1
1 − βt

− 1
]
−

1
β

1 − (
λβ

s

)1/2 s


=

c√
2λβ2(λβ/s)−3/2

exp

λ
(λβs

)−1/2

− 1

 − s
β

1 − (
λβ

s

)1/2


=
c√

2s−1
√
λβ

λ
√

s

exp

λ
(

s
λβ

)1/2

− λ −
s
β

+
λ
√

s√
λβ


=

c
√

2s−1


√
λβ

λ
√

s

−1/2

exp

2λ
(

s
λβ

)1/2

− λ −
s
β

 .
Thus

`(λ, β; si) = log a + log fS(si) = log

 c√
2s−1

i


√
λβ

λ
√

si

−1/2

exp

2λ
(

si

λβ

)1/2

− λ −
si

β




=

log a + log
c√

2s−3/2
i

 − 1
4

log(λβ) +
1
2

logλ + 2
√

si
λ√
λβ
− λ − si/β,
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As explained in Section 3, without loss of generality, those terms that do not depend
on parameters are set to 1 because they will not affect the rest of the likelihood-based
calculations. Therefore, the log-likelihood function for a random sample (s1, s2, . . . , sm)
is

`(λ, β; s1, s2, . . . , sm) =

m∑
i=1

`(λ, β; si)

=

m∑
i=1

−1
4

log(λβ) +
1
2

logλ + 2
√

si
λ√
λβ
− λ − si/β


= −

m
4

log(λβ) +
m
2

logλ + 2(
m∑

i=1

√
si)

λ√
λβ
−mλ −

∑m
i=1 si

β
.

which gives (12). With the reparameterization ψ = λβ, we have

`(λ,ψ; s1, s2, . . . , sm) = −
m
4

log(ψ) +
m
2

logλ + 2(
m∑

i=1

√
si)

λ√
ψ
−mλ −

m∑
i=1

si
λ
ψ

which gives (13).

Appendix B

Results of simulation studies from different choices of β and λ. The set-up of these studies
is the same as the one presented in Section 5, but with different β and λ values. As observed

from these plots, the simulated Bartlett corrected likelihood ratio method is extremely
accurate with the modified signed likelihood root method closely following. The other
two methods do not give satisfying results especially when the sample size is small.

Other simulation results are available upon request.



Accurate Inference for the Mean of the Poisson-Exponential Distribution 17

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=0.5,  λ=4

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=1,  λ=4

sample size
C

ov
er

ag
e 

pr
ob

ab
ili

ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=2,  λ=4

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=0.5,  λ=8

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=1,  λ=8

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=2,  λ=8

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=0.5,  λ=10

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=1,  λ=10

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

10 20 30 40 50

0.
86

0.
90

0.
94

0.
98

β=2,  λ=10

sample size

C
ov

er
ag

e 
pr

ob
ab

ili
ty

r
r*
w
w*

Figure 3: Coverage probability plot of 95% confidence interval. The horizontal dash line
is the 95% nominal level. r represents the signed likelihood root method, w represents
the likelihood ratio method, r represents the modified signed likelihood root method
and w represents the simulated Bartlett corrected likelihood ratio method. Note that
visually r and w coincide with one another.
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