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1 Introduction

Burr (1942) has developed a system of twelve types of distribution functions based
on generating the Pearson differential equations. The density function has a range
of shapes that is applicable to a wide area of applications. From the system of Burr
distributions, the Burr XII distribution is widely used. The inverse distribution of Burr
XII is Burr III. It is more flexible and includes a variety of distributions with varying
degrees of skewness and kurtosis. The Burr III distribution with two parameters c and
k which is denoted by BIII(c, k) has been used in a variety of settings for the purpose
of statistical modeling. Some examples include applications in forestry by Gove et
al. (2008) and Lindsay et al. (1996), in fracture roughness by Nadarajah and Kotz
(2006, 2007), in life testing by Wingo (1983, 1993), in operational risk by Chernobai et al.
(2007), in option market price distributions by Sherrick et al. (1996), in meteorology by
Mielke (1973), in modeling crop prices by Tejeda and Goodwin (2008), and in reliability
by Abdel-Ghaly et al. (1997).

The probability density function and the cumulative distribution function of BIII(c, k)
are given by

fBIII(x; c, k) = kcx−c−1(1 + x−c)−k−1, x > 0, c > 0, k > 0,
FBIII(x; c, k) = (1 + x−c)−k,

respectively, where c and k are the shape parameters. Various fields of science have
used the Burr III distribution. It is also called the Dagum distribution in studies of
income, wage and wealth distribution (see Dempster et al. (1977)).

In many cases, time the life/failure data of interest is bivariate in nature. Any
study on twins or on failure data recorded twice on the same system naturally leads
to bivariate data. For example, Houggard et al. (1992) studied data on lifelength of
Danish twins and Lin et al. (1999) considered a data on patients with colon cancer
where the paired data consist of the time from treatment to recurrence of cancer and
the time from treatment to death. Paired data could consist of blindness in the left/right
eye, failure time of the left/right kidney or age at death of parent/child in a genetic
study.

In recent years, bivariate lifetime data are often used to model reliability and sur-
vival data. For example, Sarhan and Balakrishnan (2007) studied Marshall and Olkin
bivariate exponential distribution, Al-Khedhairi et al. (2008) presented a new class
of bivariate Gompertz distributions, Kundu and Gupta (2009) proposed the bivariate
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generalized exponential distribution, Kundu and Gupta (2009) studied an EM algo-
rithm for computing maximum likelihood estimators of the parameters of the bivariate
Weibull distribution in the case of complete data, Nandi and Dewan (2010) have
considered the maximum likelihood estimators of parameters of bivariate Weibull dis-
tribution under random censoring and El-Sherpieny et al. (2013) have introduced a
new bivariate generalized Gompertz distribution.

Dempster et al. (1977) introduced a general iterative approach commonly known
as the EM algorithm as an excellent tool for finding MLEs in cases where observations
are treated as incomplete data. The EM algorithm has two main applications. The
first case occurs when the data has missing values due to limitations or problems with
the observation process. The second case occurs when the likelihood function can be
obtained and simplified by assuming that there is an additional but missing parameter.
We assume that a complete data, Z = (X; Y) exists with Y being the missing data and
that a joint density function also exists as follows

p(z|θ) = p(x; y|θ) = p(y|x;θ)p(x|θ),

where θ is a set of unknown parameters from a distribution including a missing pa-
rameter. With this density function, we now define the complete-data likelihood as

L(θ|Z) = L(θ|X; Y) = p(X; Y|θ).

The original likelihood L(θ|X) is called the incomplete-data likelihood function. Since
the missing data Y is unknown under a certain distribution by assumption, we can
think of L(θ|X; Y) as a function of a random variable, Y, with constant values, X and θ

L(θ|X; Y) = f(X;θ)(Y).

Using the complete-data log-likelihood function with respect to the missing data Y
given the observed data X, the EM algorithm finds its expected value as well as the
current parameter estimates at the E-step and maximizes the expectation at the M-step.
By repeating the E and M-Steps, the algorithm is guaranteed to converge to a local
maximum of the likelihood function with each iteration increasing the log-likelihood.

In this paper, the usual maximum likelihood estimators can be obtained by solving
nonlinear equations, which is not a trivial issue. To avoid difficult computation, we
treat this problem as a missing value problem and use the EM algorithm, which can
be implemented more conveniently than the direct maximization process. Another
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advantage of the EM algorithm is that it can be used to obtain the observed Fisher in-
formation matrix, which is helpful for constructing the asymptotic confidence intervals
for the parameters.

In this paper, we study the maximum likelihood estimators of the parameters of the
bivariate Burr III distribution under random left censoring. This article is organized
as follows. In Section 2, we define the bivariate Burr III distribution and discuss its
diffrent properties. The EM algorithm to compute the MLEs of the unknown parameters
is provided in Section 3. The findings of the numerical experiments are reported in
Section 4. One real data set is analyzed in Section 5 and we conclude in Section 6. The
proof of theorems are given in Appendix A and the observed Fisher information matrix
is given in Appendix B.

