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Abstract. We introduce a new goodness of fit test for normality based on Balakrishnan-
Sanghvi divergence measure. In order to estimate the divergence measure, we use a
method similar to Vasicek's for estimating the Shannon entropy. Also, the test statistic
based on kernel density estimation is investigated. Critical values and the power of
tests are computed by Monte Carlo simulation. It is shown that the tests are consistent.
Further, by comparing the power of proposed tests with other normality tests, we
suggest the new entropic based test according to Balakrishnan-Sanghvi divergence
measure using Vasicek method.
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1 Introduction

The goodness of fit test for normality has been widely discussed in different literature.
Normal distribution plays a predominant role in various sciences like management,
engineering and reliability. So in many applications, we need to test whether the
underlying data follow a normal distribution or not. Since the introduction of the chi-
squared goodness of fit test for normality by Pearson in 1900, considerable attention
has been given to the problem of testing normality and various tests, such as the
moment-based test, regression-based test and entropy-based test.

Let f denote the density of a given population, then the null and alternative hypothe-
ses of normality are stated formally as H0 : f (x) = f0(x;µ, σ) and H1 : f (x) , f0(x;µ, σ),
where µ and σ are unknown parameters such that

f0(x;µ, σ) =
1√
2πσ

exp{−1
2

(
x − µ
σ

)2}.

Cramer Von Mises and Kolmogorov-Smirnov proposed their tests in 1931 and 1933
respectively. Some other popular tests for normality founded by Shapiro-Wilk (1965) ,
Anderson-Darling (1954) , Kuiper (1960) and Watson (1961). For the first time, Vasicek
(1976) introduced a normality test based on entropy. The entropy of X with distribution
function F(x) and a continuous density function f (x) is defined by Shannon (1948) as

H( f ) = −
∫ ∞
−∞

f (x) log f (x)dx. (1)

The problem of estimating Shannon entropy has been considered by many authors,
including Ahmad and Lin (1976), Vasicek (1976), Dudewicz and Van der Meulen
(1981), Joe (1989), Van Es (1992), Ebrahimi et al. (1994), Corea (1995), Wieczorkowski
and Grzegorzewski (1999), Yousefzadeh and Arghami (2008) and Alizadeh (2010).
Among these various entropy estimators, Vasicek's sample entropy has been the most
widely used in developing entropy-based statistical procedures. With the transforma-
tion F(x) = p, Vasicek (1976) rewrote equation (1) as

H( f ) =
∫ 1

0
log{ d

dp
F−1(p)}dp. (2)

By replacing the distribution function F with its empirical distribution function Fn and
using the well-known difference operator instead of the used differential operator, the
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estimator of H( f ) is given as

Hn,m =
1
n

n∑
i=1

log
{ n

2m
(X(i+m) − X(i−m))

}
, (3)

where X(1) ≤ · · · ≤ X(n) are the order statistics and m is a positive integer, m ≤ n/2 and
X(i) = X(1) if i < 1, X(i) = X(n) if i > n.

The sample entropy was considered in establishing a goodness of fit test statistic for
normal distribution by Vasicek (1976) and Arizono and Ohta (1989), also Dudewicz
and Van der Meulen (1981) used it for uniform distribution, and Ebrahimi et al. (1992)
applied it for the exponential distribution.

Vasicek (1976) introduced the test statistic based on the property of maximum
entropy of the normal distribution as

Kn,m =
exp(Hn,m)

σ̂
=

n
2mσ̂

( n∏
i=1

[X(i+m) − X(i−m)]
)1/n

, (4)

where

σ̂ =

√√
1
n

n∑
i=1

(Xi − X̄)2.

Park (1999) provided a test of normality based on the sample entropy of order
statistics. Choi (2008) improved Vasicek's entropy test as

Kc
n,m =

Rn,m

σ̂n−1

( n∏
i=1

[X(i+m) − X(i−m)]
)1/n

, (5)

where

Rn,m = exp
{
− (1 − 2m/n)ψ(2m) + ψ(n + 1) − 2/n

n∑
i=1

ψ(k +m − 1)
}
,

and ψ is the digamma function such that

ψ(t) =
d lnΓ(t)

dt
=

d ln
∫ ∞

0 xt−1txdx

dt
,
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and σ̂n−1 = {n/(n − 1)}1/2σ̂.

