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Abstract. Area level linear mixed models can be generally applied to produce small
area indirect estimators when only aggregated data such as sample means are available.
This paper tries to fill an important research gap in small area estimation literature, the
problem of constructing confidence intervals (CIs) when the estimated variance of the
random effect as well as the estimated mean squared error (MSE) is negative. More
precisely, the coverage accuracy of the proposed CI is of the order O(m−3/2), where m is
the number of sampled areas. The performance of the proposed method is illustrated
with respect to coverage probability (CP) and average length (AL) using a simulation
experiment. Simulation results demonstrate the superiority of the proposed method
over existing naive CIs. In addition, the proposed CI based on the weighted estimator
is comparable with the existing corrected CIs based on empirical best linear unbiased
predictor (EBLUP) in the literature.
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1 Introduction

The demand for small area estimates has been increased tremendously in recent years
in order to formulate policies and strategic plans, allocate funds, address social issues
and so on (Datta and Ghosh , 2012; Datta and Lahiri , 2000; Rao and Molina , 2015).
“Demand from the private sector has also been increased because business decisions,
particularly those related to small businesses, rely heavily on the local socio-economic,
environmental and other conditions" (Rao and Molina , 2015, page 3).

It is known that direct estimates from the survey have wide confidence intervals
(CIs), because the aim of the sample design in sample surveys is to provide reliable
data for large areas such as national or regional levels and pays little or no attention
to the smaller areas of interest such as sub-regional area (Datta and Ghosh , 2012; Rao
and Molina , 2015). It is impossible to conduct a new survey to increase the sample
size at the small area level due to cost and operational considerations. In other words,
we need sufficient information under these restricted resources in order to make an
estimation at an adequate level of precision. This can often be done by using “indirect
estimators that “borrow strength from different surveys or from a census and a survey
(Chatterjee et al. , 2008; Kim and Rao , 2012; Rao and Molina , 2015, among others).

For a linear mixed model, CIs based on empirical best linear unbiased predictor
(EBLUP) have been proposed by Datta et al. (2002); Basu et al. (2003) ; Diao et al.
(2013); Shiferaw and Galpin (2016); among others, using the Taylor series expansion
method. Moreover, Morris (1983), Prasad and Rao (1990), Datta et al. (2002) amongst
others constructed CIs for a special case of equal sampling variances. However, in small
area estimation, we are interested in small areas and hence the sampling error variance
estimates ψi in the Fay-Herriot (FH) model can be unstable (Boonstra and Buelens
, 2011). The recent study by Datta and Ghosh (2012) argued that equal sampling
variances seldom arise for small area problems.

Hall and Maiti (2006) proposed interval estimation based on a double bootstrap
calibrated sample which is centered at the regression estimate rather than at EBLUP
estimate. Their prediction intervals have coverage accuracy O(m−3), where m is the
number of sampled areas. Chatterjee et al. (2008) proposed a CI which is based on
a single bootstrap sample for area level means using a normal approximation. Their
bootstrap histogram differs from the true EBLUP distribution by only O(d3n−3/2) where
d is the number of parameters and n is the number of observations within the areas. The
coverage error is defined in terms of n, sample sizes within the areas, rather than m, the
number of sampled areas, as under the Hall and Maiti (2006) approach. This method
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necessitates repeated generation of a pivotal quantity from several bootstrap samples.
Kubokawa and Nagashima (2012) have also obtained CIs based on the parametric
bootstrap methods.

There are some challenges on CIs based on bootstrap methods. For example, the
coverage, accuracy of CIs based on bootstrap methods has been improved through
calibration. However, it is not always clear either coverage or length or some other
characteristic of an interval ought to be calibrated. There are also questions on the
use of pivotal statistics and calibration. In addition, the applicability of these CIs is
computationally expensive and the results often lack straightforward interpretability
(Chatterjee et al. , 2008).

None of the above authors developed a CI based on the weighted estimator with
fixed weights. Having this in mind, the main objective of this paper is to develop CI
for a small area mean (i) based on the weighted estimator with fixed weights using
the Taylor series methods under unequal sampling variances (ii) that matches the
coverage error properties of Datta et al. (2002), Chatterjee et al. (2008), Kubokawa and
Nagashima (2012) and Yoshimori and Lahiri (2014) (i.e., are of the order O(m−3/2)),
(iii) that has a coverage probability (CPs) larger than the naïve methods and (iv) that
rely on simple computation.

This paper deals with the following problems.

i) Firstly, the construction of CIs based on EBLUP has been developed for linear mixed
models in small area estimation. However, when we use different methods of
estimating variance components, it is possible to get negative values for these
components. For example, if the estimated variance of the random component
(under the linear mixed model) is negative, Prasad and Rao (1990) and others
use the truncated estimator, max(Â, 0), where Â is the estimated variance of the
random effect. Those truncated estimates will lead the weight attached to the
direct estimator to take zero values, in which case the EBLUP estimator reduces
to a synthetic estimator. This also makes the contribution of the MSE estimate,
assuming all parameters are known, to become zero (Rao and Molina , 2015;
Shiferaw and Galpin , 2016).

ii) Secondly, the estimated MSE of EBLUP sometimes takes negative values. A dis-
advantage of CIs based on EBLUP is that it cannot give an interval when the
estimates of MSE are negative (and are set to zero) (Kubokawa and Nagashima ,
2012).

In summary, the main contributions of this paper are as follows:
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• The CIs based on EBLUP estimator can be used so long as the estimated variance of
the random effect remains bounded away from zero (Diao et al. , 2013). However,
our method can be used even when the estimated variance of the random effect
is negative without truncating and setting equal to zero.

• The proposed method allows us to develop a CI when it is impossible to get an
interval based on the EBLUP estimator. Unlike the MSE estimates for the EBLUP
estimator, the MSE estimates for the weighted estimator with fixed weights are
more stable and always positive (Datta et al. , 2011). In this paper, we further
have used the MSE estimators for the weighted estimator derived by Datta et
al. (2011) to develop a corrected CI. “Note that the problem of constructing a
good prediction interval is much more difficult than the problem of obtaining an
accurate MSE" (Nandram , 1999, page 328).

• As discussed briefly in Diao et al. (2013) and Shiferaw and Galpin (2016), one of
the major advantages of CIs based on the Taylor series methods is computational.
They have simple and straightforward applicability, estimate the parameter using
standard software and then plug-in the estimates of the parameters in the CIs.
This is also an advantage of the proposed CI in this paper.

• The proposed CI based on the weighted estimator with fixed weights might be
slightly more efficient than the CIs based on EBLUP estimator with a good choice
of weights. This is because, the weighted estimator with fixed weights avoids the
uncertainty due to the estimation of the variance of the random effect A (Datta et
al. , 2011).

This paper is organized as follows. Section 2 describes the basic area level model,
Section 3 discusses the estimation of A, Section 4 describes EBLUP estimator. In Section
5, we describe the measurements of the uncertainty of weighted estimator. In Section 6,
we present the simulation study results. Finally, in Section 7, we summarize the main
findings of the study.

2 Basic Area Level Model

In this paper, we considered a basic area level model, known as the FH model (Fay and
Herriot , 1979). Diao et al. (2013, page 2) state that “another important advantage of
the Fay-Herriot model is that it only requires summary data, and not unit-level data
that might be unavailable to the analyst, because of confidentiality concerns". Since
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the FH model deals with area level summary data and not unit-level data, the BLUP
estimator is applicable for general sampling designs (Rao and Molina , 2015). Let
y = (y1, ..., ym)′ be a vector of direct survey estimates (observations) for the m small
areas and X = (x1, ..., xm)′ be a vector of auxiliary variables associated with small areas.
Under this setup, the matrix notation of the FH model is given as follows

y = Xβ + v + e, (2.1)

where β = (β1, ..., βk)′ is a k × 1 unknown vector of the regression coefficients, v =
(v1, ..., vm) is an m × 1 vector of the random effects, and e = (e1, ..., em) is an m × 1 vector
of the random errors. Here, v and e are independent random variables with dispersion
matrices AIm andΨ, respectively, where Im is the m ×m identity matrix. The variance-
covariance matrix of y is Σ = Σ(A) = diag(ψ1 + A, ..., ψm + A). The aim of this paper is
to derive interval estimates for the population small area means θi = x′iβ + vi, 1, ...,m.