2 Bivariate Burr III Distribution

Consider the Burr III distribution, BIII(c, k), with shape parameters c > 0 and k >
0. Suppose U1, U2, U3 are independent BIII(c, k1), BIII(c, k2) and BIII(c, k3), random
variables, respectively. Let X1 = max{U1,U3} and X2 = max{U2,U3}. Then we say that
the bivariate vector (X1,X2) has bivariate Burr III distribution with parameters c, k1, k2
and k3. We will denote it by BBIII(c, k1, k2, k3).

Note that if max{U1,U2,U3} = U3, then the two random variables X1 and X2 are
equal. For example, suppose a system has the two components. Each component
is subject to individual independent stress say U1 and U2 respectively. The system
has an overall stress U3 which has been transmitted to both the components equally,
independent of their individual stresses. Therefore, the observed stress at the two
components are X1 = max{U1,U3} and X2 = max{U2,U3} respectively. Now suppose
the overall stress, U3, is greater than the individual stresses U1 and U2, then X1 = X2 =
U3.

Let k13 = k1 + k3, k23 = k2 + k3 and k123 = k1 + k2 + k3. The following theorems will
provide the joint cumulative distribution function, CDF, and joint probability density
function, PDF.

Theorem 2.1. If (X1,X2) ∼ BBIII(c, k1, k2, k3), then the joint CDF of (X1,X2) for x1 > 0 and
x2 > 0, is

FX1,X2(x1, x2) = (1 + x−c
1 )−k1(1 + x−c

2 )−k2(1 + z−c)−k3 ,

where z = min{x1, x2}.
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Proof. Proof is given in the Appendix A. □

Theorem 2.2. If (X1,X2) ∼ BBIII(c, k1, k2, k3), then the joint PDF of (X1,X2) for x1 > 0 and
x2 > 0, can be written as follows:

fX1,X2(x1, x2) =


f1(x1, x2) if x1 < x2

f2(x1, x2) if x1 > x2

f0(x) if x1 = x2 = x,

where

f1(x1, x2) = fBIII(x1; c, k13) fBIII(x2; c, k2)
= k13k2c2x−c−1

1 x−c−1
2 (1 + x−c

1 )−k13−1(1 + x−c
2 )−k2−1,

f2(x1, x2) = fBIII(x1; c, k1) fBIII(x2; c, k23)
= k1k23c2x−c−1

1 x−c−1
2 (1 + x−c

1 )−k1−1(1 + x−c
2 )−k23−1,

f0(x) =
k3

k123
fBIII(x; c, k123)

= k3c x−c−1(1 + x−c)−k123−1.

Proof. Proof is given in the Appendix A. □

The BBIII distribution has both an absolute continuous part and a singular part,
similar to Marshall and Olkin’s bivariate exponential model. The function fX1,X2(., .)
may be considered to be a density function for the BBIII distribution if it is understood
that the first two terms are densities with respect to two-dimensional Lebesgue measure
and the third term is a density function with respect to one dimensional Lebesgue
measure, see for example Bemis et al. (1972). It is well known that although in one
dimension the practical use of a distribution with this property is usually pathological,
but they do ariise quite naturally in a higher dimension. In the case of BBIII distribution,
the presence of a singular part means that if X1 and X2 are BBIII distribution, then
{X1 = X2} has a positive probability. In many practical situations, it may happen
that X1 and X2 both are continuous random variables, but {X1 = X2} has a positive
probability, see Marshall and Olkin (1967) in this connection. The following result
will provide explicitly the absolute continuous part and the singular part of the BBIII
distribution function.
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Theorem 2.3. If (X1,X2) ∼ BBIII(c, k1, k2, k3), then

FX1,X2(x1, x2) =
k12

k123
Fa(x1, x2) +

k3

k123
Fs(z),

where z = min{x1, x2}
Fs(z) = (1 + z−c)−k123

and

Fa(x1, x2) =
k123

k12
(1 + x−c

1 )−k1(1 + x−c
2 )−k2(1 + z−c)−k3

− k3

k12
(1 + z−c)−k123 ,

here Fs(.) and Fa(., .) are the singular and the absolute continuous parts, respectively.

Proof. Proof is given in the Appendix A. □

Corollary 2.1. The joint PDF of X1 and X2 can be written as follows:

fX1,X2(x1, x2) =
k12

k123
fa(x1, x2) +

k3

k123
fs(z),

where z = min{x1, x2}
fs(z) = k123c z−c−1(1 + z−c)−(k123−1),

and

fa(x1, x2) =
k123

k12

{
fBIII(x1, c, k13) fBIII(x2, c, k2) if x1 < x2
fBIII(x1, c, k1) fBIII(x2, c, k23) if x1 > x2.

here fs(.) and fa(., .) are the singular and the absolute continuous parts, respectively.□

The following theorem provides the marginal and the conditional distributions of
the BBIII distribution.