Esteban et al. (2001) compared four tests of normality using four statistics based
on different entropy estimators namely, Vasicek (1976), Van Es (1992), Corea (1995)
and Wieczorkowski and Grzegorzewski (1999). Similar to our work, Alizadeh (2010)
compared the four mentioned tests with a test based on a new estimator of entropy as

TAmn =
exp{Ha(m,n)}

σ̂
, (6)

where σ̂ =
√

1
n
∑n

i=1(Xi − X̄)2 and Ha(m,n) is the new estimator of entropy as

Ha(m,n) = −1
n

n∑
i=1

log{
f̂ (X(i+m)) + f̂ (X(i+m))

2
},

where f̂ (X) = 1
nh
∑n

i=1 k(
X−X(i)

h ), and the kernel function k is chosen to be the standard

normal density function and the bandwidth h is chosen to be the normal optimal
smoothing formula with h = 1.06sn−

1
5 where s is the sample standard deviation.

In other works, Alizadeh and Arghami (2011a) compared seven different tests of
normality such as the Kolmogorov-Smirnov (1933), Anderson-Darling (1954), Kuiper
(1960), Jarque-Bera (1987), Cramer-Von Mises (1931), Shapiro-Wilk (1965) and Vasicek
(1976).

This paper is organized as follows. In Section 2, we introduce two test statistics
based on Balakrishnan-Sanghvi divergence measure. These statistics are estimated in
the manner of Vasicek for estimating the entropy and also estimated using kernel den-
sity function. Other methods of testing normality like Corea (1995) and Van Es (1992)
are investigated, but their results are not given because of their weak performances.
Also in this section, we show the tests are asymptotically consistent. In Section 3, using
Monte Carlo simulation, it is shown that the proposed test based on Vasicek method
has greater power than its competitors in most of the times.
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2 Test statistics

Balakrishnan-Sanghvi divergence measure (Balakrishnan and Sanghvi (1968) ) for two
density function f (x) and g(x) is defined as

DBS( f , g) =
∫ ∞
−∞

( f (x) − g(x)
f (x) + g(x)

)2
f (x)dx. (7)

It is obvious that DBS( f , g) ≥ 0 and the equality holds if and only if f (x) = g(x). So it
motivates us to use Balakrishnan-Sanghvi information as a test statistic for normality.
Plugging

g(x) = f0(x;µ, σ) = (1/
√

2πσ2) exp{−(x − µ)2/2σ2},
in (7), we get

DBS( f , g) =
∫ ∞
−∞

f (x)
( f (x) − (1/

√
2πσ2) exp{−(x − µ)2/2σ2}

f (x) + (1/
√

2πσ2) exp{−(x − µ)2/2σ2}

)2
dx. (8)

Now, similar to Vasicek's method for estimating entropy, using F(x) = p, equation (8) is
expressed as

DBS( f , g) =
∫ 1

0

( ( dF−1(p)
dp )−1 − (1/

√
2πσ2) exp{−(F−1(p) − µ)2/2σ2}

( dF−1(p)
dp )−1 + (1/

√
2πσ2) exp{−(F−1(p) − µ)2/2σ2}

)2
dp. (9)

By replacing F by Fn and using the well-known the difference operator in place of
differential operator, we get an estimator BV of DBS( f , g) as follow

BV =
1
n

n∑
i=1

( 2m
n(X(i+m)−X(i−m))

− ( 1√
2πσ̂2

) exp{−(X(i)−µ̂)2

2σ̂2 }
2m

n(X(i+m)−X(i−m))
+ ( 1√

2πσ̂2
) exp{−(X(i)−µ̂)2

2σ̂2 }

)2
, (10)

where X(i) = X(1) for i < 1, X(i) = X(1) for i > n. Also µ̂ = X̄ and σ̂2 = 1
n
∑n

i=1 (Xi − X̄)2 are
the MLEs of µ and σ2 under the null hypothesis.

It is obvious that BV is invariant with respect to scale and location transformations.
For the consistency of the test, similar to the proof of Alizadeh (2010) , we prove BV is
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consistent. That is the power of the test under the alternative hypothesis increases to
one as n→∞. The following statement shows this.

Theorem 2.1. Let F be an unknown continuous distribution on the real line and let F0 be
distributed as a normal distribution with unknown parameters. Then the test based on BV is
consistent.