3 Estimation of A

In this section, we review different methods of estimating the variance component
A such as a method of moment estimator by Prasad and Rao (1990), a method of
moment estimator by Fay and Herriot (1979), maximum likelihood (ML) and restricted
maximum likelihood (REML) estimators. We consider the simple moment estimator
given by ÂPR = max(0, ÃPR) where

ÃPR =
1

m − p
[r′r −

m∑
i=1

ψi(1 − hii)], (3.1)

which is given by Prasad and Rao (1990), where the matrix X is full column rank,
r = y − Xβ̂ is a vector of residuals, hii = xi(X′X)−1xi diagonal entries of the hat matrix
given by H = X(XX′)−1X′ and β̂ = (XX′)−1X′y is the OLS estimator of β. Another
moment estimator by Fay and Herriot (1979), is given by ÂFH = max(0,A∗FH) with A∗FH
obtained iteratively as the solution of the following non-linear equation in A

m∑
i=1

(yi − x′iβ̃)2

ψi + A
= m − p, (3.2)

where m is the number of small areas, p is the dimension of the vector of auxiliary
variables xi and
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β̃ =

 m∑
i=1

xix′i
ψi + A


−1  m∑

i=1

xiyi

ψi + A

 . (3.3)

The ML and REML estimators can be derived using the arguments of Datta and Lahiri
(2000). The ML estimator of A is given by ÂML = max(0,A∗ML), where A∗ML is gained by
solving the following non-linear equation in A iteratively

m∑
i=1

(A + ψi)−1 =

m∑
i=1

(A + ψi)−2
{
yi − x′i β̃(A)

}2
. (3.4)

The REML estimator of A is given by ÂREML = max(0,A∗REML), where A∗REML is gained
by solving the following non-linear equation in A iteratively

m∑
i=1

(A + ψi)−1 −
m∑

i=1

x′i
{∑m

u=1
(
A + ψu

)−1 xux′u
}−1

xi

(A + ψi)2 =

m∑
i=1

(A + ψi)−2
{
yi − x′i β̃(A)

}2
. (3.5)

For a given A, the ML or REML estimator of β is given as follows

β̃(A) =

 m∑
i=1

(A + ψi)−1xix′i


−1 m∑

i=1

(A + ψi)−1xiyi. (3.6)

4 EBLUP Estimator

If the parameters A and βwere known, the small area estimates of θi = x′iβ + vi would
be its best predictor given by

θ̃B
i = (1 − γi)yi + γix′iβ̃, i = 1, ...,m. (4.1)

where β̃ = (X′Σ−1X)−1X′Σ−1y and γi =
ψi
ψi+A . Since A and β are unknown, the best

predictor is not usable until we estimate these model parameters. When the unknown
parameters are replaced by their estimators, then we will have EBLUP of θi which is
given by

θ̂EB
i = (1 − γ̂i)yi + γ̂ix′iβ̂, i = 1, ...,m. (4.2)

The EBLUP estimatorθEB
i reduces to the synthetic estimator x′iβ̂when Â = 0 irrespective

of the sampling variance, ψi, of the direct estimator yi (Rao and Molina , 2015). For
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example, this difficulty was encountered in the example, dealing with poverty counts
of school-age children in the United States. In this example, the estimated variance of
the random effect based on ML and REML was zero. This leads the EBLUP estimator
to attach zero weight to all direct estimates. In other words, the EBLUP estimator
reduces to the regression of synthetic estimator regardless of the sampling variance of
the direct estimator (Rao and Molina , 2015). Furthermore, the contribution to MSE or
error assuming all parameters are known becomes zero when Â = 0. As a solution,
Rao and Molina (2015) among others, suggested a weighted combination of yi and x′iβ̂
with fixed weights 1 − wi and wi

θ̂w
i = (1 − wi)yi + wix′iβ̂, i = 1, ...,m, (4.3)

where wi has a value 0 ≤ wi ≤ 1. It can be chosen as wi = 1/2 or can be determined from
past knowledge. Both θ̂w

i and θ̂EB
i are special cases of the general estimator of the form

θ̂i = yi + hi(y) proposed by Rivest and Belmonte (2000).

5 Measurements for Uncertainty of Weighted Estimator

MSEs and interval estimates are generally used to measure the variability of EBLUP
and weighted estimators in small area problems. These are commonly used when the
estimators are used to estimate a small area mean based on real data.

5.1 MSE Estimation for Weighted Estimator

An asymptotic expression of the MSE(θ̂i
w

) which is accurate to the order O(m−1) is
given by (see Datta et al. , 2011)

MSE(θ̂i
w

) = g1i(A) + g2i(A) + g3wi(A), (5.1)

where,

g1i(A) = Aψi(A + ψi)−1,

g2i(A) =
ψ2

i

(A + ψi)2 x′i

 m∑
u=1

(A + ψu)−1xux′u


−1

xi,

g3wi(A) = (γi − wi)2
{
(A + ψi) − x′i

(
X′Σ−1X

)−1
xi

}
+ o(m−1),
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and γi =
ψi

ψi+A .

For example, a nearly unbiased estimator of MSE(θ̂i
w

) under the REML estimators
of Â is given by (see Datta et al. , 2011)

M̂SE(θ̂i
w

) = g1i(Â) + g2i(Â) + g3i(Â) + g3wi(Â). (5.2)

A nearly unbiased estimator of the MSE(θ̂i
w

) under the FH moment estimator Â is
given by (see Datta et al. , 2011)

M̂SE(θ̂i
w

) = g1i(Â) + g2i(Â) + g3i(Â) + g3wi(Â) − b̂FH(Â)w2
i , (5.3)

where b̂FH(Â) =
2
[
m

∑m
i=1(Â+ψi)−2−{∑m

i=1(Â+ψi)−1}2
]

{∑m
i=1(Â+ψi)−1}3 .

A nearly unbiased estimator of the MSE(θ̂i
w

) under the ML estimator of Â is given by

M̂SE(θ̂i
w

) = g1i(Â) + g2i(Â) + g3i(Â) + g3wi(Â) − b̂ML(Â)w2
i . (5.4)

For the ML estimator Â, the estimated bias of Â derived by Datta and Lahiri (2000) is
given by

b̂ML(Â) =
−tr

{
[
∑m

u=1(Â + ψu)−1xux′u]−1[
∑m

u=1(Â + ψu)−2xux′u]
}

∑m
u=1(Â + ψu)−2

.

Similarly, a nearly unbiased estimator of the MSE(θ̂i
w

) under the PR moment estimator
of Â is given by

M̂SE(θ̂i
w

) = g1i(Â) + g2i(Â) + g3i(Â) + g3wi(Â). (5.5)

5.2 CIs Based on Weighted Estimator with Corrected Coverage Probability

We here provide CI for θi = xiβ+vi based on the weighted estimator with fixed weights
using the FH model. Cox (1975) proposed the conventional closed-form CI is of the
form: θ̂w

i ± zα/2ψ
1/2
i (1 − γ̂i)1/2, where zα/2 denotes the 100 × α/2% upper quantile of

the standard normal distribution. This is the first attempt to construct empirical Bayes
(EB) CI in small area estimation problems. Following Cox (1975), Prasad and Rao
(1990) proposed another traditional closed-form CI based on EBLUP by incorporating
covariates when the error variances are equal. The two-sided version of the Prasad and
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Rao (1990) CI is given by

θ̂w
i ± zα/2

√
M̂SE(θ̂w

i ),

where M̂SE(θ̂w
i ) is a second-order unbiased estimator of MSE(θ̂w

i ). Both methods are
easy to construct, but their CPs are open to question. These methods have coverage
accuracy of order O(m−1) (Diao et al. , 2013; Chatterjee et al. , 2008). Thus, they cannot
be an appropriate choice in most small area applications (Diao et al. , 2013; Yoshimori
and Lahiri , 2014).