Theorem 2.4. If (X1,X2) ∼ BBIII(c, k1, k2, k3)

a) X1 ∼ BBIII(c, k13) , X2 ∼ BBIII(c, k23),

b) The conditional distribution of X1 given X2 = x2, say FX1|X2=x2 , is a convex combination
of an absolute continuous distribution function and discrete distribution function.
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FX1|X2=x2(x1) = p G(x1) + (1 − p) H(x1),

where

G(x1) =
1
p


k2

k23
(1 + x−c

2 )k3 (1 + x−c
1 )−k13 if x1 < x2

(1 + x−c
1 )−k1 − k3

k23
(1 + x−c

2 )−k1 if x1 > x2,

H(x1) =
{

0 if x1 < x2
1 if x1 > x2

,

and

p = 1 − k3

k23
(1 + x−c

2 )−k1 .

c) The conditional distribution of X1 given X2 ≤ x2, say FX1|X2≤x2 , is an absolute continuos
distribution function.

P(X1 ≤ x1|X2 ≤ x2) = FX1|X2≤x2(x1)

=

{
(1 + x−c

1 )−k13(1 + x−c
2 )k3 if x1 < x2

(1 + x−c
1 )−k1 if x1 > x2.

Proof. Proof is given in the Appendix A. □

Corollary 2.2. Since the joint survival function and the joint CDF have the following relation

SX1,X2(x1, x2) = 1 − FX1(x1) − FX2(x2) + FX1,X2(x1, x2).

Therefore, the joint survival function of X1 and X2 also can be expressed in a compact form.

3 Maximum Likelihood Estimation

In this section, we address the problem of computing the maximum likelihood es-
timators of the unknown parameters of the bivariate Burr III distribution using the
EM algorithm. It is assumed that {(X11,X21), ..., (X1n,X2n)} is a random sample from
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BBIII(c, k1, k2, k3) and our problem is to estimate c, k1, k2 and k3 from the given sample.
We use the following notation

I0 = {i|X1i = X2i = Xi}, I1 = {i|X1i < X2i}, I2 = {i|X1i > X2i}.

|I0| = n0, |I1| = n1, |I2| = n2, n = n0 + n1 + n2.

Based on the observations, the log-likelihood function can be written as

ℓ(c, k1, k2, k3) =
∑
i∈I0

ln f0(xi) +
∑
i∈I1

ln f1(x1i, x2i) +
∑
i∈I2

ln f2(x1i, x2i). (3.1)

We need to maximize (3.1) with respect to the four unknown parameters. This is
clearly a four-dimensional problem. However, no explicit expressions are available for
the MLEs. We need to solve four non-linear equations simultaneously, which may not
be very simple. The maximization can be performed using a command like the nlminb
routine in the R software (R Development Core Team, 2014). But, it is related to initial
guesses. Therefore, we present an expectation-maximization (EM) algorithm similar to
Kundu and Gupta (2009) to find the MLEs of parameters.

We look at the log-likelihood with information on ordering of U1,U2 and U3 are
missing. Hence, we treat this problem as a missing value problem. Assume that for
the bivariate random vector (X1,X2), there is an associated random vector (∆1,∆2) as
follows

∆1 =

{
1 if U1 > U3
3 if U1 < U3

, and ∆2 =

{
2 if U2 > U3
3 if U2 < U3.

Therefore, if X1 = X2, then ∆1 = ∆2 = 3, but if X1 < X2 or X1 > X2, then (∆1,∆2) is
missing. If (x1i, x2i) ∈ I1 , then the possible values of (∆1,∆2) are (1, 2) or (3, 2), similarly,
if (x1i, x2i) ∈ I2, the possible values of (∆1,∆2) are (1, 2) or (1, 3) with non-zero probability.

Now we provide the E-step and M-step of the EM algorithm. In the E-step we treat
the observations belonging to I0 as complete observations and keep them intact. If
the observations belong to I1 or I2, we treat it as a missing observation. If (x1i, x2i) ∈
I1, we form the pseudo-observations by fractioning (x1, x2) to two partially complete
pseudo-observations of the form (x1, x2, µ1(γ)) and (x1, x2, µ2(γ)), respectively. Here
γ = (c, k1, k2, k3) and the fractional mass µ1(γ), µ2(γ) assigned to the pseudo-observation
is the conditional probability that the random vector (∆1,∆2) takes the values (1, 2)
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and (3, 2), respectively, given X1 < X2. Similarly, if (x1i, x2i) ∈ I2, we form the pseudo-
observation of the form (x1, x2, ν1(γ)) and (x1, x2, ν2(γ)). Here the fractional mass ν1(γ) or
ν2(γ) assigned to the pseudo-observation is the conditional probability that the random
vector (∆1,∆2) takes the values (1, 2) and (1, 3), respectively, given X2 < X1. Since