Proof. As n,m→∞ and m/n→ 0, we have

2m
n
= Fn(X(i+m)) − Fn(X(i−m)) ≃ F(X(i+m)) − F(X(i−m))

≃
f (X(i+m)) + f (X(i−m))

2
(X(i+m) − X(i−m)),

where Fn(a) = #(xi ≤ a)/n = (1/n)
∑

I(−∞,Xi](a) and I is the indicator function. Therefore
noting that µ̂ and σ̂2 are consistent estimators, we have

BV =
1
n

n∑
i=1

( 2m
n(X(i+m)−X(i−m))

− ( 1√
2πσ̂2

) exp{−(X(i)−µ̂)2

2σ̂2 }
2m

n(X(i+m)−X(i−m))
+ ( 1√

2πσ̂2
) exp{−(X(i)−µ̂)2

2σ̂2 }

)2

≃ 1
n

n∑
i=1

( F(X(i+m))−F(X(i−m))
X(i+m)−X(i−m)

− ( 1√
2πσ2

) exp{−(X(i)−µ)2

2σ2 }
F(X(i+m))−F(X(i−m))

X(i+m)−X(i−m)
+ ( 1√

2πσ2
) exp{−(X(i)−µ)2

2σ2 }

)2

−→ E
( F(X(i+m))−F(X(i−m))

X(i+m)−X(i−m)
− ( 1√

2πσ2
) exp{−(X−µ)2

2σ2 }
F(X(i+m))−F(X(i−m))

X(i+m)−X(i−m)
+ ( 1√

2πσ2
) exp{−(X−µ)2

2σ2 }

)2
.

where the last limit holds by the law of large numbers. We have X(i−m) and X(i+m)
belong to an interval in which f (x) is positive and continuous, then there exists a value
X′i ∈ (X(i−m),X(i+m)) such that

F(X(i+m)) − F(X(i−m))
X(i+m) − X(i−m)

= f (X′i ).

Therefore BV → DBS( f , f0). So, the test based on BV is consistent.

We have estimated Balakrishnan-Sanghvi divergence measure based on spacing
method. Also, one can estimate this divergence using methods like kernel-based
approaches.
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The Balakrishnan-Sanghvi test statistic based on kernel density function is

BK =
1
n

n∑
i=1

( f̂ (xi) − g(xi)

f̂ (xi) + g(xi)

)
,

in which f can be replaced by the kernel density estimator

f̂ (xi) =
1

nh

n∑
j=1

k
(xi − x j

h

)
,

where the kernel function k is the standard normal density function and the bandwidth
h is chosen to be the normal optimal smoothing formula with h = 1.06sn−

1
5 , also g is a

normal density function. Similar to Vasicek-based test, we can prove the test based on
BK is consistent.

3 Simulation Study

A simulation study is performed to analyze the efficiency of the proposed test statistics.
The critical values are determined using Monte Carlo simulation with 10,000 replicates
at the significance level 0.05. Namely, for the test statistic like BV, we have generated n
samples from the standard normal distribution and calculated its sample value (BV,1).
We did this work for 10,000 simulated random samples and calculated (BV,1, ...,BV,10,000).
Since large values of BV reject the null hypothesis, we specify the 9500th order statistic
[BV,(9500)] as the critical value of BV (because α = 0.05).

Based on (10) different values of m are given in Table 1. Table 2 gives the critical
values of BV, BK and the competitor tests for various sample sizes. As can be seen in
Table 2, the critical values of BV and BK decrease as the sample size n increase unlike
other competitors. The reason for this is that in the proposed test large values of the
test statistics reject the null hypothesis (in other competitor tests, small values reject the
null hypothesis). So, the power of the tests (P(reject H0|H1 is True)) tends to one when
n increases and we expect this matter because the test is consistent. That is, the test
statistic estimates DBS( f , g) which is zero under the null hypothesis. So, we expect that
the estimator BV (and therefore critical values) tend to zero under the null hypothesis
and as n increases.
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Table 1: The values of m for test BV.

n m
5 − 9 2

10 − 19 3
20 − 29 5
30 − 49 9
50 − 79 15

80 − 100 24

Table 2: Critical values of BV and BK and other competitor tests.