As we discussed earlier, Diao et al. (2013), Shiferaw and Galpin (2016), Chatterjee
et al. (2008), Yoshimori and Lahiri (2014) among others proposed CIs based on EBLUP
with a higher coverage accuracy. In the case that Â = 0, the EBLUP θ̂EB

i of θi reduces to
the regression synthetic estimator θ̂EB

synthetic, i = x′iβ̂. This results in g1i(0) = 0 (Molina et
al. , 2015; Rao and Molina , 2015). Moreover, we cannot calculate CI when the estimated
MSE of EBLUP is negative. To fill these gaps, we propose CI with a coverage, accuracy
O(m−3/2) based on the weighted estimator with fixed weights using the Taylor series
methods. Our method provides improved coverage in the sense that the margin of
error of the CP is of order O(m−3/2).

We use the following regularity conditions in proving Theorem 5.1.

R1: vi and ei are independent with vi
i.i.d.∼ N[0,A] and ei

ind∼ N[0, ψi], i = 1, ...,m.

R2: An estimator of A that is Â = Â(y) satisfies

• Â(−y) = Â(y) (i.e., they are even functions of y)
• Â(y + Xd) = Â(y) for any d ∈ Rp and for all y (i.e., they are translation

invariant functions).

R3: max1≤i≤mx′i (X
′X)−1xi = O(m−1) (i.e., the elements of X are uniformly bounded) (see

Prasad and Rao , 1990; Yoshimori and Lahiri , 2014).

We use the Stein identity to derive the proposed CI. Stein (1981) showed that

E
[
hi(y)(yi − x′iβ)

]
= (ψi + A)E

[
∂hi(y)
∂yi

]
, (5.6)

where hi(y) is an absolutely continuous function. This identity is called the Stein
identity. The proposed CI based on the weighted estimator with fixed weights is given
by the following theorem.



26 Y. Shiferaw and J. Galpin

Theorem 5.1. Under the above regularity conditions and for any z > 0, we have

P[θi ϵ ICW(Â)] = 2Φ(z) − 1 − zϕ(z)ηw +O(m−3/2),

where

ηw = (z2 + 1)
ψ2

i

4A2(A + ψi)2 V(Â) +

ψ
2
i + (γi − wi)2(A + ψi)2

Aψi(A + ψi)
x′i

 m∑
i=1

x′i xi

A + ψi


−1

xi

 .
Note that the proof of this Theorem is given at the end of the paper.

6 Numerical Studies

6.1 Comparison of the CIs

We conducted a simulation study to examine the finite sample performance of the
proposed CI. We adopt the simulation setup of Datta et al. (2005). For the simulation
study, we consider model (1.1) with m = 10, 15, 30, 45 and 60 areas, xi = (1, xi)′, where
xi; i = 1, ...,m were generated i.i.d. from N(0, 1), β = (0, 0)′ and A = 1. For the sampling
variances ψi, we considered three different variance patterns: pattern (I) 0.7, 0.6, 0.5,
0.4, 0.3, pattern (II) 2, 0.6, 0.5, 0.4, 0.2 and pattern (III) 4, 0.6, 0.5, 0.4, 0.1. According
to Rao and Molina (2015) pattern (I) is nearly balanced

(
max (ψi)/min (ψi) = 2.3

)
, pat-

tern (II) has intermediate variability
(
max (ψi)/min (ψi) = 10

)
and pattern (III) has the

highest variability
(
max (ψi)/min (ψi) = 40

)
. The random effects, vi are generated from

two different distributions, namely the normal N(0, 1) and the Laplace (0, 1) distribu-
tions. The Laplace distribution is considered to assess the robustness of the proposed
method to possible deviations from the normality assumptions. We consider xiβ = 0,
and generate 10,000 data sets from yi = vi + ei, (i = 1, · · · ,m). We computed the CP and
AL of the proposed CI over simulation as

CPi =

m∑
i=1

|θi ∈ CIi|
m

, ALi =

m∑
i=1

|length o f CIi|
m

, (6.1)

where , i=1,...,m, CIi is the CI of a certain method. The purpose of this section is
to compare the performance of the proposed method with the two ’naive’ CIs namely
the Cox (1975) and Prasad and Rao (1990) methods under different sampling variances.
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Cox (1975) introduced the idea of developing an EB CI for θi given as

Met IW : θ̂w
i ± zα/2ψ

1/2
i (1 − γ̂i)1/2, (6.2)

where θ̂w
i is a weighted estimator with fixed weights.

Prasad and Rao (1990) proposed a CI for θi of the form

Met IIW : θ̂w
i ± zα/2

√
M̂SE(θ̂w

i ). (6.3)

The corrected CI based on the weighted estimator is given as follows

Met IIIW : θ̂w
i ± tαw

√
M̂SE(θ̂w

i ), (6.4)

where

tαw = zα/2+(z3
α/2
+zα/2)

ψ2
i

8Â2(Â + ψi)2
V(Â)+zα/2

ψ2
i + (γ̂i − wi)2(Â + ψi)2

2Âψi(Â + ψi)
x′i

(∑ x′i xi

Â + ψi

)−1

xi

 .
For tαw, the CI given in (6.4) satisfies that

P
[
θi ∈ {θ̂w

i ± tαw

√
M̂SE(θ̂w

i )}
]
= 1 − α +O(m−3/2). (6.5)

In this section, we consider three different CIs given in (6.2), (6.3) and (6.4), which
are referred as Method IW, Method IIW, and Method IIIW, respectively. In each table
and figure, Method IW, Method IIW, and Method IIIW are the Cox (1975), Prasad
and Rao (1990) and our proposed method respectively. We have carried out extensive
simulations which reflect the general pattern of performance of Method IW, Method
IIW and Method IIIW reported here. Based on 10000 simulations, we estimated the
CPs and ALs of the three methods for all selected small areas and variance patterns.
The results are reported in Tables 1 and 2. These results are dependent on the sampling
variance patterns (Chatterjee et al. , 2008).

The main goal of this study is to develop closed form corrected CI for a small area
mean based on weighted estimator with fixed weights using the Taylor series expansion
under the FH model. We explored the CPs and ALs of the proposed CIs compared to
Method IW and Method IIW.
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For variance patterns (II) and (III), Method IW truly underestimates the CPs. For
example, as shown in Table 1, Method IW has under-coverage problem (it could be as
low as 69.2% compared to the nominal value of 95% for the normal random effects).
Method IIIW performed uniformly well throughout. When m = 20, the CP of Method
IIIW never differed from its nominal value by more than 1.3%, 9.2%, 2.2% and 1.3% for
the ML, PR, FH and REML estimators respectively for the normal distribution. These
are values slightly below the 95% nominal value.

Considering the Laplace random effects distribution helps us to investigate the
robustness of our proposed methods when the data violate the normality assumptions.
As we can see from Table 2, the CPs of Method IIIW are improved when compared
to Method IW and Method IIW. The CPs of Method IW becomes worse when dealing
with the Laplace distribution.

We also examine the performance of our proposed method over a range of a number
of small areas, m, for all variance patterns as shown in Figures 2, 3 and 4. The CPs of
Method IW, Method IIW, and Method IIIW are obtained through the above simulation
exercise for the number of areas such as m=10, 15, 20, 30, 40, 50, 60, 80 and 100. When
the number of small areas, m, increases, the CPs of Method IIIW are close to the nominal
level for all patterns. When m ≥ 60, there is no clear difference between Method IIW
and Method IIIW in terms of CPs and ALs under the normal distribution, even though
Method IIIW continues to be closer to the nominal level, hence it shows its consistency
(Diao et al. , 2013). We thus conclude that Method IIIW is superior to the rest of the
methods in terms of the CP.