P(U1 < U3 < U2) =
k2 k3

k123 k13
, P(U3 < U1 < U2) =

k1 k2

k123 k13
,

P(U2 < U3 < U1) =
k1 k3

k123 k23
, P(U3 < U2 < U1) =

k1 k2

k123 k23
,

Therefore,

µ1(γ) = P(U1 < U3 < U2|X1 < X2) =
k3

k13
,

µ2(γ) = P(U3 < U1 < U2|X1 < X2) =
k1

k13
,

ν1(γ) = P(U2 < U3 < U1|X1 > X2) =
k3

k23
,

ν2(γ) = P(U3 < U2 < U1|X1 > X2) =
k2

k23
.

From now on, we write µ1(γ), µ2(γ), ν1(γ) and ν2(γ) as µ1, µ2, ν1 and ν2, respectively.
The log-likelihood function of the pseudo data can be written as

ℓpseudo(c, k1, k2, k3) = n0 log k3 + n0 log c − (c + 1)
∑
i∈I0

log xi − (k123 + 1)
∑
i∈I0

log(1 + x−c
i )

+ µ1

[
n1 log k1 − (c + 1)

∑
i∈I1

log x1i − (k1 + k3 + 1)
∑
i∈I1

log(1 + x−c
1i )
]

+ µ2

[
n1 log k3 − (c + 1)

∑
i∈I1

log x1i − (k1 + k3 + 1)
∑
i∈I1

log(1 + x−c
1i )
]

+ 2n1 log c + n1 log k2 − (c + 1)
∑
i∈I1

log x2i − (k2 + 1)
∑
i∈I1

log(1 + x−c
2i )

+ ν1

[
n2 log k2 − (c + 1)

∑
i∈I2

log x2i − (k2 + k3 + 1)
∑
i∈I2

log(1 + x−c
2i )
]

+ ν2

[
n2 log k3 − (c + 1)

∑
i∈I2

log x2i − (k2 + k3 + 1)
∑
i∈I2

log(1 + x−c
2i )
]

+ 2n2 log c + n2 log k1 − (c + 1)
∑
i∈I2

log x1i − (k1 + 1)
∑
i∈I2

log(1 + x−c
1i ).
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It can be simplified as

ℓpseudo(c, k1, k2, k3) = (n0 + 2n1 + 2n2) log c + (n1µ1 + n2) log k1 + (n2ν1 + n1) log k2

+ (n0 + n2ν2 + n1µ2) log k3 − (c + 1)
[∑

i∈I0

log xi +
∑

i∈I1∪I2

log x1i

+
∑

i∈I1∪I2

log x2i

]
− (k123 + 1)

∑
i∈I0

log(1 + x−c
i )

− (k2 + 1)
∑
i∈I1

log(1 + x−c
2i ) − (k1 + 1)

∑
i∈I2

log(1 + x−c
1i )

− (k23 + 1)
∑
i∈I2

log(1 + x−c
2i ) − (k13 + 1)

∑
i∈I1

log(1 + x−c
1i ).

Now the M- step involves the maximization of the ℓpseudo(c, k1, k2, k3) with respect to
c, k1, k2 and k3 at each step. For fixed c, the maximization of ℓpseudo(c, k1, k2, k3) occurs at

k̂1(c) =
n2 + n1µ1∑

i∈I0
log(1 + x−c

i ) +
∑

i∈I1∪I2
log(1 + x−c

1i )
. (3.2)

k̂2(c) =
n1 + n2ν1∑

i∈I0
log(1 + x−c

i ) +
∑

i∈I1∪I2
log(1 + x−c

2i )
. (3.3)

k̂3(c) =
n0 + n1µ2 + n2ν2∑

i∈I0
log(1 + x−c

i ) +
∑

i∈I1
log(1 + x−c

1i ) +
∑

i∈I2
log(1 + x−c

2i )
. (3.4)

and ĉ can be obtained by solving the following nonlinear equation

h(c) = c,

where

h(c) =
[∑

i∈I0

log xi +
∑

i∈I1∪I2

log x1i +
∑

i∈I1∪I2

log x2i

− (k̂1(c) + k̂2(c) + k̂3(c) + 1)
∑
i∈I0

ln xix−c
i

1 + x−c
i
− (k̂2(c) + 1)

∑
i∈I1

ln x2ix−c
2i

1 + x−c
2i

− (k̂1(c) + 1)
∑
i∈I2

ln x1ix−c
1i

1 + x−c
1i
− (k̂2(c) + k̂3(c) + 1)