n W A2 Kn,m Kc
n,m BV BK

5 0.775 1.509 2.679 0.259 0.018
6 0.792 1.632 2.683 0.255 0.024
7 0.809 1.741 2.736 0.246 0.028
8 0.823 0.667 1.815 2.790 0.237 0.030
9 0.834 0.678 1.940 2.833 0.228 0.031
10 0.845 0.686 2.038 3.020 0.194 0.031
11 0.855 0.693 2.112 3.052 0.189 0.031
12 0.861 0.699 2.212 3.091 0.183 0.032
13 0.869 0.703 2.266 3.149 0.174 0.031
14 0.875 0.707 2.334 3.178 0.170 0.030
15 0.882 0.711 2.396 3.235 0.161 0.031
20 0.904 0.722 2.707 3.403 0.135 0.029
25 0.920 0.729 2.875 3.512 0.117 0.026
30 0.930 0.733 2.996 3.606 0.118 0.024
40 0.945 0.738 3.159 3.725 0.097 0.021
50 0.954 0.741 3.318 3.801 0.102 0.019
60 0.961 0.743 3.390 3.870 0.088 0.017
70 0.965 0.745 3.450 3.887 0.080 0.015
80 0.969 0.746 3.443 3.948 0.092 0.014
90 0.972 0.747 3.515 3.978 0.084 0.013
100 0.975 0.747 3.571 4.029 0.078 0.013

In order to compute the powers of BV and BK, a battery of Monte Carlo simulation was
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Table 3: Critical values of An,m(m) test.

m
n 1 2 3 4 5 6 7 8 9 10
5 3.198 3.309
6 3.209 3.302 3.386
7 3.243 3.293 3.363
8 3.273 3.314 3.381 3.441
9 3.302 3.333 3.385 3.441
10 3.336 3.350 3.391 3.440 3.481
11 3.373 3.383 3.417 3.458 3.498
12 3.385 3.386 3.417 3.459 3.495 3.527
13 3.429 3.421 3.442 3.477 3.516 3.547
14 3.443 3.434 3.452 3.482 3.512 3.545 3.573
15 3.457 3.448 3.463 3.490 3.521 3.550 3.576
20 3.547 3.521 3.518 3.531 3.550 3.573 3.595 3.616 3.635 3.653
25 3.621 3.598 3.586 3.588 3.599 3.615 3.634 3.651 3.666 3.681
30 3.671 3.647 3.633 3.629 3.631 3.639 3.651 3.664 3.678 3.691
40 3.748 3.724 3.708 3.700 3.695 3.696 3.699 3.705 3.713 3.722
50 3.794 3.773 3.758 3.748 3.742 3.738 3.737 3.738 3.742 3.747
60 3.831 3.812 3.796 3.785 3.777 3.771 3.768 3.766 3.767 3.769
70 3.866 3.847 3.832 3.822 3.813 3.807 3.802 3.799 3.798 3.798
80 3.892 3.872 3.858 3.847 3.839 3.832 3.828 3.824 3.822 3.821
90 3.904 3.887 3.874 3.864 3.855 3.848 3.842 3.838 3.835 3.833
100 3.922 3.906 3.893 3.882 3.873 3.865 3.859 3.855 3.850 3.848

also applied. We regard the test statistics of normality discussed in Choi (2008) as the
competitor tests. These tests are the Vasicek test (Kn,m), the Anderson-Darling test (A2),
the Shapiro-Wilk test (W) (these three tests have the greatest power among the seven
tests of Alizadeh and Arghami (2011a)) and the Choi test (Kc

n,m). Moreover, the pro-
posed test with the Alizadeh (2010) test Am,n was compared. To compare powers, we
consider 7 alternatives used by Choi (2008) which are Uniform (0,1), Exponential (1),
Weibull (1.2,2), Gamma (1.5,2), Lognormal (0,1), Chi-squared (2) and Inverse Gaussian
(1,1). For each alternative, we generated 10,000 samples of size 10, 20, 30, 50 and 100.
For each sample the statistics (A2, W, Kn,m, Kc

n,m, An,m(m), BK and BV) were evaluated
and the power of the corresponding test was estimated by the frequency of the event
"the statistic is in the critical region".