6.2 Comparison of the Proposed Method with some of the Recent Corrected
CIs

This section discusses the comparison of our method (i.e., Meth IIIW) with some of the
recent corrected CIs in the literature, namely, Shiferaw and Galpin (2016)’s method
(based on the Taylor series expansion), Diao et al. (2013)’s method (based on the Taylor
series expansion) and Chatterjee et al. (2008)’s method (based on bootstrapping). For
the sake of comparability, we adopt the simulation setup of Chatterjee et al. (2008)
given by Pattern (IV) (4.0, 0.6, 0.5, 0.4, 0.2). The FH model with m = 15 and x′iβ = 0 is
considered.

The simulation study is carried out under the FH model without covariates. This
is in agreement with Diao et al. (2013) and Chatterjee et al. (2008). Table 3 and Table
4 show the CPs and ALs for nominal 95% CIs for Pattern (IV) under the normal and
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the chi-square distributions. Note that Method IIIW represents our proposed method,
while Met III, CIRao, CIJY, CIJY1 represents the area specific CIs proposed by Shiferaw
and Galpin (2016), PB-ET represents the parametric bootstrap interval with equal tail
probabilities proposed by Chatterjee et al. (2008) and Diao-EB represents the corrected
CI proposed by Diao et al. (2013).

As shown in Tables 3 and 4, Diao-EB, Chat-PB and Shiferaw-Galpin methods are
slightly more conservative than the proposed CI. However, our proposed method
(Method IIIW) has slightly lower CPs, especially for smallerψi. Datta et al. (2011) justi-
fied that the weighted estimator with wi =

1
2 does not perform very well in comparison

with the EBLUP estimator, especially for areas with smaller ψi. In general, the CPs and
ALs of the proposed methods are comparable to those recent CI developments in the
literature.

6.3 Application

Here we apply the proposed CI to the 2010/11 Ethiopian household consumption ex-
penditure survey (HCES) data. These data were used by Shiferaw and Galpin (2016) to
estimate the zonal level percentage of food expenditure for their proposed area specific
CIs based on EBLUP under the FH model. As auxiliary variables, we have considered
the indicators of age, the indicators of sex, the indicators of the different levels of the
variable education, the indicators of the categories of the variable employment and
indicators of marital status. The main model fitted in this paper is the FH model given
by (2.1).

The process of choosing the auxiliary variables is crucial since the small area esti-
mation methods are mainly based on the development of a regression model. Good
auxiliary information related to the variables of interest plays a vital role in determining
suitable linking models (Rao and Molina , 2015). Akaike information criterion was used
to select the auxiliary variables that can specify the best regression model. The area
level covariates are the area proportions of individuals in each category of the auxiliary
variables (since in our case all auxiliary variables are categorical). For example, if we
consider sex as one of the auxiliary variables, clearly sex has two categories (i.e., male
and female). In order to include the proportion of males or the proportion of females
among other covariates in the fitted regression model, we considered the smallest AIC.
According to Rao and Molina (2015), the usual goodness-of-fit measures such as AIC,
BIC and the value of the log-likelihood at the estimated parameters are computed.

Moreover, we fitted the country level regression model instead of regional or zonal
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level models to benefit from the larger sample size at the country level. For instance,
the use of detailed age groups may exacerbate the limitation for modeling from the
small sample sizes (Pratesi , 2015). We fitted the basic area level model (2.1) using
the FH method to derive zonal level weighted estimators of the percentage of food
expenditure. Thus, the estimates of the parameters are given by ÂFH = 28.79 and
β̂ =

(
β̂1, β̂2, β̂3, β̂4, β̂5, β̂6

)
= (14.375, −5.8656, 8.788, −69.198, 29.589, −0.384). Rao

and Molina (2015) suggest wi =
A0

ψi+A0
, where A0 is a prior guess of A from past studies

(Rao and Molina , 2015). The widths of the naive CIs Method IW, Method IIW and the
corrected CI Method IIIW based on the FH estimators are computed by (6.2), (6.3) and
(6.4) are plotted in Figure 1 for i = 1, · · · , 86. The upper and lower bounds of the CIs are
also plotted in Figure 2 for i = 1, · · · , 86. From Figures 1 and 2, we can easily observe
that Method IIIW is more stable and shorter width than Method IW and Method IIW.

7 Conclusions

In this paper, we have obtained the asymptotically corrected CIs based on weighted
estimator with fixed weights under the basic area level model. CIs based on weighted
estimator with fixed weights have the advantage over CIs based on EBLUP estimator
due to the possibility of producing CIs when the variance of the random effect A as
well as the estimated MSE are negative. Moreover, the simulation results show that
the corrected CI (i.e., Method IIIW) has been numerically superior to the naive CIs (i.e.,
Method IW and Method IIW) when evaluated based on the coverage probabilities.
Method IIIW satisfies the nominal confidence level by extending the widths of Method
IW and Method IIW. Finally, the methodology is illustrated with an application to
Ethiopian HCES data. The direct survey estimates of the percentage of food expendi-
ture based on the small sample can be considerably improved by using the auxiliary
variables from the census.
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Figure 1: Plots of widths for the CIs Method IW, Method IIW and Method IIIW for i = 1, . . . , 86.
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Figure 2: Plots of CIs for the mean based on Method IW, Method IIW and Method IIIW for
i = 1, . . . , 86.
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Figure 3: Simulated values of the CPs of Method IW, Method IIW and Method IIIW for nominal
95% CIs for ψi pattern (I). The points are connected with lines for visibility purposes.
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Figure 4: Simulated values of the CPs of Method IW, Method IIW and Method IIIW for nominal
95% CIs for ψi pattern (II). The points are connected with lines for visibility purposes.
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Figure 5: Simulated values of the CPs of Method IW, Method IIW and Method IIIW for nominal
95% CIs for ψi pattern (III). The points are connected with lines for visibility purposes.
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Table 1: CPs and ALs of a small area mean for nominal 95% CIs for ψi pattern (I), (II) and (III).
Results obtained for the normal random effects distributions, m = 20 and wi =

1
2 .

Groups

CP

PR FH ML REML

Pattern I

MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW

G1 92.9 94.3 95.0 92.9 94.2 94.9 92.5 94.3 95.0 93.0 94.2 95.0
G2 92.5 94.0 94.7 92.7 94.3 94.8 92.2 94.2 94.8 92.7 94.2 94.9
G3 92.2 94.3 94.8 92.2 94.2 94.7 91.9 94.2 94.8 92.3 94.2 94.8
G4 91.2 94.0 94.6 91.1 94.0 94.5 91.0 94.1 94.7 91.3 94.0 94.7
G5 89.0 93.9 94.4 89.3 94.1 94.5 88.9 94.0 94.5 89.2 93.9 94.5

Pattern II
G1 89.0 94.6 96.0 90.9 94.9 96.1 89.5 94.7 95.8 90.7 94.6 96.1
G2 91.3 94.0 94.5 92.4 94.1 94.6 91.6 93.9 94.6 92.7 94.3 94.9
G3 90.8 93.7 94.1 91.8 94.0 94.4 91.3 94.1 94.6 92.2 94.2 94.8
G4 89.8 93.5 93.9 91.0 94.0 94.3 90.6 94.2 94.6 91.2 94.0 94.6
G5 83.9 93.1 93.4 85.0 93.8 94.3 84.8 94.1 94.5 85.0 93.9 94.5

Pattern III
G1 78.3 95.1 93.8 84.8 95.0 96.2 83.6 94.9 96.4 85.1 94.9 96.7
G2 85.9 92.6 90.7 92.0 94.0 94.0 91.8 94.0 94.6 92.5 94.0 94.8
G3 85.2 92.1 90.3 91.5 93.8 93.8 91.3 93.9 94.4 92.0 94.0 94.6
G4 84.8 91.9 89.9 90.3 93.6 93.5 90.8 94.2 94.6 91.2 94.3 94.8
G5 69.2 89.4 87.9 73.2 93.4 94.1 73.7 94.2 95.2 74.4 94.4 95.7