∑
i∈I2

ln x2ix−c
2i

1 + x−c
2i

− (k̂1(c) + k̂3(c) + 1)
∑
i∈I1

ln x1ix−c
1i

1 + x−c
1i

]−1
(n0 + n1µ2 + n2ν2). (3.5)
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Hence, in order to solve a fixed point equations. (3.2)-(3.5), we start with an initial
value of the parameter vector (c(0), k(0)

1 , k
(0)
2 , k

(0)
3 )T. Suppose at the i-th step the estimates

of the parameters c, k1, k2 and k3 are c(i), k(i)
1 , k

(i)
2 and k(i)

3 , respectively. Then the (i + 1)-th
step of the EM algorithm is obtained using the following algorithm.

Step 1: Compute µ1, µ2, ν1 and ν2 using c(i), k(i)
1 , k

(i)
2 and k(i)

3 .

Step 2: Find c(i+1) by solving (3.5).

Step 3: Once c(i+1) is obtained, compute k(i+1)
1 = k̂1(c(i+1)), k(i+1)

2 = k̂2(c(i+1)) and k(i+1)
3 =

k̂3(c(i+1)).

This version of the EM algorithm is called the ECM (expectation-conditional maximiza-
tion) algorithm. Steps 1-3 describe one iteration of the algorithm.

4 Numerical Experiments

In this section, we present some simulation results to verify how the proposed EM
algorithm works for different sample sizes and different parameter values. This simu-
lation study data in R software was generated using the "actuar" package. We assume
that the pair of random variables (X1,X2) is distributed as BBIII(c, k1, k2, k3).

In Appendix B, we have provided the observed Fisher information matrix using the
idea of Louis (1982). This matrix can be inverted to obtain the asymptotic covariance
matrix.

The average estimate (AVEST), mean squared error (MSE) and average confidence
lengths (ACL) are reported in Table 1 for k1 = k2 = k3 = 0.8 and varying parameter
c = 0.6, 0.7, 0.8 and the sample size n = 50, 75, 100 based on 1000 replications. In order to
implement the proposed EM algorithm, we have used the ϵ = 10−5 and initial guesses
as 0.5 for all the parameters. We have tried other initial guesses also, but the average
estimates, the corresponding MSEs and confidence intervals are same.

Some of the salient features of the numerical experiments based on Table 1 are given
below.

(i) We observe that the average estimators of all the four parameters c, k1, k2 and k3
are very close to the true values of all choices of the parameter c.

(ii) The mean square error of the estimators decreases with increase in sample size.
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Table
1:A

verage
estim

ates,m
ean

squared
errors

and
average

confidence
interval.

Iteration
Param

eter
50

75
100

c
=

0.6
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
c

0.6485
2.354

e −
3

(0.6464,0.6506)
0.6481

2.263
e −

4
(0.6479,0.6524)

0.6475
2.254

e −
3

(0.6459,0.6489)
k1

0.8162
2.624e −

4
(0.8060,0.8263)

0.8135
1.812

e −
4

(0.8052,0.8217)
0.8109

4.380
e −

4
(0.8137,0.8281)

k2
0.8260

6.775
e −

4
(0.8158,0.8363)

0.8253
5.507e −

4
(0.8190,0.8357)

0.8195
1.794e −

4
(0.8123,0.8266)

k3
0.8478

2.228e −
4

(0.8389,0.8567)
0.8473

2.241e −
3

(0.8401,0.8546)
0.8468

2.193
e −

4
(0.8405,0.8531)

c
=

0.7
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
c

0.8239
1.535e −

2
(0.8214,0.8264)

0.8225
1.401e −

2
(0.8205,0.8286)

0.8225
1.500e −

2
(0.8207,0.8243)

k1
0.8257

6.594e −
4

(0.8154,0.8359)
0.8234

5.467e −
4

(0.8150,0.8317)
0.8204

4.241e −
4

(0.8131,0.8377)
k2

0.8350
1.227e −

3
(0.8216,0.8454)

0.8345
1.128

e −
3

(0.8280,0.8449)
0.8291

8.449
e −

4
(0.8218,0.8364)

k3
0.8806

6.495
e −

3
(0.8709,0.8902)

0.8799
6.385

e −
3

(0.8721,0.8877)
0.8797

6.348e −
3

(0.8729,0.8865)
c
=

0.8
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
A

V
EST

M
SE

A
C

L
c

1.0238
5.009

e −
2

(1.0208,1.0268)
1.0220

5.004
e −

2
(1.0246,1.0295)

1.0219
4.927

e −
2

(1.0198,1.0241)
k1

0.8288
8.326

e −
4

(0.8185,0.8392)
0.8269

7.266
e −

4
(0.8185,0.8354)

0.8253
6.241

e −
3

(0.8262,0.8409)
k2

0.8378
1.426

e −
3

(0.8273,0.8482)
0.8353

1.125
e −

3
(0.8308,0.8479)

0.8323
8.449

e −
4

(0.8249,0.8396)
k3

0.9037
1.011

e −
3

(0.8935,0.9139)
0.9029

1.010
e −

2
(0.8945,0.9112)

0.9028
1.042

e −
3

(0.8956,0.9104)
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(iii) When n = 100, average length of confidence intervals for all the parameters is
considerably lower compared to the case when n = 50.