186 M. Tavakoli et al.

Table 4: Estimated powers of the BV and the BK tests against the non-normal distribution at
the significance level 0.05. (The best values are bolded)

Test statistic
Distribution Sample size A2 W Kn,m Kc

n,m Am,n(m) BV BK

Uniform(0,1)
10 0.084 0.087 0.174 0.153 0.152(5) 0.105 0.015
20 0.169 0.198 0.432 0.443 0.451(10) 0.357 0.028
30 0.300 0.388 0.649 0.704 0.734(15) 0.604 0.186
50 0.582 0.755 0.928 0.969 0.974(25) 0.915 0.662
100 0.948 0.997 1 1 1(45) 1 0.989

Exponential(1)
10 0.406 0.438 0.423 0.455 0.457(4) 0.494 0.354
20 0.771 0.832 0.847 0.854 0.859(9) 0.882 0.774
30 0.934 0.967 0.970 0.970 0.979(13) 0.982 0.934
50 0.996 1 0.999 0.999 1(25) 1 0.998
100 1 1 1 1 1(1) 1 1

Weibull(1.2,2)
10 0.283 0.310 0.276 0.302 0.324(4) 0.337 0.253
20 0.584 0.659 0.645 0.665 0.692(9) 0.882 0.607
30 0.791 0.873 0.849 0.879 0.899(13) 0.907 0.806
50 0.961 0.989 0.986 0.986 0.986(22) 0.990 0.979
100 1 1 1 0.992 1(1) 1 1

Gamma(1.5,2)
10 0.285 0.310 0.266 0.295 0.326(4) 0.331 0.272
20 0.589 0.661 0.625 0.644 0.687(8) 0.698 0.607
30 0.795 0.870 0.829 0.855 0.893(13) 0.895 0.818
50 0.964 0.987 0.979 0.981 0.993(23) 0.987 0.976
100 1 1 1 0.986 1(1) 1 1

Lognormal(0,1)
10 0.576 0.607 0.569 0.602 0.622(4) 0.642 0.521
20 0.906 0.931 0.926 0.932 0.943(9) 0.947 0.908
30 0.984 0.992 0.988 0.991 0.995(14) 0.996 0.982
50 0.999 1 1 1 1(20) 1 0.999
100 1 1 1 1 1(8) 1 1

Chi-squared(2)
10 0.411 0.445 0.430 0.452 0.459(4) 0.496 0.349
20 0.779 0.839 0.852 0.859 0.863(9) 0.890 0.773
30 0.936 0.970 0.971 0.974 0.980(14) 0.984 0.935
50 0.997 0.999 0.999 1 1(20) 1 0.998
100 1 1 1 1 1(1) 1 1

Inverse Gaussian(1,1)
10 0.515 0.542 0.554 0.529 0.536(4) 0.574 0.466
20 0.877 0.907 0.894 0.900 0.921(10) 0.925 0.880
30 0.973 0.986 0.978 0.983 0.990(14) 0.990 0.977
50 1 1 1 1 1(21) 1 1
100 1 1 1 1 1(35) 1 1
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The goodness of fit test based on entropy involves choosing the best integer param-
eter m. Unfortunately, there are no choices out of the criterion of m, and in general it
depends on the alternative. Vasicek (1976) selected the values of m, which maximize
the powers of the test. It is shown by Alizadeh (2010) that, there is no m being ap-
propriate for all alternatives. The values of m that attain maximum powers are also
suggested and presented in Table 1 for the BV test. Table 4 shows the estimated power
of the tests BV and BK and those of the competing tests, at the significance level α = 0.05
based on 10,000 iterations with sample sizes 10, 20, 30, 50 and 100.

According to Table 4, for a symmetric alternative means uniform distribution, the
greatest power is related to Kn,m test for n = 10, and to Am,n test for n = 20, n = 30 and
n = 50. However, for the asymmetric alternatives, the power of the BV test is better
than the other tests for all alternatives and for all sample sizes (except Gamma when
n=50). In addition, the BV test, has the advantage of owning a fixed m in comparison
with Am,n test. So, we can suggest the BV test as a test of fit for normality for asymmetric
alternatives.

Concerning BK, it can be understood that its powers are weaker in comparison with
the other tests (except A2 for large sample sizes in most of the times). But BK, just has
the advantage of being independent on fixed m.

4 Conclusion

In the present paper, a goodness of fit test for normality based on Balakrishnan- Sanghvi
divergence was introduced. To construct the test statistic, two methods were investi-
gated. The first method was similar to Vasicek's method for estimating the Shannon
entropy and the second one, was based on kernel density function. By a simulation
study, the powers of the proposed tests were computed under several alternatives and
different sample sizes. It is shown that, the BV test, compares favorably with the leading
competitors for every sample size especially for the asymmetric alternatives.
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