AL
Pattern I

G1 2.44 2.57 2.42 2.44 2.57 3.15 2.41 2.56 3.12 2.44 2.57 3.00
G2 2.33 2.48 2.32 2.33 2.48 3.06 2.30 2.48 3.04 2.33 2.48 2.92
G3 2.20 2.40 2.21 2.20 2.40 2.98 2.18 2.39 2.96 2.20 2.39 2.83
G4 2.04 2.30 2.10 2.04 2.30 2.91 2.02 2.30 2.88 2.04 2.30 2.75
G5 1.84 2.21 1.98 1.84 2.21 2.84 1.83 2.20 2.81 1.84 2.20 2.67

Pattern II
G1 3.03 3.44 4.04 3.10 3.45 3.66 3.01 3.44 3.55 3.09 3.44 3.74
G2 2.28 2.48 2.88 2.33 2.49 2.52 2.28 2.48 2.40 2.33 2.48 2.61
G3 2.16 2.39 2.79 2.20 2.40 2.42 2.16 2.39 2.30 2.20 2.39 2.52
G4 2.00 2.29 2.70 2.04 2.31 2.32 2.01 2.30 2.19 2.04 2.30 2.42
G5 1.54 2.09 2.55 1.57 2.10 2.12 1.55 2.09 1.97 1.57 2.10 2.24

Pattern III
G1 3.15 4.43 5.96 3.39 4.44 4.95 3.29 4.43 5.16 3.40 4.44 4.98
G2 2.14 2.45 3.08 2.32 2.48 2.60 2.29 2.48 2.85 2.33 2.49 2.67
G3 2.02 2.36 2.99 2.19 2.39 2.50 2.17 2.39 2.76 2.20 2.40 2.57
G4 1.88 2.26 2.90 2.03 2.30 2.40 2.01 2.30 2.68 2.04 2.31 2.48
G5 1.09 1.92 2.80 1.16 1.97 2.17 1.16 1.98 2.53 1.17 1.98 2.27
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Table 2: CPs and ALs of a small area mean for nominal 95% CIs for ψi pattern (I), (II) and (III).
Results obtained for the Laplace (double exponential) random effects distributions, m = 20 and
wi =

1
2 .

Groups

CP

PR FH ML REML

Pattern I

MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW MetIW MetIIW MetIIIW
G1 87.0 92.1 94.2 86.7 90.5 94.2 84.8 89.8 94.3 87.7 92.8 94.4
G2 87.4 92.0 94.1 87.1 90.4 94.2 85.4 89.8 94.3 87.8 92.6 94.0
G3 88.0 92.0 94.1 87.5 90.1 94.1 86.0 89.7 94.3 88.1 92.3 94.0
G4 87.8 91.5 93.6 87.3 90.0 93.9 85.6 89.2 93.6 88.6 92.3 93.8
G5 87.8 91.4 93.5 87.1 89.6 93.5 85.7 89.2 93.6 88.3 91.9 93.6

Pattern II
G1 73.8 87.2 95.0 77.4 87.7 94.9 76.8 90.2 94.9 79.8 93.8 94.9
G2 80.5 86.0 93.6 84.0 86.7 93.8 84.7 89.4 94.1 87.8 92.6 94.1
G3 80.9 85.8 93.6 84.4 86.6 93.8 85.0 89.1 93.9 88.0 92.3 93.7
G4 81.0 85.5 93.1 84.3 86.3 93.4 85.1 88.8 93.5 88.4 92.2 93.7
G5 79.9 84.7 91.9 82.9 85.8 92.6 84.1 88.5 93.3 87.1 91.6 93.1

Pattern III
G1 56.7 76.8 95.5 65.5 82.1 95.0 66.7 89.9 95.0 70.5 94.6 94.8
G2 70.0 75.4 93.1 79.1 81.0 93.7 84.1 88.7 94.0 88.4 93.4 94.2
G3 70.2 75.3 92.6 79.1 80.6 93.2 84.5 88.6 93.7 88.9 93.3 94.0
G4 70.3 74.8 92.1 79.1 80.5 93.0 84.7 88.3 93.4 88.8 92.8 93.6
G5 65.9 73.3 88.4 73.2 79.8 90.4 79.4 87.8 92.7 83.9 92.1 92.8

AL
Pattern I

G1 1.92 2.17 2.34 1.93 2.11 2.18 1.85 2.17 2.30 1.93 2.05 2.18
G2 1.86 2.08 2.24 1.86 2.00 2.08 1.79 2.08 2.19 1.87 1.93 2.08
G3 1.78 1.98 2.13 1.78 1.87 1.98 1.72 1.97 2.08 1.79 1.80 1.98
G4 1.68 1.87 2.01 1.68 1.74 1.87 1.62 1.86 1.96 1.69 1.66 1.87
G5 1.55 1.75 1.89 1.55 1.60 1.75 1.50 1.75 1.84 1.56 1.51 1.75

Pattern II
G1 2.14 3.14 3.61 2.22 3.14 3.24 2.16 3.14 3.32 2.27 3.15 3.35
G2 1.73 2.07 2.39 1.81 1.97 2.07 1.78 2.08 2.11 1.86 2.08 2.16
G3 1.65 1.97 2.28 1.73 1.84 1.96 1.71 1.98 1.99 1.78 1.98 2.04
G4 1.56 1.86 2.16 1.63 1.70 1.85 1.61 1.87 1.87 1.68 1.87 1.92
G5 1.25 1.60 1.93 1.31 1.38 1.60 1.31 1.59 1.61 1.36 1.61 1.66

Pattern III
G1 2.14 4.22 5.04 2.27 4.19 4.80 2.26 4.19 4.50 2.41 4.20 4.43
G2 1.56 2.09 2.13 1.72 2.05 2.45 1.77 2.07 2.14 1.87 2.02 2.07
G3 1.48 1.98 1.98 1.65 1.94 2.34 1.69 1.96 2.03 1.79 1.90 1.97
G4 1.39 1.82 1.87 1.55 1.83 2.24 1.60 1.85 1.91 1.69 1.77 1.86
G5 0.85 1.24 1.44 0.95 1.40 1.95 1.01 1.44 1.50 1.06 1.31 1.45
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Table 3: CPs and ALs of a small area mean for nominal 95% CIs for ψi pattern (IV). Results
obtained for the normal random effects distributions and m = 15. Note that the first value in
the cell is the proposed method and the value in the parenthesis is the naive method.

Shiferaw and Galpin Method from Diao et al. Chatterjee et al.

ψi

method (Shiferaw-Galpin) this paper method method

Met III CIRao CIJY CIJY1 Met IIIW Diao-EB PB-ET

FH REML FH REML FH REML FH REML FH REML FH REML FH

Normal
4.0 CP 93.7 93.4 93.8 93.7 93.6 93.6 93.9 94.1 96.1 97.1 96.0 95.3 95.7

(91.2) (91.7) (90.9) (92.3) (91.1) (91.9) (91.4) (92.6) (95.0) (94.2) (91.9) (90.7)
AL 4.00 3.91 4.02 4.01 3.95 3.99 4.01 4.04 4.80 5.16 4.26 4.10 4.73

(3.57) (3.54) (3.59) (3.64) (3.53) (3.62) (3.58) (3.66) (4.45) (4.45) (3.79) (3.62)
0.6 CP 94.4 93.7 94.2 95.1 93.8 95.2 94.5 95.2 94.3 94.6 96.4 96.1 95.6

(93.9) (93.2) (93.7) (94.8) (93.3) (94.8) (94.0) (94.8) (93.6) (93.8) (94.5) (93.7)
AL 2.54 2.47 2.54 2.61 2.51 2.58 2.54 2.60 2.48 2.71 2.73 2.69 2.95

(2.49) (2.42) (2.49) (2.56) (2.45) (2.53) (2.49) (2.55) (2.33) (2.47) (2.57) (2.52)
0.5 CP 94.4 93.9 94.5 95.4 94.3 95.0 94.4 95.4 94.0 94.5 96.3 96.1 95.5