(iv) The value of c makes no change in its numerical value.

The results of other numerical experiments are given in Figs. 1 and 2, for c = k1 = k2 =
0.8 and varying parameter k3 = 0.6, 0.7, 0.8 and sample size n = 50, 75, 100. The results
are similar to the ones discussed above for in Table 1.

Figure 1: Average estimates of c, k1 and k2.
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Figure 2: Root of MSE of c, k1 and k2.

5 Data Analysis

The data set analyzed in this section, are from the American Football (National Football
League) matches played on three consecutive weekends in 1986. It has been originally
published in ‘Washington Post’ and it is also available in Csorgo and Welsh (1989).
Kundu and Gupta (2010), Jamalizadeh and Kundu (2013), and Balakrishnan and Shiji
(2014) analyzed this data. In this bivariate data set, X1 represents the game time to the
first points scored by kicking the ball between the goal posts, and X2 represents the
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game time to the first points scored by moving the ball into the end zone. The variables
X1 and X2 have the following structure: (i)X1 < X2 means that the first score is a field
goal, (ii) X1 = X2 means the first score is a converted touchdown, (iii) X1 > X2 means the
first score is an unconverted touchdown or safety. In this case, the ties are exact because
no ‘game time’ elapses between a touchdown and a point-after conversion attempt. It
should be noted that the possible scoring times are restricted by the duration of the
game, but it has been ignored similarly as in Csorgo and Welsh (1989).

Before analyzing the data using the proposed EM algorithm, we fit the Burr III
distribution to X1, X2 and max(X1,X2), separately. The MLEs of the parameters of the
Burr III distribution for X1, X2 and max(X1,X2) are (1.090, 5.152), (0.959, 5.244) and
(0.952, 5.239), respectively. The Kolmogorov - Smirnov distances between the fitted
distribution and the empirical distribution function and the corresponding p-values
(in brackets) for X1, X2 and max(X1,X2) are 0.186 (0.11), 0.196 (0.09) and 0.192 (0.10),
respectively. Based on the p-values Burr III distribution can be used for analyzing X1,
X2 and max(X1,X2).

To start the EM algorithm we need some initial guesses of the unknown parameters,
we used the idea of Kundu and Gupta (2009). For c, we suggest to take the average
values of 1.090, 0.959 and 0.952, i.e. 0.996. Assuming the initial guess of c as 0.996,
solving three equations in three unknowns for k,s, we get the initial guess values of
k1, k2 and k3 as 1.079, 2.257 and 3.731, respectively. Using these initial values the EM
algorithm converges to the same values. We have computed the MLEs using direct
maximization and have obtained the same estimates. Therefore, the EM algorithm
works quite well in this case. The average estimate, standard error and confidence
intervals of the parameters are reported in Table 2.

Table 2: Average Estimate, Standard Error and Confidence Intervals for the real data set.

Parameter Average Estimate Standard Error Confidence Interval
c 0.8087 0.1870 (0.6686, 0.9487)
k1 1.6105 0.5314 (0.8905, 2.3304)
k2 2.2410 0.4475 (1.1675, 3.3145)
k3 3.2129 0.5170 (1.9637, 4.4622)
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6 Conclusions

In this paper, we have proposed the bivariate Burr type III distribution function whose
marginals are Burr type III distributions. It is observed that the BBIII distribution
has an absolute continuous part and a singular part. This model has been obtained
using a similar technique as of Kundu and Gupta (2009). Since the joint distribution
function and the joint density function are in closed forms, this distribution can be
used in practice for non-negative and positively correlated random variables. Since
the maximum likelihood estimators of the unknown parameters cannot be obtained in
closed form, we suggest the use of expectation-conditional maximization algorithm.
We have looked at the pseudo-likelihood with information on the ordering of U1,U2
and U3 missing and treated this problem as a missing value problem. The simulation
results indicate that the ECM algorithm performs very well for different sample sizes
and different parameter values that we have studied. We have also constructed the
asymptotic confidence intervals using the idea of Louis (1982) and observed that the
asymptotic confidence intervals give accurate results and hence can be used for testing
purposes. Finally, one data set analyzed for illustrative purposes.
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Apendix A

Proof of Theorem 2.1.

FX1,X2(x1, x2) = P(X1 ≤ x1,X2 ≤ x2)
= P(max{U1,U3} ≤ x1,max{U2,U3} ≤ x2)
= P(U1 ≤ x1,U3 ≤ x1,U2 ≤ x2,U3 ≤ x2)
= P(U1 ≤ x1)P(U2 ≤ x2)P(U3 ≤ min{x1, x2})
= FBIII(x1; c, k1)FBIII(x2; c, k2)FBIII(z; c, k3)
= (1 + x−c

1 )−k1(1 + x−c
2 )−k2(1 + z−c)−k3 .

□

Proof of Theorem 2.2. The expressions for f1(., .) and f2(., .) can be obtained from
∂2

∂x1∂x2
FX1,X2(x1, x2) for x1 < x2 and for x1 > x2, respectively. But f0(.) can not be obtained

in the same way. Now using the facts

∫ ∞
0

∫ x2

0
f1(x1, x2) dx1 dx2 +

∫ ∞
0

∫ x1

0
f2(x1, x2) dx2 dx1 +

∫ ∞
0

f0(x)dx = 1

∫ ∞
0

∫ x2

0
f1(x1, x2) dx1 dx2 =

∫ ∞
0

f (x2; c, k2)
∫ x2

0
f (x1; c, k13) dx1 dx2

=

∫ ∞
0

f (x2; c, k2)F(x2; c, k13) dx2

= k2

∫ ∞
0

c x−c−1(1 + x−c)−k123−1dx,

and ∫ ∞
0

∫ x1

0
f2(x1, x2) dx2 dx1 =

∫ ∞
0

f (x1; c, k1)
∫ x1

0
f (x2; c, k23) dx2 dx1

=

∫ ∞
0

f (x1; c, k1)F(x1; c, k23) dx1

= k1

∫ ∞
0

c x−c−1(1 + x−c)−k123−1dx,
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then ∫ ∞
0

f0(x) dx =
∫ ∞

0
k3 c x−c−1(1 + x−c)−k123−1dx.

Therefore, the result follows. □

Proof of Theorem 2.3. To find Fa(x1, x2) from FX1,X2(x1, x2) = pFa(x1, x2) + (1 − p)Fs(z),
0 ≤ p ≤ 1, we compute

∂2FX1,X2(x1, x2)
∂x1∂x2

= p fa(x1, x2) =
{

f1(x1, x2) if x1 < x2
f2(x1, x2) if x1 > x2,

from which p may be obtained as

p =
∫ ∞

0

∫ x2

0
f1(x1, x2) dx1 dx2 +

∫ ∞
0

∫ x1

0
f2(x1, x2) dx2 dx1 =

k12

k123
,

and

Fa(x1, x2) =
∫ x1

0

∫ x2

0
fa(u, v) du dv.

Once p and Fa(., .) are determined, Fs(.) can be obtained by subtraction.

Alternatively, probabilistic arguments are also can be provided as follows. Suppose
A is the following event: A = {U1 < U3} ∩ {U2 < U3}, then p(A) = k3

k123
. Therefore,

FX1,X2(x1, x2) = P(X1 ≤ x1,X2 ≤ x2|A)P(A) + P(X1 ≤ x1,X2 ≤ x2|Ac)P(Ac).

Moreover, for z as defined before

P(X1 ≤ x1,X2 ≤ x2|A) = (1 + z−c)−k123 ,

and P(X1 ≤ x1,X2 ≤ x2|Ac) can be obtained by subtraction.

Clearly, (1+z−c)−k123 is the singular part as its mixed second partial derivative is zero
when x1 , x2 and P(X1 ≤ x1,X2 ≤ x2|Ac) is the absolute continuous part as its mixed
partial derivative is a density function.

□
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Proof of Theorem 2.4. a)

P(X1 ≤ x) = P(max{U1,U3} ≤ x)
= P(U1 ≤ x,U3 ≤ x)
= P(U1 ≤ x)P(U3 ≤ x)
= FBIII(x; c, k1)FBIII(x; c, k3)
= (1 + x−c)−k13 .

and

P(X2 ≤ x) = P(max{U2,U3} ≤ x)
= P(U2 ≤ x,U3 ≤ x)
= P(U2 ≤ x)P(U3 ≤ x)
= FBIII(x; c, k2)FBIII(x; c, k3)
= (1 + x−c)−k23 .

b)

FX1|X2=x2(x1) =
∫ x1

0
fX1|X2(x|x2)dx =

∫ x1

0

fX1,X2(x, x2)
fX2(x2)

dx

=


∫ x1

0

f1(x, x2)
fX2(x2)

dx if x1 < x2∫ x2

0

f2(x, x2)
fX2(x2)

dx if x1 > x2

=


k2

k23
(1 + x−c

2 )k3
∫ x1

0 k13cx−c−1(1 + x−c)−k13−1 dx if x1 < x2∫ x1

0 k1cx−c−1(1 + x−c)−k1−1 dx if x1 > x2

=


k2

k23
(1 + x−c

2 )k3(1 + x−c
1 )−k13 if x1 < x2

(1 + x−c
1 )−k1 if x1 > x2.
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c)