(93.9) (93.6) (94.0) (95.0) (93.9) (94.7) (94.0) (95.1) (93.3) (93.8) (94.8) (94.2)
AL 2.39 2.32 2.39 2.45 2.36 2.42 2.39 2.44 2.39 2.61 2.56 2.53 2.70

(2.34) (2.28) (2.35) (2.41) (2.32) (2.39) (2.34) (2.41) (2.21) (2.38) (2.42) (2.37)
0.4 CP 94.6 94.1 94.4 95.5 94.3 95.0 94.5 95.4 93.8 94.4 96.4 96.2 95.6

(94.3) (93.8) (94.1) (95.3) (94.0) (94.8) (94.2) (95.1) (93.6) (93.8) (95.1) (94.6)
AL 2.20 2.14 2.20 2.26 2.18 2.23 2.20 2.25 2.29 2.51 2.36 2.34 2.49

(2.17) (2.11) (2.18) (2.23) (2.15) (2.21) (2.17) (2.22) (2.09) (2.29) (2.24) (2.20)
0.2 CP 95.2 94.7 95.0 95.5 95.1 95.5 95.1 95.6 93.8 94.6 95.9 95.8 95.9

(95.1) (94.6) (94.9) (95.5) (95.0) (95.4) (95.0) (95.6) (93.3) (93.9) (95.4) (95.1)
AL 1.67 1.62 1.68 1.70 1.66 1.69 1.67 1.69 2.07 2.33 1.81 1.79 1.83

(1.66) (1.61) (1.67) (1.70 (1.66) (1.68) (1.66) (1.69) (1.84) (2.07) (1.70) (1.68)
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Table 4: CPs and ALs of a small area mean for nominal 95% CIs for ψi pattern (IV). Results
obtained for the chi-square random effects distributions and m = 15. Note that the first value
in the cell is the proposed method and the value in the parenthesis is the naive method.

Shiferaw and Galpin Method from Diao et al. Chatterjee et al.

ψi

method (Shiferaw-Galpin) this paper method method

Met III CIRao CIJY CIJY1 Met IIIW Diao-EB PB-ET

FH REML FH REML FH REML FH REML FH REML FH REML FH

Centered chi-square
4 CP 93.2 93.5 93.4 93.6 93.3 93.5 93.0 93.7 95.6 97.2 91.6 92.3 91.7

(91.6) (92.1) (91.8) (92.4) (91.6) (92.0) (91.5) (92.3) (94.7) (95.1) (85.3) (87.7)
AL 5.17 4.24 5.21 4.27 5.14 4.21 5.20 4.24 4.82 4.89 3.60 3.51 4.35

(4.24) (3.98) (4.26) (4.00) (4.21) (4.00) (4.26) (3.99) (4.61) (4.45) (2.99) (2.87)
0.6 CP 94.5 94.6 95.1 95.5 94.6 95.1 94.4 94.7 93.9 94.8 95.4 94.5 92.3

(94.0) (94.1) (94.8) (95.1) (94.1) (94.7) (93.9) (94.3) (93.1) (94.0) (91.6) (90.9)
AL 2.65 2.59 2.68 2.62 2.64 2.58 2.65 2.59 3.03 2.48 2.94 2.75 2.71

(2.59) (2.43) (2.62) (2.43) (2.58) (2.44) (2.59) (2.43) (2.22) (2.47) (2.18) (2.10)
0.5 CP 94.7 94.8 95.4 95.5 94.9 95.1 94.6 94.8 93.7 94.5 95.8 95.1 92.4

(94.4) (94.4) (95.1) (95.2) (94.6) (94.7) (94.3) (94.4) (92.9) (93.8) (92.1) (91.5)
AL 2.47 2.42 2.50 2.45 2.46 2.42 2.47 2.42 2.95 2.39 2.93 2.72 2.45

(2.43) (2.28) (2.45) (2.28) (2.42) (2.28) (2.43) (2.28) (2.11) (2.36) (2.10) (2.02)
0.4 CP 94.8 94.8 95.6 96.0 95.0 95.3 94.7 95.1 93.7 94.7 96.3 96.0 93.3

(94.5) (94.5) (95.3) (95.8) (94.7) (95.0) (94.4) (94.9) (92.9) (94.1) (93.1) (92.4)
AL 2.26 2.22 2.28 2.25 2.26 2.23 2.26 2.22 2.87 2.29 2.94 2.69 2.34

(2.23) (2.09) (2.25) (2.10) (2.23) (2.10) (2.23) (2.10) (1.99) (2.25) (2.01) (1.94)
0.2 CP 95.2 95.3 96.1 96.0 95.6 95.6 95.2 95.4 93.6 94.4 97.5 97.6 94.4

(95.1) (95.3) (96.0) (95.9) (95.5) (95.5) (95.1) (95.3) (93.0) (93.7) (96.3) (96.6)
AL 1.69 1.67 1.72 1.70 1.71 1.68 1.69 1.67 2.69 2.08 3.36 2.91 1.73

(1.68) (1.58) (1.71) (1.58) (1.70) (1.58) (1.68) (1.58) (1.73) (2.03) (1.78) (1.71)
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Appendix

The Proof of Theorem 5.1

Proof. This Theorem is proved similarly to Datta et al. (2002), Diao et al. (2013) and
Shiferaw and Jacquline (2016). The conditional distribution of θi given yi is given by

θi | yi ∼ N(θ̂w
i , g1i(A)),

where θ̂w
i = (1−wi)yi+wix′i β̂, θ̃

B
i = (1−γi)yi+γix′i β̃, g1i(A) = Aψi

A+ψi
. Consider first that

P
[
θi ≤ θ̂w

i + z ×
√

M̂SE(θ̂w
i )

]

= P

 θi − θ̂B
i√

E(θi − θ̂B
i )2
≤
θ̂w

i − θ̂B
i + z ×

√
M̂SE(θ̂w

i )√
E(θi − θ̂B

i )2


= P

 θi − θ̂B
i√

g1i(A)
≤
θ̂w

i − θ̂B
i + z ×

√
M̂SE(θ̂w

i )√
g1i(A)


= P

 θi − θ̂B
i√

g1i(A)
≤

z ×
√

g1i(A)√
g1i(A)

+
z ×

√
M̂SE(θ̂w

i ) − z ×
√

g1i(A) + θ̂w
i − θ̂B

i√
g1i(A)


= P


θi − θ̂B

i√
g1i(A)

≤
z ×

√
g1i(A)√

g1i(A)
+

z ×
(√

M̂SE(θ̂w
i ) −

√
g1i(A)

)
+ θ̂w

i − θ̂B
i√

g1i(A)


= P


θi − θ̂B

i√
g1i(A)

≤ z +
z ×

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)
+ θ̂w

i − θ̂B
i√

g1i(A)


= P

 θi − θ̂B
i√

g1i(A)
≤ z + F(z)

 = E[Φ(z + F(z))],

where F(z) =
z×

(√
M̂SE(θ̂w

i )−
√

g1i(A)
)
+θ̂w

i −θ̃
B
i√

g1i(A)
.
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Thus, the CP of ICW(Â) is written as

P[θi ∈ ICW(Â)] = P[−z + F(−z) <
θi − θ̂w

i√
g1i(A)

< z + F(z)]

= E[Φ(z + F(z)) −Φ(−z + F(−z))].

Using the Taylor series expansion with an integral remainder term, Φ(z + F(z)) is eval-
uated as

Φ(z + F(z)) = Φ(z) + F(z)ϕ(z) +
1
2

F2(z)ϕ′(z) +
1
2

∫ z+F(z)

z
(z + F(z) − x)2ϕ′′(x)dx

= Φ(z) + [F(z) − z
2

F2(z)]ϕ(z) +
1
2

∫ z+F(z)

z
(z + F(z) − x)2(x2 − 1)ϕ(x)dx.

Taking expectations on both sides reveals that

E(Φ(z + F(z))) = Φ(z) + E[F(z)ϕ(z) − z
2

F2(z)ϕ(z)

+
1
2

∫ z+F(z)

z
(z + F(z) − x)2(x2 − 1)ϕ(x)dx].

But

θ̂w
i − θ̃B

i = (1 − wi)yi + wix′i β̂ −
(
(1 − γi)yi + γix′i β̃

)
= yi − wi(yi − x′i β̂) − yi + γi(yi − x′i β̃(A))

= γi(yi − x′i β̃(A)) − wi(yi − x′i β̂).

Using the Taylor series expansion we have

β̂ = β̃(A) + β̃(1)(A)(Â − A),

and

θ̂w
i − θ̃B

i = γi(yi − x′i β̃(A)) − wi

(
yi − x′i (β̃(A) + β̃(1)(A)(Â − A))

)
= γi(yi − x′i β̃(A)) − wi(yi − x′i β̃(A)) − wix′i β̃

(1)(A)(Â − A))

= (γi − wi)(yi − x′i β̃(A)) − wix′i β̃
(1)(A)(Â − A)).
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Substituting reveals that

F(z) =
z ×

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)
+ θ̂w

i − θ̃B
i√

g1i(A)

=
z ×

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)

√
g1i(A)

+
(γi − wi)(yi − x′i β̃(A))√

g1i(A)
−

wix′i β̃
(1)(A)(Â − A))√

g1i(A)

= S1 + R2 + R3.

Using the Taylor series expansion it can be shown that

ES1 = z
1
2
(
g1i(A)

)−1 E
(
M̂SE(θ̂w

i ) − g1i(A)
)

− z
1
8
(
g1i(A)

)−2 E
(
M̂SE(θ̂w

i ) − g1i(A)
)2

+ z
3
16

(
g1i(A)

)−1/2 E
∫ M̂SE(θ̂w

i )

g1i(A)
x−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx.

Let us compute the expectations of each term in turn

E
(
M̂SE(θ̂w

i ) − g1i(A)
)
= E(M̂SE(θ̂w

i )) − E(g1i(A)).

E(M̂SE(θ̂w
i )) =MSE(θ̂w

i ),

since E(M̂SE(θ̂w
i )) is nearly a second order unbiased estimator of MSE(θ̂w

i ).

Using the Taylor series expansion, the second term can be expressed as

M̂SE(θ̂w
i ) =MSE(θ̂w

i (A)) +MSE(θ̂w
i (A∗))(1)(Â − A) +O(m−3/2).

This can be rewritten as

M̂SE(θ̂w
i ) − g1i(A) = g(1)

1i (A∗)(Â − A).

Squaring and taking expectation on both sides:

E
(
M̂SE(θ̂w

i ) − g1i(A)
)2
= (g(1)

1i (A∗))2E(Â − A)2,
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where g1i(A) = Aψi
A+ψi

, g(1)
1i (A) = ψi

A+ψi
− Aψi

(A+ψi)2 =
ψ2

i
(A+ψi)2 , (g(1)

1i (A))2 =
ψ4

i
(A+ψi)4 .

Substituting reveals that

E
(
M̂SE(θ̂w

i ) − g1i(A)
)2
=

ψ4
i

(A + ψi)4
E(Â − A)2 +O(m−3/2),

where, E(Â−A)2 = V(Â)+Op(m−1), V(Â) can be the asymptotic variance of the FH, PR,
ML and REML estimators of A.

Let us compute the integral term using the same approach by Datta et al. (2002);
Chatterjee and Lahiri (2002), Diao et al. (2013) and Shiferaw and Jacquline (2016) as
follows.

E
∫ M̂SE(θ̂w

i )

g1i(A)
x−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx = EI1 + EI2.

Also,

EI1 =

E ∫ M̂SE(θ̂w
i )

g1i(A)
x−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx

 I{M̂SE(θ̂w
i )≥g1i(A)},

and

EI2 =

E ∫ M̂SE(θ̂w
i )

g1i(A)
x−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx

 I{M̂SE(θ̂w
i )≤g1i(A)}.

But

EI1 =

E ∫ M̂SE(θ̂w
i )

g1i(A)
x−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx

 I{M̂SE(θ̂w
i )≥g1i(A)}

≤
E ∫ M̂SE(θ̂w

i )

g1i(A)
(g1i(A))−5/2

(
M̂SE(θ̂w

i ) − g1i(A)
)2

dx

 I{M̂SE(θ̂w
i )≥g1i(A)}

≤
[1
3

(g1i(A))−5/2E
(
M̂SE(θ̂w

i ) − g1i(A)
)3
]

= O(m
−3
2 ),

using the Taylor series expansion E
(
M̂SE(θ̂w

i ) − g1i(A)
)3
= O(m

−3
2 ).



46 Y. Shiferaw and J. Galpin

In order to evaluate EI2, we choose ϵm = m−α (0 < α < 1/2) (see Datta et al., 2002).
According to Diao et al. (2013) we can rewrite I{M̂SE(θ̂w

i )≤g1i(A)} as follows

I{M̂SE(θ̂w
i )≤g1i(A)} = I{M̂SE(θ̂w

i )≤g1i(A)−ϵm} + I{g1i(A)−ϵm≤M̂SE(θ̂w
i )≤g1i(A)}.

Then,

E ∫ g1i(A)−M̂SE(θ̂w
i )

0
x2

(
M̂SE(θ̂w

i ) + x
)−5/2

dx

 I{M̂SE(θ̂w
i )≤g1i(A)−ϵm}

≤
E ∫ g1i(A)−M̂SE(θ̂w

i )

0
x4/2−5/2dx

 I{M̂SE(θ̂w
i )≤g1i(A)−ϵm}

= E
[
2
{
g1i(A) − M̂SE(θ̂w

i )
}1/2

I{M̂SE(θ̂w
i )≤g1i(A)−ϵm}

]
≤ 2

√
E|g1i(A) − M̂SE(θ̂w

i )|
√

P
(
g1i(A) − M̂SE(θ̂w

i ) ≥ ϵm
)

≤ O(m−1/2)E

√√√(
g1i(A) − M̂SE(θ̂w

i )
)3

ϵ3
m

= O(m
−3
2 ).

Also,

E

∫ g1i(A)

M̂SE(θ̂w
i )

x−5/2
(
x − M̂SE(θ̂w

i )
)2

dxI{g1i(A)−ϵm≤M̂SE(θ̂w
i )≤g1i(A)}


≤ (g1i(A) − ϵm)−5/2E

∫ g1i(A)

M̂SE(θ̂w
i )

(
x − M̂SE(θ̂w

i )
)2

dxI{g1i(A)−ϵm≤M̂SE(θ̂w
i )≤g1i(A)}


≤ 1

3
(g1i(A) − ϵm)−5/2E

(
g1i(A) − M̂SE(θ̂w

i )
)3

= O(m
−3
2 ),

Thus, EI1 + EI2 = O(m
−3
2 ).
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Combination of all the above expressions gives

ES1 =
z
2
(
g1i(A)

)−1 (g2i(A) + g3wi(A)) − z
8
(
g1i(A)

)−2 ψ4
i

(A + ψi)4
V(Â) +O(m−3/2)

=
z
2

(
Aψi

A + ψi

)−1
 ψ2

i

(A + ψi)2 x′i (
m∑

i=1

xix′i
A + ψi

)−1xi

+ (γi − wi)2

(A + ψi) − x′i

(∑ x′i xi

A + ψi

)−1

xi


− z

8

(
Aψi

A + ψi

)−2 ψ4
i

(A + ψi)4
V(Â) +O(m−3/2).

R2 can be written as

R2 = g−1/2
1i (A)(γi − wi)(yi − x′iβ) + o(m−1).

Using the Stein identity given by equation (5.6),

ER2 = g−1/2
1i (A)(A + ψi)

∂(γi − wi)
∂yi

= 0.