P(X1 ≤ x1|X2 ≤ x2) =
P(X1 ≤ x1,X2 ≤ x2)

P(X2 ≤ x2)

=


(1 + x−c

1 )−k13(1 + x−c
2 )−k2

(1 + x−c
2 )−k23

if x1 < x2

(1 + x−c
1 )−k1(1 + x−c

2 )−k23

(1 + x−c
2 )−k23

if x1 > x2

=

{
(1 + x−c

1 )−k13(1 + x−c
2 )k3 if x1 < x2

(1 + x−c
1 )−k1 if x1 > x2

.

□

Apendix B: Observed Fisher Information Matrix

In this part, we present the observed Fisher information matrix obtained using the
idea of Louis (1982), which is used when the EM algorithm is applied to obtain the
MLEs in the case of incomplete data problem. The observed information matrix can
then be inverted to obtain the asymptotic covariance matrix of the MLEs determined
from the EM algorithm. Let S denote the derivative vector and H the Hessian matrix
of the pseudo-log-likelihood function defined in (3.1). The observed Fisher informa-
tion matrix is given by H−SST. The elements of vector S = (S1,S2, S3, S4)T, are as follows

S1 =
n0 + 2n1 + 2n2

c
−
∑
i∈I0

log xi −
∑

i∈I1∪I2

log x1i −
∑

i∈I1∪I2

log x2i

+ (k123 + 1)
∑
i∈I0

ln xi x−c
i

1 + x−c
i
+ (k2 + 1)

∑
i∈I1

ln x2i x−c
2i

1 + x−c
2i
+ (k1 + 1)

∑
i∈I2

ln x1i x−c
1i

1 + x−c
1i

+ (k23 + 1)
∑
i∈I2

ln x2i x−c
2i

1 + x−c
2i
+ (k13 + 1)

∑
i∈I1

ln x1i x−c
1i

1 + x−c
1i
.

S2 =
n2 + n1µ1

k1
−
∑
i∈I0

log(1 + x−c
i ) −

∑
i∈I1∪I2

log(1 + x−c
1i ).
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S3 =
n1 + n2ν1

k2
−
∑
i∈I0

log(1 + x−c
i ) −

∑
i∈I1∪I2

log(1 + x−c
2i ).

S4 =
n0 + n1µ2 + n2ν2

k3
−
∑
i∈I0

log(1 + x−c
i ) −

∑
i∈I1

log(1 + x−c
1i ) −

∑
i∈I2

log(1 + x−c
2i ).

The Hessian matrix H is symmetric, so Hi j = H ji, i > j and in the following, the elements
are given:

H11 = −n0 + 2n1 + 2n2

c2

− (k123 + 1)
[∑

i∈I0

ln2 xi x−c
i

1 + x−c
i
− [
∑
i∈I0

ln xi x−c
i

1 + x−c
i

]2
]
− (k2 + 1)

[∑
i∈I1

ln2 x2i x−c
2i

1 + x−c
2i
− [
∑
i∈I1

ln x2i x−c
2i

1 + x−c
2i

]2
]

− (k1 + 1)
[∑

i∈I2

ln2 x1i x−c
1i

1 + x−c
1i
− [
∑
i∈I2

ln x1i x−c
1i

1 + x−c
1i

]2
]
− (k23 + 1)

[∑
i∈I2

ln2 x2i x−c
2i

1 + x−c
2i
− [
∑
i∈I2

ln x2i x−c
2i

1 + x−c
2i

]2
]

− (k13 + 1)
[∑

i∈I1

ln2 x1i x−c
1i

1 + x−c
1i
− [
∑
i∈I1

ln x1i x−c
1i

1 + x−c
1i

]2
]
.

H22 = −
n2 + n1µ1

k2
1

.

H33 = −n1 + n2ν2

k2
2

.

H44 = −
n0 + n1µ2 + n2ν1

k2
3

.

H12 =
∑
i∈I0

ln xi x−c
i

1 + x−c
i
+
∑

i∈I1∪I2

ln x1i x−c
1i

1 + x−c
1i
.

H13 =
∑
i∈I0

ln xi x−c
i

1 + x−c
i
+
∑

i∈I1∪I2

ln x2i x−c
2i

1 + x−c
2i
.

H14 =
∑
i∈I0

ln xi x−c
i

1 + x−c
i
+
∑
i∈I1

ln x1i x−c
1i

1 + x−c
1i
+
∑
i∈I2

ln x2i x−c
2i

1 + x−c
2i
.

H23 = 0, H23 = 0, H34 = 0.