ER3 = 0 since Â − A = Op(m−1/2) (see Datta et al., 2011). F(z)2 can be written as:

F(z)2 = (S1 + R2 + R3)2

= S2
1 + R2

2 + R2
3 + S1R2 + S1R3 + R2R3.

Evaluating the expected value of each term turn by turn reveals that

ES2
1 =

z2

4
E
(
g−1

1i (A)(g1
1i(A)(Â − A))

)2
+O(m−3/2)

=
z2

4
g−2

1i (A)(g1
1i(A))2E(Â − A)2 +O(m−3/2)

=
z2ψ2

i

4A2(A + ψi)2 V(Â) +O(m−3/2).
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and

R2
2 =

 (γi − wi)(yi − x′i β̃(A))√
g1i(A)

2

= g−1
1i (A)(γi − wi)2(yi − x′iβ)2 + o(m−1).

Using the Stein identity (equation (5.6)) we have,

ER2
2 = g−1

1i (A)(γi − wi)2(A + ψi)
∂

∂yi
(yi − x′iβ) + o(m−1)

= g−1
1i (A)(γi − wi)2(A + ψi) + o(m−1).

R2
3 can be simplified as

R2
3 =

−wix′i β̃
(1)(A)(Â − A))√

g1i(A)


2

= g−1
1i (A)(wix′i β̃

(1)(A))2(Â − A))2.

Taking expectations on both sides

ER2
3 = g−1

1i (A)(wix′i β̃
(1)(A))2E(Â − A))2

= g−1
1i (A)(wix′i β̃

(1)(A))2V(Â),

since β̃(1)(A) = OP(m−1/2) (Datta et al., 2011).

S1R2 =
z ×

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)

√
g1i(A)

(γi − wi)(yi − x′i β̃(A))√
g1i(A)

= g−1
1i z(γi − wi)

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)

(yi − x′i β̃(A)).

Using the Taylor series expansion it follows that

S1R2 = g−1
1i z(γi − wi)

(
g(1)

1i (A)(Â − A)
)

(yi − x′i β̃(A))

= g−1
1i z(γi − wi)

(
g(1)

1i (A)(Â − A)
)

(yi − x′iβ) + o(m−1).
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Applying the Stein identity which is given by equation (5.6)

ES1R2 = g−1
1i z(γi − wi)g(1)

1i (A)(A + ψi)
∂Â
∂yi
+ o(m−1),

since ∂Â
∂yi
= Op(m−1). Similarly R2R3 can be simplified as

R2R3 =
(γi − wi)(yi − x′i β̃(A))√

g1i(A)

wix′i β̃
(1)(A)(Â − A))√

g1i(A)

= g−1
1i (A)(γi − wi)(yi − x′iβ)wix′i β̃

(1)(A)(Â − A)) + o(m−1).

Using the Stein identity (see equation (5.6))

ER2R3 = g−1
1i (A)wi(γi − wi)(A + ψi)E

∂
∂yi

{
x′i β̃

(1)(A)(Â − A))
}
.

Note that

∂

∂yi

{
x′i β̃

(1)(A)(Â − A)
}
=

∂

∂yi

{
x′i β̃

(1)(A)
}

(Â − A) + x′i β̃
(1)(A)

∂Â
∂yi

,

where

∂
∂yi

{
x′i β̃

(1)(A)
}
=

∂
∂A

x′i

{
∂
∂yi
β̃(A)

}
=

∂
∂A

{
h̃ii

A + ψi

}
+O(m−1),

where h̃ii = x′i

{∑m
j=1(A + ψ j)−1x jx′j

}−1
is O(m−1), ∂Â

∂yi
= OP(m−1) and ∂

∂yi
(β̂(Â)) = OP(m−1)

(see Kubokawa, 2010; Datta et al., 2011). Hence it follows that

∂
∂yi

{
x′i β̃

(1)(A)(Â − A))
}
= O(m−1).

Similarly S1R3 can be simplified as

S1R3 = −
z ×

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)

√
g1i(A)

wix′i β̃
(1)(A)(Â − A))√

g1i(A)

= −g−1
1i (A)zwi

(√
M̂SE(θ̂w

i ) −
√

g1i(A)
)

x′i β̃
(1)(A)(Â − A).



50 Y. Shiferaw and J. Galpin

Using the Taylor series expansion we have,

S1R3 = −g−1
1i (A)zwig

(1)
1i (A)(Â − A)x′i β̃

(1)(A)(Â − A)

= −g−1
1i (A)zwig

(1)
1i (A)x′i β̃

(1)(A)(Â − A)2.

Taking expectations on both sides

ES1R3 = −g−1
1i (A)zwig

(1)
1i (A)x′i β̃

(1)(A)E(Â − A)2

= −g−1
1i (A)zwig

(1)
1i (A)x′i β̃

(1)(A)V(Â),

since β̃(1)(A) = OP(m−1/2) (Datta et al., 2011). Combination of all the above expressions
gives

EF(z) = E(S1) + E(R2) + E(R3)

=
z
2

(
Aψi

A + ψi

)−1
 ψ2

i

(A + ψi)2 x′i (
m∑

i=1

xix′i
A + ψi

)−1xi

+ (γi − wi)2

(A + ψi) − x′i

(∑ x′i xi

A + ψi

)−1

xi


− z

8

(
Aψi

A + ψi

)−2 ψ4
i

(A + ψi)4
V(Â) +O(m−3/2).

Also,

E(F(z) − F(−z)) = z
ψi

A(A + ψi)
x′i (

m∑
i=1

xix′i
A + ψi

)−1xi

+ z
(

Aψi

A + ψi

)−1

(γi − wi)2(A + ψi))

− z
(

Aψi

A + ψi

)−1

(γi − wi)2x′i

(∑ x′i xi

A + ψi

)−1

xi

− z
4

ψ2
i

A2(A + ψi)2 V(Â) +O(m−3/2).
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Also,

EF(z)2 = ES2
1 + ER2

2 + ER2
3 + ES1R2 + ES1R3 + ER2R3

=
z2ψ2

i

4A2(A + ψi)2 V(Â) + g−1
1i (A)(γi − wi)2(A + ψi) +O(m−3/2).

and,

E(F(z)2 + F(−z)2) =
z2ψ2

i

2A2(A + ψi)2 V(Â) + 2
(

Aψi

A + ψi

)−1

(γi − wi)2(A + ψi) +O(m−3/2).

So,

E
[
F(z) − F(−z) − z

2
(F(z)2 + F(−z)2

]
= −zϕ(z)

(z2 + 1)
ψ2

i

4A2(A + ψi)2 V(Â) −
ψ2

i + (γi − wi)2(A + ψi)2

Aψi(A + ψi)
x′i

(∑ x′i xi

A + ψi

)−1

xi

 .
The remainder term

∫ z+F(z)
z (z + F(z) − x)2(x2 − 1)ϕ(x)dx can be simplified using the

approach by Datta et al. (2002), Chatterjee and lahiri (2002) and Diao et al. (2013)
as follows. Since within the limits of the integral 0 < |z + F(z) − x| < |F(z)| and
|(x2 − 1)ϕ(x)| < 2ϕ(

√
3), it follows that

E|
∫ z+F(z)

z
(x2 − 1)(z + F(z) − x)2ϕ(x)dx| ≤ E|F(z)|2|

∫ z+F(z)

z
2ϕ(
√

3)dx|

= 2E|F(z)|3ϕ(
√

3)

= O(m−3/2).

Combination and simplifications of the above results give the CP of ICW(Â) as

P[θi ∈ ICW(Â)] = E[Φ(z + F(z)) −Φ(−z + F(−z))]

= 2Φ(z) − 1 − zϕ(z)ηw +O(m−3/2),

where

ηw = (z2 + 1)
ψ2

i

4A2(A + ψi)2 V(Â) +
ψ2

i + (γi − wi)2(A + ψi)2

Aψi(A + ψi)
x′i

(∑ x′i xi

A + ψi

)−1

xi.

□
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